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1. Definitions

Let K be an algebraic number field. Let p be a prime of K. We denote by Kp the
completion of K at the prime p: if p is a finite place, then Kp is a non-archimedean
field which is a finite extension of Qp; if p is an infinite place, then Kp is R or C.
If p is finite, then Op denotes the set of integral elements

Op = {x ∈ Kp : |x|p ≤ 1}.
The adèle ring of K is

AK =
∏′

p

Kp =
{

(xp)p ∈
∏

pKp : |xp|p ≤ 1 for all but finitely many p
}

.

This product is given a topology as follows: U ⊂ AK is open if and only if for all
a ∈ AK , one has that the set

(a + U) ∩
(∏

p|∞ Kp ×
∏

p<∞Op

)
is open in the product topology.

This group may look big, but in fact there is a sense for which it is not
so large. We embed K ⊂ AK by x 7→ (x)p; this map is well-defined because
|x|p > 1 for only finitely many primes p of K. The image of K in AK has the
discrete topology and hence it is closed in AK ; the quotient AK/K is a connected
compact Hausdorff topological group. So the adèles AK themselves are not far
from a smaller (compact) group: it has a quotient which is compact. We say that
K in AK is cocompact. In some sense, this is like how Z ⊂ R: the quotient is the
compact circle group R/Z.

As an example, we may take AQ/Q. This is the solenoid, S, an infinitely
winding circle. In general, AK/K = S⊗Q K. (For more on this, see the exercises.)

We pass now to the multiplicative situation. The idèle group of K is

JK = A∗
K =

{
(xp)p ∈

∏
pK

∗
p : |xp| = 1 for all but finitely many p

}
.

In the relative topology, inversion is not a continuous operation! To get the
correct topology, we declare that U ⊂ JK is open if and only if for all a ∈ JK , the
set

aU ∩
(∏

p|∞ K∗
p ×

∏
p<∞O∗p

)
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is open in the product topology. In general, if R is a topological ring, R∗ becomes
a topological group when you give R∗ the relative topology from

R∗ ⊂ R×R

u 7→ (u, u−1).

Just as K ⊂ AK is discrete, K∗ ⊂ JK is also discrete, but this time it is only
almost cocompact. So we study CK = JK/K∗, the idèle class group.

Example 1.1. Take the example K = Q. We have a canonical isomorphism

Q∗
p
∼= 〈p〉 × Z∗p

defined by taking the p-adic valuation. If we identify Z ∼= 〈p〉, then

JQ = R∗ ×
∏
p

′
Q∗

p
∼= {±1} × R>0 ×

∏
p

Z∗p ×
⊕

p

Z.

There appears a direct sum on the right-hand side because an element of the re-
stricted direct product is a p-adic unit for all but finitely many p.

We project JQ onto the product of the first and last factor:

JQ → {±1} ×
⊕

p

Z→ 0.

Looking at Q∗ ⊂ JQ, if we write r = ε
∏

p pn(p), where ε ∈ {±1} and n(p) =
ordp(r), then r 7→ (ε, (n(p))p) in the projection. Therefore Q∗ is canonically iden-
tified with {±1}×

⊕
p Z in JQ. (Here we use that the ring of integers Z has unique

factorization and units only ±1; for a general number field, we face problems as-
sociated with units and the class group of the field.)

Putting these together, we see that

JQ ∼= Q∗ × R>0 ×
∏
p

Z∗p.

By the logarithm map, R>0
∼= R, therefore

JQ ∼= Q∗ × R× Ẑ∗,

and CQ ∼= R× Ẑ∗.

Note that even for Q the idèle class group is neither profinite or compact.
But the noncompactness is only because of the presence of the term R; for any
number field K, we map

JK → R>0

(xp)p 7→
∏
p

|xp|p,

the valuation being normalized in such a way that the product formula holds. This
map is clearly surjective, so we obtain an exact sequence

1→ J0
K → JK → R>0 → 1.
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In fact, the kernel J0
K is compact, a statement equivalent to the Dirichlet unit the-

orem and the finiteness of the class group. This exact sequence splits by mapping

R>0 → JK

λ 7→ (1, . . . , 1︸ ︷︷ ︸
p<∞

, λ1/n, . . . , λ1/n︸ ︷︷ ︸
p|∞

).

Here r1 denotes the number of real primes, r2 the number of complex primes.
Therefore JK

∼= R × J0
K as topological groups. Since K∗ ⊂ J0

K (by the product
formula), one gets the same story for CK

∼= R× C0
K .

For example, C0
Q
∼= Ẑ∗, and note that this is exactly Gab

Q .

2. Interpreting CK

Now we interpret elements of CK in terms of modules just as we may interpret
elements of the class group and the Picard group.

Recall that the class group of K, ClK , is the quotient of the set of O-ideals
by the principal ideals. The class group can also be realized by the group PicO,
the set of isomorphism classes of projective O-modules of rank 1, by the map

ClK ∼= PicO
[I] 7→ I,

where we view I as an O-module.
The Picard group of K, PicK , is defined to be the set of isomorphism classes

of metrized projective O-modules of rank 1, defined as follows. A projective O-
module P of rank 1 is metrized if it is equipped with a positive definite symmetric
bilinear form 〈, 〉 : PR → R, where

PR = P ⊗Z R = P ⊗O KR,

such that for all x, y ∈ PR and λ ∈ KR, 〈λx, y〉 = 〈x, λy〉, where z 7→ z is the canon-
ical involution of KR as an R-algebra. (For more information on this construction,
see the notes by René Schoof.) There is an obvious surjection PicK → ClK which
forgets the metric.

Finally, we have a surjection CK → PicK . We view CK as the set of iso-
morphism classes of pairs (V, φ) where V is a 1-dimensional K-vector space and
φ : V → AK is a K-linear map inducing an isomorphism V ⊗K AK

∼−→ AK . To
obtain an element of PicK , one takes as the projective module the elements of V
which are units at all places and uses the infinite primes to get a suitable metric.
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Altogether, we have the system:

ClK ∼= {Projective O-modules of rank 1}/ ∼=O

PicK
∼= {Metrized projective O-modules of rank 1}/ ∼=O

OO

CK
∼= {(V, φ : V → AK) : φ induces V ⊗K AK

∼−→ AK}

OO

We then have

1→ µ→
∏

p{x ∈ Kp : |x|p = 1} → CK → PicK → 1.

At a complex prime, the product
∏

p{x ∈ Kp : |x|p = 1} is the circle group; at a
real prime, it is {±1}; and at a finite prime, it is the group of units O∗p.

3. Idèlic Class Field Theory

Fixing an algebraic closure K ⊃ K, we have a bijection

{L ⊂ K : L ⊃ K finite abelian} ↔ {H ⊂ CK : H open subgroup}
L 7→ NL/KCL.

This is a main theorem of idèlic class field theory.
What are these open subgroups? Let m =

∏
p pn(p) be a cycle, where n(p) ≥ 0

for all p, n(p) = 0 for almost all p, and

n(p) =

0 or 1, p real,

0, p complex.

Given such a cycle m, we have an open subgroup Wm ⊂ JK , where

Wm =
∏′

n(p)=0

K∗
p ×

∏
p real

n(p) 6=0

K∗
p,>0 ×

∏
p<∞

n(p)>0

(1 + pn(p)).

A subgroup of JK is open if and only if it contains an Wm: one can read
this off almost immediately from the definition of the topology. Note that for such
an open subgroup, at every complex place one has the entire component and at
every real place one has the component up to finite index. We may take the image
Wm = (WmK∗)/K∗ ⊂ CK , and we see that a subgroup of CK is open if and only
if it contains Wm for some m. Then under the above correspondence, we have the
isomorphisms Gal(L/K) ∼= CK/H and in CK/Wm

∼= Clm, where Clm is the ray
class group.
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Combining the surjections CK → Gal(L/K), we obtain a surjective map

CK → lim←−
L

Gal(L/K) = Gab
K .

Let DK be the connected component of 1 in CK . Then DK is a closed subgroup,
and it is exactly the kernel of the above map, so CK/DK

∼= Gab
K . In fact, the

topological group DK is isomorphic to

DK
∼= R× (R/Z)r2 × Sr1+r2−1

where r1 is the number of real primes, r2 the number of complex primes, and S is
the solenoid defined in the beginning of these notes.

Exercises

Exercise 6.1. View Z as a subgroup of R×Ẑ by identifying n ∈ Z with (n, n) ∈ R×Ẑ.
Give R× Ẑ the product topology, and give S = (R× Ẑ)/Z the quotient topology.
The topological group S is called the solenoid.

(a) Prove that S is compact, Hausdorff, and connected.
(b) Prove that S has the structure of a vector space over Q.
An exact sequence 0 → B → C → D → 0 of topological abelian groups

with continuous group homomorphisms is said to split if there is an isomorphism
f : C → B×D of topological groups such that (i) the map B → C → B×D is the
canonical inclusion B → B ×D; and (ii) the map C → B ×D → D is the given
map C → D.

Exercise 6.2.
(a) Prove that there is an exact sequence 0 → Ẑ → S → R/Z → 0 of groups

with continuous group homomorphisms.
(b) Prove that the sequence does not split, even if in the definition given

above the map f is only required to be an isomorphism of topological
spaces satisfying (i) and (ii).

(c) Prove that the sequence does not split, even if in the definition given
above the map f is only required to be a group isomorphism satisfying (i)
and (ii).

Exercise 6.3.
(a) Prove: Ẑ ∼= End(Q/Z) (as rings).
(b) Prove: S ∼= Hom(Q, R/Z) (as groups).
(c) Prove: S ∼= AQ/Q (as topological groups), with AQ denoting the ring of

adèles of Q.
Below, we let K be an algebraic number field, with ring of integers O, idèle

group JK , idèle class group CK , and connected component of the idèle class
group DK .
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Exercise 6.4.

(a) Prove: CQ ∼= R× Ẑ∗ and DQ ∼= R.
(b) Give similar descriptions of CK and DK for K = Q(i) and for K = Q(

√
2).

Exercise 6.5. Denote by Ô the profinite completion of the additive group of O.

(a) Prove that the ring multiplication mapO×O → O has a unique continuous
extension to a map Ô × Ô → Ô that makes Ô into a topological ring.

(b) Prove that there are isomorphisms Ô ∼=
∏

pOp and Ô∗ ∼=
∏

pO∗p of topo-
logical rings and topological groups, respectively; in both cases, p ranges
over the set of finite primes of K, and Op denotes the completion of O
at p.

Exercise 6.6. Let µ be the group of all roots of unity in K, and write w = #µ.

(a) Prove that the set of finite primes p of K for which the natural group
homomorphism µ → (O/p)∗ is split injective has a density, and that this
density equals ϕ(w)/w, with ϕ denoting the Euler function. (A homomor-
phism f : A → B of abelian groups is said to be split injective if there is
a group homomorphism g : B → A for which gf is the identity on A.)

(b) Let m be a positive integer, and let ζ ∈ µ be such that for all but finitely
many finite primes p of K the image of ζ in O/p is an mth power in O/p.
Prove that ζ is an mth power in µ.

Exercise 6.7.

(a) Let m be a positive integer, and let w be as in the previous exercise. Let
a ∈ O be such that for all but finitely many finite primes p of K the image
of a in O/p is an mwth power in O/p. Prove that a is an mth power in O.
(Hint : use Schinzel’s theorem.)

(b) Prove that (16 mod p) is an 8th power in Fp for all primes p, but that 16
is not an 8th power in Z.

Exercise 6.8. Prove that the closure ofO∗ in Ô∗ may be identified with the profinite
completion Ô∗ of O∗.

Exercise 6.9. Let µ be the group of all roots of unity in K, and for a prime p of K
write Up = {x ∈ K∗

p : |x|p = 1}. Denote by PicK the Arakelov class group of K.
Prove that there is an exact sequence

1→ µ→
∏
p

Up → CK → PicK → 1

of abelian groups, with continuous group homomorphisms; here the product ranges
over all primes p of K.

Exercise 6.10. Let J0
K be the kernel of the group homomorphism JK → R∗ sending

(xp)p to
∏

p |xp|p. Write C0
K = J0

K/K∗ and D0
K = DK ∩C0

K . Prove that there are
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isomorphisms

JK
∼= J0

K × R, CK
∼= C0

K × R, DK
∼= D0

K × R
of topological groups.

Exercise 6.11.
(a) For a real prime p of K, write K∗

p>0 for the multiplicative group of positive
elements of Kp, and write H =

∏
p complex K∗

p ×
∏

p real K
∗
p>0. For u ∈

O∗, let u′ ∈ H be obtained from the natural image of u in
∏

p infinite K∗
p

by replacing the coordinates at the real primes by their absolute values.
Embed O∗ into H × Ô∗ by identifying u ∈ O∗ with (u′, u). Prove:

DK
∼= (H × Ô∗)/O∗

as topological groups.
(b) Prove that there is a split exact sequence of topological groups

1→
∏

p complex

Up → D0
K → O∗ ⊗Z S→ 1,

with Up as in Exercise 6.9 and D0
K as in Exercise 6.10. How should O∗⊗ZS

be topologized?
(c) Let r be the number of real primes of K and s the number of complex

primes. Prove that DK is, as a topological group, isomorphic to Sr+s−1×
(R/Z)s × R.
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