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1. Introduction

We begin informally with a motivation, relating profinite groups to the p-adic
numbers. Let p be a prime number, and let Zp denote the ring of p-adic integers,
namely, the completion of Z under the p-adic metric. Any element γ ∈ Zp has a
unique p-adic expansion

γ = c0 + c1p + c2p
2 + · · · = (. . . c3c2c1c0)p,

with ci ∈ Z, 0 ≤ ci ≤ p− 1, called the digits of γ. This ring has a topology given
by a restriction of the product topology—we will see this below.

The ring Zp can be viewed as Z/pnZ for an ‘infinitely high’ power n. This
is a useful idea, for example, in the study of Diophantine equations: if such an
equation has a solution in the integers, then it must have a solution modulo pn

for all n: to prove it does not have a solution, therefore, it suffices to show that it
does not have a solution in Zp for some prime p.

We can express the expansion of elements in Zp as

Zp = lim←−
n

Z/pnZ

=
{

(γn)∞n=0 ∈
∏

n≥0Z/pnZ : for all n, γn+1 ≡ γn (mod pn)
}

,

which we will see is an example of a projective limit. That is, for each n we have
a compatible system of maps

Zp → Z/pnZ
γ 7→ c0 + · · ·+ cn−1p

n−1 = γn.

In this way, Zp is given the structure of a profinite ring. We can also take the unit
group Z∗p ⊂ Zp, an example of a profinite group; as groups we have

Z∗p ∼=

Z/(p− 1)Z× Zp, p > 2;

Z/2Z× Z2, p = 2.

Note that in fact these isomorphisms are not just algebraic but also respect the
topology which underlies these objects.
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2. Definitions and Examples

We now begin with the formal definitions. A topological group is a group G which
is also a topological space with the property that the multiplication map

m : G×G→ G

(a, b) 7→ ab

and the inversion map

i : G→ G

a 7→ a−1

are continuous. Whenever we are given two topological groups, we insist that a ho-
momorphism between them be continuous. In particular, an isomorphism between
two topological groups must be an isomorphism of groups which is simultaneously
an ‘isomorphism’ of their topological spaces, i.e. a homeomorphism.

A directed partially ordered set is a set I together with a partial order ≥ such
that for any two elements i, j ∈ I, there exists a k ∈ I such that k ≥ i and k ≥ j.
For example, we may take I to be the set of integers Z under the relation n ≥ m
if m | n: for any m1,m2 ∈ Z, we see that lcm(m1,m2) ≥ m1,m2.

A projective system is a collection of groups Gi (for i ∈ I) together with
group homomorphisms f j

i : Gj → Gi for i, j ∈ I with j ≥ i, such that f i
i = idGi

for every i ∈ I and f j
i ◦ fk

j = fk
i for k ≥ j ≥ i. Given any such projective system,

one has a projective limit

lim←−
i

Gi =
{

(γi)i∈I ∈
∏

i∈IGi : for all i, j ∈ I such that j ≥ i, f j
i (γj) = γi

}
.

This is not only a group, but a topological group as well: we give each Gi the
discrete topology, the product the product topology, and the projective limit the
restriction topology.

We define a profinite group to be a topological group which is isomorphic (as
a topological group) to a projective limit of finite groups. One defines a topological
ring and profinite ring similarly.

Example 2.1. We define for any g ∈ Z, g ≥ 1, the projective limit

Zg = lim←−
n

Z/gnZ.

As an exercise, one can see that as topological rings,

Zg
∼=

∏
p|g

Zp;

for example, the ring of 8-adic integers is isomorphic to the ring of 2-adic integers.
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Example 2.2. We also define the ring Ẑ, read Z-hat. Here, we take the projective
limit not over all powers of a given number, but over all numbers:

Ẑ = lim←−
n

Z/nZ

= {(an)∞n=1 ∈
∏∞

n=1(Z/nZ) : for all n | m,am ≡ an (mod n)} .

We give each Z/nZ the discrete topology, and
∏

n(Z/nZ) the product topology.
This product is compact, as a result of the theorem of Tychonoff (the product of
compact topological spaces is itself compact); the restriction Ẑ is therefore itself
compact, as Ẑ is closed in

∏
n(Z/nZ). The ring homomorphism Z →

∏
n(Z/nZ)

which takes every element to its reduction modulo n realizes Ẑ as the closure of Z
in the product

∏
n(Z/nZ).

The relation of divisibility is a partial order: to replace this with a linear
order, we may also represent this ring as

Ẑ ∼= {(bn)∞n=1 ∈
∞∏

n=1

Z/n!Z : for all n, bn+1 ≡ bn (mod n!)}.

Here we write every element as

γ = c1 + c22! + c33! + · · · ∈ Ẑ
where we have digits 0 ≤ ci ≤ i.

It is also true that
Ẑ ∼=

∏
p prime

Zp.

After a bit of topological algebra, we see that one can also characterize profi-
nite groups as follows: if G is a topological group, then G is profinite if and only
if G is:

(a) Hausdorff,
(b) compact, and
(c) totally disconnected, i.e. that the largest connected subsets consist of single

points, or what is the same, for any two points x, y ∈ G, there exists a set
U which is both open and closed in G and which contains x but not y.

It is easy to see that each of our examples above is Hausdorff, compact because
it is a closed subgroup of the compact product, and totally disconnected.

Given any Gi profinite, for i in a index set I, the product
∏

i Gi is itself
profinite; the product ∏

i∈I

Z/2Z

is an example of such a profinite group. Moreover, if G is a profinite group and
H ⊂ G is a closed subgroup, then H is profinite. Similarly, if N ⊂ G is a closed
normal subgroup, then G/N is profinite with the quotient topology.

It is a theorem that given a homomorphism of profinite groups f : G1 → G2

(in particular, continuous), then ker f is a closed normal subgroup of G1, so one
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may form the quotient G1/ ker f ; the image f(G1) is a closed subgroup of G2, and
in fact

G1/ ker f ∼= f(G1)
as topological groups.

3. Galois Groups

In number theory, we have another source of profinite groups coming from Galois
groups. Given an extension of fields K ⊂ L, the following are equivalent:

(a) L =
⋃

K⊂M⊂L
M/Kfinite, Galois

M ;

(b) L ⊃ K is algebraic, normal, and separable;
(c) There is an algebraic closure K of K, and a subset S ⊂ K[X] of monic

polynomials such that for all f ∈ S, gcd(f, f ′) = 1 (the polynomials are
separable), and

L = K(α ∈ K : f(α) = 0 for some f ∈ S).

If one of these three equivalent properties holds, we say that L is Galois over K.
If L ⊃ K is Galois, we have the Galois group

Gal(L/K) = {σ ∈ Aut L : σ|K = idK}.

If E ⊃ K is a finite extension such that L ⊃ E, and σ ∈ Gal(L/K), then the
E-th neighborhood of σ, denoted UE(σ) = {τ : τ |E = σ|E}, is by definition open;
by ranging over E, we obtain an open system of neighborhoods of σ, which gives
a topology on Gal(L/K). In this topology, two automorphisms are ‘close’ to one
another if they agree on a large subfield.

To see that Gal(L/K) is a profinite group, we note that

Gal(L/K) = lim←−
M/K finite, Galois

Gal(M/K)

where now each Gal(M/K) is a finite group. The set of such M is a partially
ordered set by inclusion. We may take the composed field of two subfields, which
is again finite, so this set is directed. For M ⊃ M ′ we have restriction maps
Gal(M/K)→ Gal(M ′/K), so we have a projective system.

Many theorems of Galois theory readily generalize to this setting. For in-
stance, we have an inclusion-reversing bijective correspondence

{E : K ⊂ E ⊂ L} oo // {H ⊂ Gal(L/K) : H a closed subgroup}

E
� // Gal(L/E) = AutE L

LH H.
�oo

Note that now we must insist in this correspondence that the subgroups be closed.
Furthermore, if H ′ ⊃ H are two closed subgroups such that [H ′ : H] < ∞, then
as in the case of finite Galois theory we have [LH : LH′

] = [H ′ : H].
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Now let K be an algebraic closure of K. Consider the separable closure of K,
K ⊃ Ksep ⊃ K, namely,

Ksep = {α ∈ K : α separable over K}.
The absolute Galois group GK of K is the defined to be Gal(Ksep/K). We treat
GK as a fundamental object of study because it allows us to control all separable
extensions L of K in one stroke. Indeed, some might say that number theory is
the study of GQ.

One also has the maximal abelian extension Kab ⊃ K, the composite of all
field extensions of K with an abelian Galois group. This is a Galois extension with
Gal(Kab/K) an abelian profinite group: i.e.

Gal(Kab/K) ∼= GK/[GK , GK ].

Here, the quotient is by the closure of the (usual algebraic) commutator subgroup
of GK , the smallest subgroup which gives an abelian quotient. This is sometimes
called the abelianized Galois group Gab

K .

Example 3.1. For the rational numbers Q, we have that

Gab
Q
∼= Ẑ∗ ∼=

∏
p prime

Z∗p.

It is a theorem of Kronecker-Weber that the maximal abelian extension of Q is
Qab =

⋃∞
n=1 Q(ζn), where ζn is a primitive nth root of unity. The isomorphism

above arises from the isomorphism

(Z/nZ)∗ ∼= Gal(Q(ζn)/Q)

a mod n 7→ (ζn 7→ ζa
n)

Example 3.2. If K is a finite field, then GK
∼= Ẑ.

Exercises

Exercise 1.1. Let p be a prime number. Prove that there is a map Zp → lim←−Z/pnZ
that is simultaneously an isomorphism of rings and a homeomorphism of topolog-
ical spaces.

Exercise 1.2. Prove that any continuous bijection from one profinite group to
another is a homeomorphism.

Exercise 1.3.
(a) Let g be an integer, g > 1, and define Zg = lim←−Z/gnZ. Prove that Zg is,

as a profinite group, isomorphic to
∏

p|g Zp, the product ranging over the
primes p dividing g.

(b) Define Ẑ = lim←−Z/nZ, the limit ranging over the set of positive integers
n, ordered by divisibility. Prove: Ẑ ∼=

∏
p Zp, the product ranging over all

primes p.
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Exercise 1.4.
(a) Prove that each a ∈ Ẑ has a unique representation as a =

∑∞
n=1 cnn!, with

cn ∈ Z, 0 ≤ cn ≤ n.
(b) Let b be a non-negative integer, and define the sequence (an)∞n=0 of non-

negative integers by a0 = b and an+1 = 2an . Prove that (an)∞n=0 converges
in Ẑ, and that the limit is independent of the choice of b.

(c) Let a = limn→∞ an ∈ Ẑ be as in (b), and write a =
∑∞

n=1 cnn! as in (a).
Determine cn for 1 ≤ n ≤ 10.

Exercise 1.5. Let G and H be profinite groups, and let f : G→ H be a continuous
group homomorphism. Prove that ker f is a closed normal subgroup of G, that f(G)
is a closed subgroup of H, and that f induces an isomorphism G/ ker f

∼−→ f(G) of
profinite groups; here G/ ker f has the quotient topology induced by the topology
on G, and f(G) has the relative topology induced by the topology on H.

Exercise 1.6. The profinite completion of a group G is the profinite group Ĝ defined
by Ĝ = lim←−G/N , with N ranging over the set of normal subgroups of G of finite
index, ordered by containment, the transition maps being the natural ones.

(a) Prove that there is a natural group homomorphism G → Ĝ, and that its
image is dense in Ĝ. Find a group G for which f is not injective.

(b) What is the profinite completion of the additive group of Z?

Exercise 1.7. Let p be a prime number.
(a) Show that there is a group G whose profinite completion is isomorphic to

the additive group Zp. Can you find such a G that is countable?
(b) Let A be the product of a countably infinite collection of copies of Z/pZ.

Is there a group G such that A is isomorphic to the profinite completion
of G? Prove the correctness of your answer.

Exercise 1.8. Prove: Ẑ∗ ∼= Ẑ×
∏∞

n=1 Z/nZ as profinite groups.

Exercise 1.9.
(a) Prove: for every positive integer n the natural map Z/nZ → Ẑ/nẐ is an

isomorphism.
(b) Prove that there is a bijection from the set of positive integers to the set

of open subgroups of Ẑ mapping n to nẐ.
(c) Can you classify all closed subgroups of Ẑ?

Exercise 1.10. Let p be a prime number, and view Zp = lim←−Z/pnZ as a closed
subgroup of the profinite group A =

∏∞
n=1 Z/pnZ. Prove that A and Zp × (A/Zp)

are isomorphic as groups but not as profinite groups.

Exercise 1.11. Let L be the field obtained from Q by adjoining all a ∈ C with
a2 ∈ Q to Q. Prove: L is Galois over Q, and Gal(L/Q) is isomorphic to the
product of a countably infinite number of copies of Z/2Z.
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Exercise 1.12. Let K be a field, with separable closure Ksep, and let Kab be the
maximal abelian extension of K inside Ksep. Write GK = Gal(Ksep/K). Prove
that Kab is a Galois extension of K, and that Gal(Kab/K) is isomorphic to
GK/[GK , GK ], where [GK , GK ] denotes the closure of the commutator subgroup
of GK .

Exercise 1.13. Let L be a field, and view AutL as a subset of the set LL =
∏

x∈L L

of all functions L → L. Give L the discrete topology, LL the product topology,
and AutL the relative topology.

(a) Prove: AutL is a topological group; i. e., the composition map Aut L ×
AutL→ AutL and the map AutL→ Aut L sending each automorphism
of L to its inverse are continuous.

(b) Let K be a subfield of L. Prove: L is Galois over K if and only if there
is a compact subgroup G of AutL such that K is the field of invariants
of G. Prove also that such a subgroup G, if it exists, is necessarily equal
to Gal(L/K), and that its topology coincides with the Krull topology on
Gal(L/K). (The Krull topology is the topology of Gal(L/K) when viewed
as a profinite group.)
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