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1. Introduction

We begin informally with a motivation, relating profinite groups to the p-adic
numbers. Let p be a prime number, and let Z, denote the ring of p-adic integers,
namely, the completion of Z under the p-adic metric. Any element v € Z, has a
unique p-adic expansion

Y =co+cp+cop® + o= (...c3201¢0)p,

with ¢; € Z, 0 < ¢; < p—1, called the digits of . This ring has a topology given
by a restriction of the product topology—we will see this below.

The ring Z, can be viewed as Z/p"Z for an ‘infinitely high’ power n. This
is a useful idea, for example, in the study of Diophantine equations: if such an
equation has a solution in the integers, then it must have a solution modulo p™
for all n: to prove it does not have a solution, therefore, it suffices to show that it
does not have a solution in Z, for some prime p.

We can express the expansion of elements in Z,, as

Ly = @Z/ "7

n
— {0 € T Z/p"Z : for all n, s = 9 (mod p) |,

which we will see is an example of a projective limit. That is, for each n we have
a compatible system of maps

Ly — L[p"L
Y co+ ot en1p" T =
In this way, Z, is given the structure of a profinite ring. We can also take the unit
group Z,, C Zy, an example of a profinite group; as groups we have
Z/(p—1)Z XZp, p>2
227 X 7, p=2.

Z

o~

*
p

Note that in fact these isomorphisms are not just algebraic but also respect the
topology which underlies these objects.



2 Hendrik Lenstra

2. Definitions and Examples

We now begin with the formal definitions. A topological group is a group G which
is also a topological space with the property that the multiplication map

m:GxG—G
(a,b) — ab

and the inversion map
1:G—G

ar—a !

are continuous. Whenever we are given two topological groups, we insist that a ho-
momorphism between them be continuous. In particular, an isomorphism between
two topological groups must be an isomorphism of groups which is simultaneously
an ‘isomorphism’ of their topological spaces, i.e. a homeomorphism.

A directed partially ordered set is a set I together with a partial order > such
that for any two elements i, j € I, there exists a k € I such that k> i and k > j.
For example, we may take I to be the set of integers Z under the relation n > m
if m | n: for any my,ms € Z, we see that lem(my, ma) > my, mo.

A projective system is a collection of groups G; (for ¢ € I) together with
group homomorphisms fij : Gj — G, for i,j € I with j > i, such that f/ = idg,
for every i € I and f7 o [y = fF for k > j > i. Given any such projective system,
one has a projective limit

@Gi = {('yi)iej € [l;e G« for all 4,5 € I such that j > 4, ff('yj) = fyi} )

This is not only a group, but a topological group as well: we give each G; the
discrete topology, the product the product topology, and the projective limit the
restriction topology.

We define a profinite group to be a topological group which is isomorphic (as
a topological group) to a projective limit of finite groups. One defines a topological
ring and profinite ring similarly.

Example 2.1. We define for any g € Z, g > 1, the projective limit

Zy=UmZ/g"Z.

n
As an exercise, one can see that as topological rings,
~ .
Zq = 1] %
plg

for example, the ring of 8-adic integers is isomorphic to the ring of 2-adic integers.
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Example 2.2. We also define the ring i, read Z-hat. Here, we take the projective
limit not over all powers of a given number, but over all numbers:

7 = limZ/nZ
—

n
={(an);2q € [I,2,(Z/nZ) : for all n | m, ay, = a,, (mod n)}.

We give each Z/n’Z the discrete topology, and [ ], (Z/nZ) the product topology.
This product is compact, as a result of the theorem of Tychonoff (the product of
compact topological spaces is itself compact); the restriction 7 is therefore itself
compact, as 7 is closed in [L.(Z/nZ). The ring homomorphism Z — ], (Z/nZ)
which takes every element to its reduction modulo n realizes Z as the closure of Z
in the product [ ], (Z/nZ).

The relation of divisibility is a partial order: to replace this with o linear
order, we may also represent this ring as

{(bn)o2, € H Z/n\Z : for all n,by1 = by, (mod nl)}.

n=1

Z

IR

Here we write every element as
’}/2614-622!4—633!"-"'62

where we have digits 0 < ¢; < 1.
It is also true that

2= 1] z.

p prime

After a bit of topological algebra, we see that one can also characterize profi-
nite groups as follows: if G is a topological group, then G is profinite if and only
if G is:

(a) Hausdorff,

(b) compact, and

(¢c) totally disconnected, i.e. that the largest connected subsets consist of single
points, or what is the same, for any two points x,y € G, there exists a set
U which is both open and closed in G and which contains x but not y.

It is easy to see that each of our examples above is Hausdorff, compact because
it is a closed subgroup of the compact product, and totally disconnected.
Given any G; profinite, for 7 in a index set I, the product [[, G; is itself
profinite; the product
[1z/2z

il
is an example of such a profinite group. Moreover, if GG is a profinite group and
H C G is a closed subgroup, then H is profinite. Similarly, if N C G is a closed
normal subgroup, then G/N is profinite with the quotient topology.
It is a theorem that given a homomorphism of profinite groups f : G; — G2
(in particular, continuous), then ker f is a closed normal subgroup of G;, so one
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may form the quotient G/ ker f; the image f(G1) is a closed subgroup of G, and
in fact

Gl/kerf = f(G1)

as topological groups.

3. Galois Groups

In number theory, we have another source of profinite groups coming from Galois
groups. Given an extension of fields K C L, the following are equivalent:
@ L=U_ xcwcy I
M /K finite, Galois
(b) L D K is algebraic, normal, and separable;
(c) There is an algebraic closure K of K, and a subset S C K[X] of monic
polynomials such that for all f € S, ged(f, f') = 1 (the polynomials are
separable), and

L=K(a€K: f(a) =0 for some f € S).

If one of these three equivalent properties holds, we say that L is Galois over K.
If L D K is Galois, we have the Galois group
Gal(L/K)={c € Aut L : 0| =idk}.
If E D K is a finite extension such that L D E, and o € Gal(L/K), then the
E-th neighborhood of o, denoted Ug(c) = {7 : 7|g = o|g}, is by definition open;
by ranging over E, we obtain an open system of neighborhoods of o, which gives
a topology on Gal(L/K). In this topology, two automorphisms are ‘close’ to one
another if they agree on a large subfield.
To see that Gal(L/K) is a profinite group, we note that
Gal(L/K) = lim Gal(M/K)
M /K finite, Galois
where now each Gal(M/K) is a finite group. The set of such M is a partially
ordered set by inclusion. We may take the composed field of two subfields, which
is again finite, so this set is directed. For M D M’ we have restriction maps
Gal(M/K) — Gal(M'/K), so we have a projective system.
Many theorems of Galois theory readily generalize to this setting. For in-
stance, we have an inclusion-reversing bijective correspondence

{E:KCECL}<~—{H CGal(L/K) : H a closed subgroup}
Ei Gal(L/E) = Autg L
L7 tH.

Note that now we must insist in this correspondence that the subgroups be closed.
Furthermore, if H' D H are two closed subgroups such that [H' : H] < oo, then
as in the case of finite Galois theory we have [L* : L7’ = [H' : H].
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Now let K be an algebraic closure of K. Consider the separable closure of K,
K D K*P D K, namely,

K*? = {a € K : a separable over K}.

The absolute Galois group Gk of K is the defined to be Gal(K*P/K). We treat
Gk as a fundamental object of study because it allows us to control all separable
extensions L of K in one stroke. Indeed, some might say that number theory is
the study of Gg.

One also has the maximal abelian extension K*” O K, the composite of all
field extensions of K with an abelian Galois group. This is a Galois extension with
Gal(K®/K) an abelian profinite group: i.e.

Gal(K**/K) = Gk /[Gk, Gk
Here, the quotient is by the closure of the (usual algebraic) commutator subgroup

of Gk, the smallest subgroup which gives an abelian quotient. This is sometimes
called the abelianized Galois group G&P.

Example 3.1. For the rational numbers Q, we have that

It is a theorem of Kronecker-Weber that the maximal abelian extension of Q is
Q* = U2, Q(¢n), where ¢, is a primitive nth root of unity. The isomorphism
above arises from the isomorphism

(Z/nZ)" = Gal(Q(¢n)/Q)

amod n = (G = C2)

Example 3.2. If K is a finite field, then G = Z.

Exercises

Exercise 1.1. Let p be a prime number. Prove that there is a map Z, — @Z/p”Z
that is simultaneously an isomorphism of rings and a homeomorphism of topolog-
ical spaces.

Exercise 1.2. Prove that any continuous bijection from one profinite group to
another is a homeomorphism.

Exercise 1.3.
(a) Let g be an integer, g > 1, and define Z, = liLnZ/g”Z. Prove that Z, is,
as a profinite group, isomorphic to le g Lp, the product ranging over the
primes p dividing g.
(b) Define Z = limZ/nZ, the limit ranging over the set of positive integers
n, ordered by divisibility. Prove: 7, = Hp Z,, the product ranging over all
primes p.
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Exercise 1.4.
(a) Prove that each a € Z has a unique representation as a = >0 | can!, with

cn €7,0<c, <n.
(b) Let b be a non-negative integer, and define the sequence (ay)5>, of non-
negative integers by ag = b and a,,11 = 2. Prove that (a,)%2, converges
in Z, and that the limit is independent of the choice of b.
(¢) Let a = lim,, o0 ayn, € Z be as in (b), and write a = Y 2

a1 cnnl asin (a).
Determine ¢, for 1 < n < 10.

Exercise 1.5. Let G and H be profinite groups, and let f: G — H be a continuous
group homomorphism. Prove that ker f is a closed normal subgroup of G, that f(G)
is a closed subgroup of H, and that f induces an isomorphism G/ ker f = f(G) of
profinite groups; here G/ ker f has the quotient topology induced by the topology
on G, and f(G) has the relative topology induced by the topology on H.
Exercise 1.6. The profinite completion of a group G is the profinite group G defined
by G = lim G /N, with N ranging over the set of normal subgroups of G of finite
index, ordered by containment, the transition maps being the natural ones.

(a) Prove that there is a natural group homomorphism G — é, and that its

image is dense in G. Find a group G for which f is not injective.
(b) What is the profinite completion of the additive group of Z?

Exercise 1.7. Let p be a prime number.
(a) Show that there is a group G whose profinite completion is isomorphic to
the additive group Z,. Can you find such a G that is countable?
(b) Let A be the product of a countably infinite collection of copies of Z/pZ.
Is there a group G such that A is isomorphic to the profinite completion
of G? Prove the correctness of your answer.

Exercise 1.8. Prove: Z* &~ 7 x [1,2, Z/nZ as profinite groups.

Exercise 1.9.
(a) Prove: for every positive integer n the natural map Z/nZ — 2/ nZ is an
isomorphism.
(b) Prove that there is a bijection from the set of positive integers to the set
of open subgroups of s mapping n to nZ.
(c) Can you classify all closed subgroups of A

Exercise 1.10. Let p be a prime number, and view Z, = }iﬂlZ/p"Z as a closed
subgroup of the profinite group A = [[ 2, Z/p"Z. Prove that A and Z, x (A/Z,)
are isomorphic as groups but not as profinite groups.

Exercise 1.11. Let L be the field obtained from @ by adjoining all a € C with
a?> € Q to Q. Prove: L is Galois over Q, and Gal(L/Q) is isomorphic to the
product of a countably infinite number of copies of Z/2Z.
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Exercise 1.12. Let K be a field, with separable closure K®¢P, and let K2 be the
maximal abelian extension of K inside K®P. Write Gx = Gal(K®P/K). Prove
that K2 is a Galois extension of K, and that Gal(K*"/K) is isomorphic to

Gk /|Gk,Gk], where [Gg,Gk] denotes the closure of the commutator subgroup
of GK.

Exercise 1.13. Let L be a field, and view Aut L as a subset of the set LY = [loer L
of all functions L — L. Give L the discrete topology, L¥ the product topology,
and Aut L the relative topology.

(a) Prove: Aut L is a topological group; i.e., the composition map Aut L x
Aut L — Aut L and the map Aut L — Aut L sending each automorphism
of L to its inverse are continuous.

(b) Let K be a subfield of L. Prove: L is Galois over K if and only if there
is a compact subgroup G of Aut L such that K is the field of invariants
of G. Prove also that such a subgroup G, if it exists, is necessarily equal
to Gal(L/K), and that its topology coincides with the Krull topology on
Gal(L/K). (The Krull topology is the topology of Gal(L/K) when viewed
as a profinite group.)
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