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CHAPTER 1

Review of Eigenvalues, Eigenvectors and Characteristic
Polynomial

We will heavily use most of what was discussed in Linear Algebra I, in particular
the following.

(1) Vector spaces
(2) Subspaces and sums of subspaces
(3) Complementary subspaces
(4) Linear maps, as well as their associated kernels and ranks
(5) Bases of vector spaces (all vector spaces have a basis by Zorn’s Lemma)
(6) Dimension
(7) The isomorphism φB : F

n → V associated to a basis B for a vector
space V of dimension n over a field F .

(8) Matrices, and elementary operations on them
(9) Matrices associated to linear maps
(10) Determinants
(11) Cramer’s rule
(12) Dimension formula for sums of vector spaces
(13) Dimension formula for linear maps
(14) Eigenvalues, eigenvectors, and eigenspaces of endomorphisms
(15) Diagonalizability of endomorphisms

We finished Linear Algebra I discussing eigenvalues and eigenvectors of endomor-
phisms and square matrices, and the question when they are diagonalizable. For
your convenience, we repeat here the most relevant definitions and results.

Let F be any field. Let V be a finite-dimensional F -vector space, dimV = n, and
let f : V → V be an endomorphism. Then for λ ∈ F , the λ-eigenspace of f was
defined to be

Eλ(f) = {v ∈ V : f(v) = λv} = ker(f − λ idV ) .

The scalar λ is an eigenvalue of f if Eλ(f) ̸= {0}, i.e., if there is 0 ̸= v ∈ V such
that f(v) = λv. Such a vector v is called an eigenvector of f for the eigenvalue λ.

The eigenvalues are exactly the roots (in F ) of the characteristic polynomial of f ,

Pf (x) = det(x idV −f) ,
which is a monic polynomial of degree n with coefficients in F .

The geometric multiplicity of λ as an eigenvalue of f is defined to be the dimension
of the λ-eigenspace, whereas the algebraic multiplicity of λ as an eigenvalue of f
is defined to be its multiplicity as a root of the characteristic polynomial.

The endomorphism f is said to be diagonalizable if there exists a basis for V
consisting of eigenvectors of f . The matrix representing f relative to this basis is
then a diagonal matrix, with the various eigenvalues appearing on the diagonal.
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4 1. REVIEW OF EIGENVALUES, EIGENVECTORS AND CHARACTERISTIC POLYNOMIAL

Since n× n matrices can be identified with endomorphisms F n → F n, all notions
and results makes sense for square matrices, too. A matrix A ∈ Mat(n, F ) is
diagonalizable if and only if it is similar to a diagonal matrix, i.e., if there is an
invertible matrix P ∈ Mat(n, F ) such that P−1AP is diagonal.

It is an important fact that the geometric multiplicity of an eigenvalue cannot
exceed its algebraic multiplicity. An endomorphism or square matrix is diagonal-
izable if and only if the sum of the geometric multiplicities of all eigenvalues equals
the dimension of the space. This in turn is equivalent to the two conditions (a)
the characteristic polynomial is a product of linear factors, and (b) for each eigen-
value, algebraic and geometric multiplicities agree. For example, both conditions
are satisfied if Pf is the product of n distinct monic linear factors.

Exercises.

(1) Are the vectors

 2
−1
−2

,

−1
1
1

, and

 4
−1
−4

 linearly independent?

(2) Are the vectors

 2
−1
−2

,

−1
1
1

, and

 4
−1
−5

 linearly independent?

(3) For which x ∈ R are the vectors

1
x
0

,

−1
0
1

 and

1
1
x

 linearly depen-

dent?
(4) Compute det(M) for

M =


−3 −1 0 −2
0 −2 0 0
1 0 −1 1
1 1 0 0

 .

(5) Give the kernel and the image of the map R5 → R3 given by x 7→ Ax
with

A =

 1 −1 1 2 1
2 −1 4 3 3

−1 0 −3 −1 1

 .

(6) For any square matrix M show that rk(M2) ≤ rk(M).
(7) Compute the characteristic polynomial, the complex eigenvalues and the

complex eigenspaces of the matrix

(
0 −1
1 0

)
viewed as a matrix over C.

(8) Find the eigenvalues and eigenspaces of the matrix A =

(
11 9

−12 −10

)
.

Is A diagonalizable?

(9) Same question for A =

(
3 1

−1 1

)
.

(10) Show that A =

(
1 1
0 1

)
is not diagonalizable.

(11) Consider the map f : R2 → R2 given by x 7→ Ax where A =

(
3 1

−2 0

)
.

Show that R2 has a basis consisting of eigenvectors of f , and give the
matrix of f with respect to this basis. For any positive integer n, give a
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formula for the matrix representation of fn, first with respect to the basis
of eigenvectors, and then with respect to the standard basis.

(12) Suppose that M is a diagonalizable matrix. Show that M2 +M is diag-
onalizable.

(13) Is every 3×3 matrix whose characteristic polynomial is X3−X diagonal-
izable? Is every 3× 3 matrix whose characteristic polynomial is X3 −X2

diagonalizable?
(14) Let the map f : R3 → R3 be the reflection in the plane x + 2y + z = 0.

What are the eigenvalues and eigenspaces of f?
(15) What is the characteristic polynomial of the rotation map R3 → R3 which

rotates space around the line through the origin and the point (1, 2, 3))
by 180 degrees? Same question if we rotate by 90 degrees?





CHAPTER 2

Direct Sums of Subspaces

The proof of the Jordan Normal Form Theorem, which is one of our goals, uses the
idea to split the vector space V into subspaces on which the endomorphism can
be more easily described. In order to make this precise, we introduce the notion
of direct sum of linear subspaces of V .

2.1. Definition. Suppose I is an index set and Ui ⊂ V (for i ∈ I) are linear
subspaces of a vector space V satisfying

(1) Uj ∩

 ∑
i∈I\{j}

Ui

 = {0}

for all j ∈ I. Then we write
⊕

i∈I Ui for the subspace
∑

i∈I Ui of V , and we call
this sum the (internal) direct sum of the subspaces Ui. Whenever we use this
notation, the hypothesis (1) is implied. If I = {1, 2, . . . , n}, then we also write
U1 ⊕ U2 ⊕ · · · ⊕ Un.

2.2. Lemma. Let V be a vector space, and Ui ⊂ V (for i ∈ I) linear sub-
spaces. Then the following statements are equivalent.

(1) Every v ∈ V can be written uniquely as v =
∑

i∈I ui with ui ∈ Ui for all
i ∈ I, and only finitely many ui ̸= 0.

(2)
∑

i∈I Ui = V , and for all j ∈ I, we have Uj ∩
∑

i∈I\{j} Ui = {0}.
(3) If we have any basis Bi of Ui for each i ∈ I, then these bases Bi are

pairwise disjoint, and the union
⋃
i∈I Bi forms a basis for V.

(4) There exists a basis Bi of Ui for each i ∈ I such that these bases Bi are
pairwise disjoint, and the union

⋃
i∈I Bi forms a basis for V.

By statement (2) of this lemma, if these conditions are satisfied, then V is the
direct sum of the subspaces Ui, that is, we have V =

⊕
i∈I Ui.

Proof. “(1) ⇒ (2)”: Since every v ∈ V can be written as a sum of elements
of the Ui, we have V =

∑
i∈I Ui. Now assume that v ∈ Uj ∩

∑
i ̸=j Ui. This gives

two representations of v as v = uj =
∑

i ̸=j ui. Since there is only one way of
writing v as a sum of ui’s, this is only possible when v = 0.

“(2) ⇒ (3)”: Since the elements of any basis are nonzero, and Bi is contained in Ui
for all i, it follows from Uj ∩

∑
i∈I\{j} Ui = {0} that Bi ∩Bj = ∅ for all i ̸= j. Let

B =
⋃
i∈I Bi. Since Bi generates Ui and

∑
i Ui = V , we find that B generates V .

To show that B is linearly independent, consider a linear combination∑
i∈I

∑
b∈Bi

λi,bb = 0 .
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8 2. DIRECT SUMS OF SUBSPACES

For any fixed j ∈ I, we can write this as

Uj ∋ uj =
∑
b∈Bj

λj,bb = −
∑
i ̸=j

∑
b∈Bi

λi,bb ∈
∑
i ̸=j

Ui .

By (2), this implies that uj = 0. Since Bj is a basis for Uj, this is only possible
when λj,b = 0 for all b ∈ Bj. Since j ∈ I was arbitrary, this shows that all
coefficients vanish.

“(3) ⇒ (4)”: This follows by choosing any basis Bi for Ui (see Remark 2.3).

“(4) ⇒ (1)”: Take a basis Bi for Ui for each i ∈ I as in (4). Write v ∈ V as a
linear combination of the basis elements in

⋃
iBi. Since Bi is a basis for Ui, we

may write the part of the linear combination coming from Bi as ui, which yields
v =

∑
i ui with ui ∈ Ui. To see that the ui are unique, we note that the ui can

be written as linear combinations of elements in Bi; the sum v =
∑

i ui is then a
linear combination of elements in

⋃
iBi, which has to be the same as the original

linear combination, because
⋃
iBi is a basis for V . It follows that indeed all the

ui are uniquely determined. □

2.3. Remark. The proof of the implication (3) ⇒ (4) implicitly assumes the
existence of a basis Bi for each Ui. The existence of a basis Bi for Ui is clear
when Ui is finite-dimensional, but for infinite-dimensional vector spaces this is
more subtle. Using Zorn’s Lemma, which is equivalent to the Axiom of Choice
of Set Theory, one can prove that all vector spaces do indeed have a basis. See
Appendix E of Linear Algebra I, 2020 edition (or later). We will use this more
often.

2.4. Remark. If U1 and U2 are linear subspaces of the vector space V, then
statement V = U1⊕U2 is equivalent to U1 and U2 being complementary subspaces.

2.5. Lemma. Suppose V is a vector space with subspaces U and U ′ such that
V = U⊕U ′. If U1, . . . , Ur are subspaces of U with U = U1⊕· · ·⊕Ur and U ′1, . . . , U ′s
are subspaces of U ′ with U ′ = U ′1 ⊕ · · · ⊕ U ′s, then we have

V = U1 ⊕ · · · ⊕ Ur ⊕ U ′1 ⊕ · · · ⊕ U ′s.

Proof. This follows most easily from part (1) of Lemma 2.2. □

The converse of this lemma is trivial in the sense that if we have

V = U1 ⊕ · · · ⊕ Ur ⊕ U ′1 ⊕ · · · ⊕ U ′s,

then apparently the r + s subspaces U1, . . . , Ur, U
′
1, . . . , U

′
s satisfy the hypothesis

(1), which implies that also the r subspaces U1, . . . , Ur satisfy this hypothesis, as
well as the subspaces U ′1, . . . , U

′
s; then also the two subspaces U = U1 ⊕ · · · ⊕ Ur

and U ′ = U ′1 ⊕ . . .⊕U ′s together satisfy the hypothesis and we have V = U ⊕U ′.

In other words, we may write

(U1 ⊕ · · · ⊕ Ur)⊕ (U ′1 ⊕ · · · ⊕ U ′s) = U1 ⊕ · · · ⊕ Ur ⊕ U ′1 ⊕ · · · ⊕ U ′s

in the sense that if all the implied conditions of the form (1) are satisfied for one
side of the equality, then the same holds for the other side, and the (direct) sums
are then equal. In particular, we have U1 ⊕ (U2 ⊕ · · · ⊕ Ur) = U1 ⊕ · · · ⊕ Ur.

The following lemma states that if two subspaces intersect each other trivially,
then one can be extended to a complementary space of the other. Its proof also
suggests how we can do the extension explicitly.
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2.6. Lemma. Let U and U ′ be subspaces of a finite-dimensional vector space
V satisfying U ∩ U ′ = {0}. Then there exists a subspace W ⊂ V with U ′ ⊂ W
that is a complementary subspace of U in V .

Proof. Let (u1, . . . , ur) be a basis for U and (v1, . . . , vs) a basis for U ′. Then
by Lemma 2.2 we have a basis (u1, . . . , ur, v1, . . . , vs) for U + U ′ = U ⊕ U ′. By
the Basis Extension Theorem of Linear Algebra 1, we may extend this to a basis
(u1, . . . , ur, v1, . . . , vs, w1, . . . , wt) for V . We now let W be the subspace generated
by v1, . . . , vs, w1, . . . , wt. Then (v1, . . . , vs, w1, . . . , wt) is a basis for W and clearly
W contains U ′. By Lemma 2.2 we conclude that U and W are complementary
spaces. □

Next, we discuss the relation between endomorphisms of V and endomorphisms
between the Ui.

2.7. Lemma and Definition. Let V be a vector space with linear subspaces
Ui (i ∈ I) such that V =

⊕
i∈I Ui. For each i ∈ I, let fi : Ui → Ui be an

endomorphism. Then there is a unique endomorphism f : V → V such that
f |Ui

= fi for all i ∈ I.

We call f the direct sum of the fi and write f =
⊕

i∈I fi.

Proof. Let v ∈ V . Then we have v =
∑

i ui as above, therefore the only way
to define f is by f(v) =

∑
i fi(ui). This proves uniqueness. Since the ui in the

representation of v above are unique, f is a well-defined map, and it is clear that
f is linear, so f is an endomorphism of V. □

2.8. Remark. If in the situation of Definition 2.7, V is finite-dimensional and
we choose a basis B of V that is the concatenation of bases Bi of the Ui, then
the matrix representing f relative to B will be a block diagonal matrix, where
the diagonal blocks are the matrices representing the fi relative to the bases Bi of
the Ui. In this finite-dimensional case the number of indices i ∈ I for which Ui is
nonzero is finite, and it follows that the characteristic polynomial Pf equals

Pf =
∏
i∈I

Pfi .

In particular, we have det f =
∏

i∈I det fi, and Tr f =
∑

i∈I Tr fi for the determi-
nant and the trace.

2.9. Remark. An endomorphism f : V → V is diagonalizable if and only if
the vector space V is the direct sum of the eigenspaces of f .

2.10. Lemma. Let V be a vector space with linear subspaces Ui (i ∈ I) such
that V =

⊕
i∈I Ui. Let f : V → V be an endomorphism. Then there are endo-

morphisms fi : Ui → Ui for i ∈ I such that f =
⊕

i∈I fi if and only if each Ui is
invariant under f (or f -invariant), i.e., f(Ui) ⊂ Ui.

Proof. If f =
⊕

i fi, then fi = f |Ui
, hence f(Ui) = f |Ui

(Ui) = fi(Ui) ⊂ Ui.
Conversely, suppose that f(Ui) ⊂ Ui. Then we can define fi : Ui → Ui to be
the restriction of f to Ui; it is then clear that fi is an endomorphism of Ui and
that f equals

⊕
i fi, as the two coincide on all the subspaces Ui, which together

generate V . □
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2.11. Example. Consider the linear map f : R3 → R3 that sends (x, y, z)
to (y, z, x). This describes rotation over 2π/3 around the line U1 = L

(
a
)
with

a = (1, 1, 1). The line U1 is point-wise fixed by f , so it is f -invariant. The
orthogonal complement U2 = a⊥ is an f -invariant plane, so we have R3 = U1 ⊕U2

and f = f1 ⊕ f2 with fi = f |Ui
. The vector v1 = a gives a basis for the line U1.

The vectors v2 = (1,−1, 0) and v3 = (−1, 0, 1) form a basis (v2, v3) for the plane
U2. Putting these two bases together, we obtain a basis B = (v1, v2, v3) for R3 and
by the Remark 2.8, the associated matrix [f ]BB is a block diagonal matrix. Indeed,
from f(v1) = v1 and f(v2) = v3 and f(v3) = −v2 − v3 we find

[f ]BB =

1 0 0
0 0 −1
0 1 −1

 .

Recall that if V is a vector space over a field F and f : V → V is an endomorphism,
then we write

fn = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n

.

More generally, if p =
∑d

i=0 aix
i ∈ F [x] is a polynomial, then we define p(f) =∑d

i=0 aif
i. Note that for two polynomials p, q ∈ F [x], we have (p · q)(f) =

p(f) ◦ q(f). We now come to a relation between splittings of f as a direct
sum and polynomials that vanish on f , that is, polynomials p with p(f) = 0
(where 0 denotes the zero endomorphism). We will see later that this includes the
characteristic and the minimal polynomial of f (see Theorem 3.1 and Lemma 3.4).

We call two polynomials p1(x) and p2(x) coprime if there are polynomials a1(x)
and a2(x) such that a1(x)p1(x) + a2(x)p2(x) = 1.

2.12. Lemma. Let V be a vector space and f : V → V an endomorphism.
Let p(x) = p1(x)p2(x) be a polynomial such that p(f) = 0 and such that p1(x) and
p2(x) are coprime. Let Ui = ker

(
pi(f)

)
, for i = 1, 2. Then V = U1 ⊕ U2 and the

Ui are f -invariant. In particular, f = f1⊕f2, where fi = f |Ui
. Moreover, we have

U1 = im
(
p2(f)

)
and U2 = im

(
p1(f)

)
.

Proof. Set K1 = im
(
p2(f)

)
and K2 = im

(
p1(f)

)
. We first show that Ki ⊂ Ui

for i = 1, 2. Let v ∈ K1 = im
(
p2(f)

)
, so v =

(
p2(f)

)
(u) for some u ∈ V . Then(

p1(f)
)
(v) =

(
p1(f)

)((
p2(f)

)
(u)
)
=
(
p1(f) ◦ p2(f)

)
(u) =

(
p(f)

)
(u) = 0 ,

so K1 = im
(
p2(f)

)
⊂ ker

(
p1(f)

)
= U1. The statement for i = 2 follows by

symmetry.

Now we show that U1 ∩ U2 = {0}. So let v ∈ U1 ∩ U2. Then
(
p1(f)

)
(v) =(

p2(f)
)
(v) = 0. Let a1(x), a2(x) be such that a1(x)p1(x) + a2(x)p2(x) = 1. Using

idV = 1(f) =
(
a1(x)p1(x) + a2(x)p2(x)

)
(f) = a1(f) ◦ p1(f) + a2(f) ◦ p2(f) ,

we see that

v =
(
a1(f)

)((
p1(f)

)
(v)
)
+
(
a2(f)

)((
p2(f)

)
(v)
)
=
(
a1(f)

)
(0) +

(
a2(f)

)
(0) = 0 .

Next, we show that K1 + K2 = V . Using the same relation above, and the fact
that pi(f) and ai(f) commute, we find for v ∈ V arbitrary that

v =
(
p1(f)

)((
a1(f)

)
(v)
)
+
(
p2(f)

)((
a2(f)

)
(v)
)
∈ im

(
p1(f)

)
+ im

(
p2(f)

)
.



2. DIRECT SUMS OF SUBSPACES 11

These statements together imply that Ki = Ui for i = 1, 2, and V = U1 ⊕ U2.
Indeed, let v ∈ U1. We can write v = v1 + v2 with vi ∈ Ki. Then U1 ∋ v − v1 =
v2 ∈ U2, but U1 ∩ U2 = {0}, so v = v1 ∈ K1.

Finally, we have to show that U1 and U2 are f -invariant. So let (e.g.) v ∈ U1.
Since f commutes with p1(f), we have(
p1(f)

)(
f(v)

)
=
(
p1(f) ◦ f

)
(v) =

(
f ◦ p1(f)

)
(v) = f

((
p1(f)

)
(v)
)
= f(0) = 0 ,

(since v ∈ U1 = ker
(
p1(f)

)
), hence f(v) ∈ U1 as well. □

2.13. Example. Consider the linear map f : R3 → R3 from Example 2.11.
Because f 3 = id, we find that the polynomial p = x3−1 vanishes on f , that is, we
have p(f) = 0. We can factor p as p = p1p2 with p1 = x− 1 and p2 = x2 + x+ 1.
The polynomials p1 and p2 are coprime, as we have

1 = −1
3
(x+ 2) · p1 + 1

3
· p2;

it also follows from Lemma 2.15. We recover U1 and U2 from Example 2.11 as
follows. The linear map p1(f) = f − id sends (x, y, z) to (y−x, z− y, x− z), so we
find ker

(
p1(f)

)
= L((1, 1, 1)) = U1. The linear map p2(f) = f ◦ f + f + id sends

(x, y, z) to (x+ y + z, x+ y + z, x+ y + z), so we find ker
(
p2(f)

)
= U2.

2.14. Proposition. Let V be a vector space and f : V → V an endomor-
phism. Let p(x) = p1(x)p2(x) · · · pk(x) be a polynomial such that p(f) = 0 and
such that the factors pi(x) are coprime in pairs. Let Ui = ker

(
pi(f)

)
. Then

V = U1 ⊕ · · · ⊕ Uk and the Ui are f -invariant. In particular, f = f1 ⊕ · · · ⊕ fk,
where fi = f |Ui

.

Proof. We proceed by induction on k. The case k = 1 is trivial. So let k ≥ 2,
and denote q(x) = p2(x) · · · pk(x). Then I claim that p1(x) and q(x) are coprime.
To see this, note that by assumption, we can write, for i = 2, . . . , k,

ai(x)p1(x) + bi(x)pi(x) = 1 .

Multiplying these equations, we obtain

A(x)p1(x) + b2(x) · · · bk(x)q(x) = 1 ;

note that all the terms except b2(x) · · · bk(x)q(x) that we get when expanding the
product of the left hand sides contains a factor p1(x).

We can then apply Lemma 2.12 to p(x) = p1(x)q(x) and find that V = U1 ⊕ U ′

and f = f1 ⊕ f ′ with U1 = ker
(
p1(f)

)
, f1 = f |U1 , and U

′ = ker
(
q(f)

)
, f ′ = f |U ′ .

In particular, q(f ′) = 0. By induction, we then know that U ′ = U2⊕· · ·⊕Uk with
Uj = ker

(
pj(f

′)
)
and f ′ = f2⊕· · ·⊕fk, where fj = f ′|Uj

, for j = 2, . . . , k. Finally,

ker
(
pj(f

′)
)
= ker

(
pj(f)

)
(since the latter is contained in U ′) and fj = f ′|Uj

= f |Uj
,

so that we obtain the desired conclusion from Lemma 2.5. □

The following little lemma about polynomials is convenient if we want to apply
Lemma 2.12.
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2.15. Lemma. If p(x) is a polynomial (over F ) and λ ∈ F such that p(λ) ̸=
0, then (x− λ)m and p(x) are coprime for all m ≥ 0.

Proof. For m = 0, this is trivial. Next, we consider m = 1. Let

q(x) =
p(x)

p(λ)
− 1 ;

this is a polynomial such that q(λ) = 0. Therefore, we can write q(x) = (x−λ)r(x)
with some polynomial r(x). This gives us

−r(x)(x− λ) +
1

p(λ)
p(x) = 1 .

Now for generalm ≥ 1, taking themth power on both sides, we obtain an equation(
−r(x)

)m
(x− λ)m + a(x)p(x) = 1 .

□

Exercises.

(1) Let ϕ : R3 → R3 be a rotation around the line through the origin and
the point (1, 1,−1) by 120 degrees. Decompose R3 as a direct sum of two
subspaces that are each invariant under ϕ.

(2) Consider the vector space V = R3 with the linear map ϕ : V → V given
by the matrix  −1 0 1

−2 −1 1
−3 −1 2

 .

Decompose R3 as a direct sum of two non-trivial subspaces that are each
invariant under ϕ. [Theorem 3.1 (Cayley-Hamilton) states that for a
square matrix A with characteristic polynomial PA, we have PA(A) = 0.
You can verify and then use this for this specific matrix.]

(3) Same question for  0 1 1
5 −4 −3

−6 6 5

 .

(4) Consider the vector space V = R4 with the linear map ϕ : V → V that
permutes the standard basis vectors in a cycle of length 4. Decompose
R4 into a direct sum of 3 subspaces that are all invariant under ϕ.

(5) An endomorphism f of a vector space V is said to be a projection if
f 2 = f . Suppose f is such a projection.
(a) Show that the image of f is equal to the kernel of f − idV , i.e., we

have im f = E1 with E1 = ker(f − idV ). Note that if E1 is nonzero,
then 1 is an eigenvalue for f and E1 is the corresponding eigenspace.

(b) Show that V is the direct sum of the kernel E0 of f and the space E1.
(c) Show that f = f0 ⊕ f1 where f0 is the zero-map on E0 and f1 is the

identity map on E1.
(6) An endomorphism f of a vector space V is said to be a reflection if f 2

is the identity on V . Suppose f is a reflection of a vector space V over
a field of characteristic not equal to 2. Show that V is the direct sum of
two subspaces U and W for which f = idU ⊕(− idW ).



CHAPTER 3

The Cayley-Hamilton Theorem and the Minimal
Polynomial

Let A ∈ Mat(n, F ). We know that Mat(n, F ) is an F -vector space of dimension n2.

Therefore, the elements I, A,A2, . . . , An
2
cannot be linearly independent (because

their number exceeds the dimension). If we define p(A) in the obvious way for p
a polynomial with coefficients in F (as we already did in the previous chapter),
then we can deduce that there is a (non-zero) polynomial p of degree at most n2

such that p(A) = 0 (0 here is the zero matrix). In fact, much more is true.

Consider a diagonal matrix D = diag(λ1, λ2, . . . , λn). (This notation is supposed
to mean that λj is the (j, j) entry of D; the off-diagonal entries are zero, of course.)
Its characteristic polynomial is

PD(x) = (x− λ1)(x− λ2) · · · (x− λn) .

Since the diagonal entries are roots of PD, we also have PD(D) = 0. More generally,
consider a diagonalizable matrix A. Then there is an invertible matrix Q such
that D = Q−1AQ is diagonal. Since (Exercise!) p(Q−1AQ) = Q−1p(A)Q for p a
polynomial, we find

0 = PD(D) = Q−1PD(A)Q = Q−1PA(A)Q =⇒ PA(A) = 0 .

(Recall that PA = PD — similar matrices have the same characteristic polynomial.)

The following theorem states that this is true for all square matrices (or endomor-
phisms of finite-dimensional vector spaces).

3.1. Theorem (Cayley-Hamilton). Let A ∈ Mat(n, F ). Then PA(A) = 0.

Proof. Here is a simple, butwrong “proof”. By definition, PA(x) = det(xI−
A), so, plugging in A for x, we have PA(A) = det(AI−A) = det(A−A) = det(0) =
0. (Exercise: find the mistake!)

For the correct proof, we need to consider matrices whose entries are polynomials.
Since polynomials satisfy the field axioms except for the existence of inverses, we
can perform all operations that do not require divisions. This includes addition,
multiplication and determinants; in particular, we can use the adjugate matrix.

Let B = xI−A, then det(B) = PA(x). Let B̃ be the adjugate matrix; then we still
have B̃B = det(B)I. The entries of B̃ come from determinants of (n−1)× (n−1)
submatrices of B, therefore they are polynomials of degree at most n− 1. We can
then write

B̃ = xn−1Bn−1 + xn−2Bn−2 + · · ·+ xB1 +B0 ,

and we have the equality (of matrices with polynomial entries)

(xn−1Bn−1+x
n−2Bn−2+ · · ·+B0)(xI−A) = PA(x)I = (xn+bn−1x

n−1+ · · ·+b0)I ,
where we have set PA(x) = xn+ bn−1x

n−1+ · · ·+ b0. Expanding the left hand side
and comparing coefficients of like powers of x, we find the relations

Bn−1 = I, Bn−2 −Bn−1A = bn−1I, . . . , B0 −B1A = b1I, −B0A = b0I .

13



14 3. THE CAYLEY-HAMILTON THEOREM AND THE MINIMAL POLYNOMIAL

We multiply these from the right by An, An−1, . . . , A, I, respectively, and add:

Bn−1A
n = An

Bn−2A
n−1 − Bn−1A

n = bn−1A
n−1

...
...

...
B0A − B1A

2 = b1A
− B0A = b0I

0 = PA(A)

□

3.2. Remarks.

(1) The reason why we cannot simply plug in A for x in the identity

B̃ · (xI − A) = PA(x)I

is that whereas x (as a scalar) commutes with the matrices occurring as
coefficients of powers of x, it is not a priori clear that A does so, too.

(2) Another idea of proof (and maybe easier to grasp) is to say that a ‘generic’
matrix is diagonalizable (if we assume F to be algebraically closed. . . ),
hence the statement holds for ‘most’ matrices. Since it is just a bunch of
polynomial relations between the matrix entries, it then must hold for all
matrices. This can indeed be turned into a proof, but unfortunately, this
requires rather advanced tools from algebra.

(3) Of course, the statement of the theorem remains true for endomorphisms.
Let f : V → V be an endomorphism of the finite-dimensional F -vector
space V , then Pf (f) = 0 (which is the zero endomorphism in this case).
For evaluating the polynomial at f , we have to interpret fn as the n-fold
composition f ◦ f ◦ · · · ◦ f , and f 0 = idV .

Our next goal is to define the minimal polynomial of a matrix or endomorphism,
as the monic polynomial of smallest degree that has the matrix or endomorphism
as a “root”. However, we need to know a few more facts about polynomials in
order to see that this definition makes sense.

3.3. Lemma (Polynomial Division). Let f and g be polynomials with co-
efficients in F , with g monic. Then there are unique polynomials q and r with
coefficients in F such that r = 0 or deg(r) < deg(g) and such that

f = qg + r .

Proof. We first prove existence, by induction on the degree of f . If f = 0
or deg(f) < deg(g), then we take q = 0 and r = f . So we now assume that
m = deg(f) ≥ deg(g) = n, f = amx

m + · · · + a0. Let f ′ = f − amx
m−ng,

then (since g = xn + . . . ) deg(f ′) < deg(f). By the induction hypothesis, there
are q′ and r such that deg(r) < deg(g) or r = 0 and such that f ′ = q′g + r.
Then f = (q′ + amx

m−n)g + r. (This proof leads to the well-known algorithm for
polynomial long division.)

As to uniqueness, suppose we have f = qg + r = q′g + r′, with r and r′ both of
degree less than deg(g) or zero. Then

(q − q′)g = r′ − r .
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If q ̸= q′, then the degree of the left hand side is at least deg(g), but the degree of
the right hand side is smaller, hence this is not possible. So q = q′, and therefore
r = r′, too. □

Taking g = x− α, this provides a different proof for case k = 1 of Example 8.4 of
Linear Algebra I, 2015 edition (or later).

3.4. Lemma and Definition. Let A ∈ Mat(n, F ). Among all monic polyno-
mials p with coefficients in F satisfying p(A) = 0, there is a unique polynomialMA

of minimal degree. If p is any polynomial with coefficients in F satisfying p(A) = 0,
then p is divisible by MA (as a polynomial).

This polynomial MA is called the minimal (or minimum) polynomial of A. Sim-
ilarly, we define the minimal polynomial Mf of an endomorphism f of a finite-
dimensional vector space.

Proof. It is clear that monic polynomials p with coefficients in F satisfying
p(A) = 0 exist (by the Cayley-Hamilton Theorem 3.1, we can take p = PA). So
there will be such a polynomial of minimal degree. Now assume p and p′ were
two such monic polynomials of (the same) minimal degree with p(A) = p′(A) = 0.
Then we would have (p− p′)(A) = p(A)− p′(A) = 0. If p ̸= p′, then we can divide
p− p′ by its leading coefficient, leading to a monic polynomial q of smaller degree
than p and p′ with q(A) = 0, contradicting the minimality of the degree.

Now let p be any polynomial such that p(A) = 0. By Lemma 3.3, there are
polynomials q and r, with deg(r) < deg(MA) or r = 0, such that p = qMA + r.
Plugging in A, we find that

0 = p(A) = q(A)MA(A) + r(A) = q(A) · 0 + r(A) = r(A) .

If r ̸= 0, then deg(r) < deg(MA), but the degree of MA is the minimal possible
degree for a polynomial that vanishes on A, so we have a contradiction. Therefore
r = 0 and hence p = qMA. □

3.5. Remark. In any basic class on ring theory, one learns that the set of
polynomials as discussed in the lemma forms an ideal in the polynomial ring F [x]
of all polynomials with coefficients in F , and that this ring is a principal ideal
domain, which means that every ideal consists of the multiples of some fixed
polynomial. The proof is exactly the same as for the lemma.

3.6. Warning. A priori, the minimal polynomial MA of a matrix A depends
on the field F we consider it over. For example, if A is a real matrix, then its
minimal polynomial has minimal degree among all real polynomials p ∈ R[x] with
p(A) = 0; if we consider the same matrix A as a complex matrix, then one might
wonder if there are complex polynomials p ∈ C[x] with smaller degree. Exercise 11
shows that this is not the case, at least not for the fields R and C as in this example.
With some more algebra, one can show that in fact the minimal polynomial of A
is independent of the field F in general, which is why it is not reflected in the
notation MA.

By Lemma 3.4, the minimal polynomial divides the characteristic polynomial. As
a simple example, consider the identity matrix In. Its characteristic polynomial is
(x− 1)n, whereas its minimal polynomial is x− 1. In some sense, this is typical,
as the following result shows.
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3.7. Proposition. Let A ∈ Mat(n, F ) and λ ∈ F . If λ is a root of the
characteristic polynomial of A, then it is also a root of the minimal polynomial
of A. In other words, both polynomials have the same linear factors.

Proof. If PA(λ) = 0, then λ is an eigenvalue of A, so there is 0 ̸= v ∈ F n

such that Av = λv. Setting MA(x) = amx
m + · · ·+ a0, we find

0 =MA(A)v =
m∑
j=0

ajA
jv =

m∑
j=0

ajλ
jv =MA(λ)v .

(Note that the terms in this chain of equalities are vectors.) Since v ̸= 0, this
implies MA(λ) = 0.

By Lemma 3.4, we know that each root of MA is a root of PA, and we have just
shown the converse. So both polynomials have the same linear factors. □

3.8. Remark. If F is algebraically closed (i.e., every non-zero polynomial is
a product of linear factors), this shows that PA is a multiple of MA, and Mk

A is
a multiple of PA when k is large enough. In fact, the latter statement is true for
general fields F (and can be interpreted as saying that both polynomials have the
same irreducible factors). For the proof, one replaces F by a larger field F ′ such
that both polynomials split into linear factors over F ′. That this can always be
done is shown in Introductory Algebra. See Exercise 12 for the case F = R.

One nice property of the minimal polynomial is that it provides another criterion
for diagonalizability.

3.9. Proposition. Let A ∈ Mat(n, F ). Then A is diagonalizable if and only
if its minimal polynomial MA is a product of distinct monic linear factors.

Proof. First assume that A is diagonalizable. It is easy to see that similar
matrices have the same minimal polynomial (Exercise 3), so we can as well assume
that A is already diagonal. But for a diagonal matrix, the minimal polynomial
is just the product of factors x − λ, where λ runs through the distinct diagonal
entries. (It is the monic polynomial of smallest degree that has all diagonal entries
as roots.)

Conversely, assume that MA(x) = (x − λ1) · · · (x − λm) with λ1, . . . , λm ∈ F
distinct. The polynomials qi = x − λi (with 1 ≤ i ≤ m) are pairwise coprime, so
by Proposition 2.14 the eigenspaces

Ui = Eλi(A) = ker(A− λiI) = ker qi(A)

satisfy F n = U1 ⊕ · · · ⊕ Um. It then follows from Remark 2.9 that A is diagonal-
isable. □

3.10. Example. Consider the matrix

A =

1 1 1
0 1 1
0 0 1

 .

Is it diagonalizable?

Its characteristic polynomial is clearly PA(x) = (x−1)3, so its minimal polynomial
must be (x−1)m for some m ≤ 3. Since A−I ̸= 0, we find m > 1 (in fact, m = 3),
hence A is not diagonalizable.
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On the other hand, the matrix (for F = R, say)

B =

1 2 3
0 4 5
0 0 6


has MB(x) = PB(x) = (x− 1)(x− 4)(x− 6); therefore, B is diagonalizable.

Exercise: what happens for fields F of small characteristic?

3.11. Remark. Let f : V → V be an endomorphism of a finite-dimensional
vector space V with basis B. Then f is diagonalizable if and only if the matrix
A = [f ]BB is. Furthermore, the characteristic and minimal polynomial of f are
the same as those of the matrix A. Therefore, Lemma 3.4 and Propositions 3.7
and 3.9 also hold for f instead of A. (See also part (3) of Remark 3.2.)

3.12. Corollary. Let f : V → V be a diagonalizable endomorphism of a
finite-dimensional vector space V . Let U ⊂ V be an f -invariant subspace. Then
the restriction f |U is also diagonalizable.

Proof. By Proposition 3.9, the minimal polynomial Mf of f is the product
of distinct linear factors. The endomorphism Mf (f |U) is the restriction to U of
Mf (f) = 0, so the minimal polynomial of f |U divides Mf by Lemma 3.4, and is
therefore also the product of distinct linear factors. Proposition 3.9 then implies
that f |U is diagonalizable. □

Exercises.

(1) What is the remainder when one divides the polynomial x5+x by x2+1?
(2) Give the minimal polynomial and the characteristic polynomial of the

matrices  2 −3 3
3 −4 3
3 −3 2

 ,

 0 −1 3
1 −2 3
3 −3 2

 .

(3) Let A,P ∈ Mat(n, F ) be square matrices, with P invertible. Show that
the matrices A and PAP−1 have the same minimal polynomial.

(4) Suppose that a 2×2 matrix A has two distinct eigenvalues λ and µ. Show
that the image of the matrix A− λI is the eigenspace with eigenvalue µ.

(5) Is the matrix

 0 0 −3
1 0 0
0 1 0

 diagonalizable over R? And over C?

(6) If f : R3 → R3 is the projection on a plane through the origin, what
is the minimum polynomial of f? What is the minimum polynomial of
reflection in a plane through the origin?

(7) Compute the characteristic polynomial of the matrix

A =

 1 −9 4
1 −4 1
1 −7 3

 .

Compute A3 (use Cayley-Hamilton!)
(8) Let V be the 4 dimensional vector space of polynomial functions R → R of

degree at most 3. Let T : V → V be the map that sends a polynomial p to
its derivative T (p) = p′. Show that T is a linear map. Is T diagonalizable?
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(9) For each α ∈ R, determine the characteristic and minimal polynomials of

Aα =

 1− α α 0
2− α α− 1 α
0 0 −1

 .

For which values of α is Aα diagonalizable?
(10) Let M be a square matrix, satisfying M3 =M , with entries in a field F .

What can you say about the eigenvalues of M? Show that M is diago-
nalizable if the characteristic of F is not equal to 2.

(11) Let A be a real square matrix. Show that its minimal polynomial as a
real matrix is the same as its minimal polynomial as a complex matrix.

(12) Let A be a real square matrix. Suppose that f ∈ R[x] is a quadratic poly-
nomial without real roots that divides the characteristic polynomial PA
of A. Show that f also divides the minimal polynomial MA of A.



CHAPTER 4

The Structure of Nilpotent Endomorphisms

4.1. Definition. A matrix A ∈ Mat(n, F ) is said to be nilpotent, if Am = 0
for some m ≥ 1. Similarly, if V is a finite-dimensional vector space and f : V → V
is an endomorphism, then f is said to be nilpotent if for some m ≥ 1 we have

fm = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
m times

= 0.

It follows that the minimal polynomial of A or f is of the form xm, where m is
the smallest number that has the property required in the definition.

4.2. Proposition. A nilpotent matrix or endomorphism of a finite-dimensional
vector space is diagonalizable if and only if it is zero.

Proof. The minimal polynomial is xm. Proposition 3.9 then implies that
the matrix or endomorphism is diagonalizable if and only if m = 1. But then
the minimal polynomial is x, which means that the matrix or endomorphism is
zero. □

Theorem 4.3 tells us more about the structure of nilpotent endomorphisms. It is
the main ingredient to proving the existence of the Jordan Normal Form.

4.3. Theorem. Let V be an F -vector space, dimV = n, and let f : V → V
be a nilpotent endomorphism. Then V has a basis (v1, v2, . . . , vn) such that f(vj)
is either zero or vj+1.

We first state some lemmas that will be useful for the proof of Theorem 4.3.

4.4. Lemma. Let V be a vector space and f : V → V an endomorphism.
Suppose m > 0 is an integer such that fm = 0. If for each j ∈ {1, 2, . . . ,m} we
have a complementary subspace Xj of ker f

j−1 inside ker f j, then we have

V = X1 ⊕X2 ⊕ · · · ⊕Xm.

Proof. Note that we have ker fm = V and ker f 0 = {0}. For all j ∈
{1, . . . ,m}, we have ker f j = ker f j−1 ⊕Xj, so we find

V = ker fm = ker fm−1 ⊕Xm = (ker fm−2 ⊕Xm−1)⊕Xm =

= ker fm−2 ⊕Xm−1 ⊕Xm = · · · = ker f 0 ⊕X1 ⊕X2 ⊕ . . .⊕Xm =

= X1 ⊕X2 ⊕ . . .⊕Xm.

□

19
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4.5. Lemma. Let f : V → W be a linear map of vector spaces, and X ⊂ V
and Y ⊂ W subspaces such that X ∩ f−1(Y ) = {0}. Then f restricts to an
injective map X ↪→ W , and we have f(X) ∩ Y = {0}.

Proof. The kernel of the restriction f̃ = f |X : X → W satisfies

ker f̃ = X ∩ ker f ⊂ X ∩ f−1(Y ) = {0},

so f̃ is injective. Given an element f(x) ∈ f(X) ∩ Y with x ∈ X, we have
x ∈ X ∩ f−1(Y ) = {0}, and hence f(x) = 0, which proves the last part of the
statement. □

4.6. Lemma. Let V be a vector space and f : V → V an endomorphism. Let
j ≥ 1 be an integer. If X is a complementary space of ker f j inside ker f j+1, then
f restricts to an injective map X ↪→ ker f j and we have f(X) ∩ ker f j−1 = {0}.

Proof. Note that for every i ≥ 0, we have f−1(ker f i) = ker f i+1. For i = j,
this implies that f restricts to a linear map f ′ : ker f j+1 → ker f j. For i = j − 1
and Y = ker f j−1, it implies f−1(Y ) = ker f j, so we get

X ∩ f ′−1(Y ) ⊂ X ∩ f−1(Y ) = {0}.

Hence, the statement follows directly from Lemma 4.5, applied to f ′, X, and Y .
□

4.7. Remark. In terms of quotient spaces, Lemma 4.5 can be phrased by say-
ing that f induces an injective map V/f−1(Y ) → W/Y , which follows from one of
the isomorphism theorems (analogous to those from group theory), applied to the
linear map V → W/Y with kernel f−1(Y ). Similarly, Lemma 4.6 can be phrased
by saying that f induces an injective map ker f j+1/ ker f j ↪→ ker f j/ ker f j−1.

4.8. Remark. Lemmas 2.6 and 4.6 together show that, under the conditions
of Lemma 4.6, we can extend f(X) to a complementary space X ′ of ker f j−1

inside ker f j. Then f restricts to an injective map X ↪→ X ′, and we can apply
Lemma 4.6 to X ′ (if j > 1). If moreover, m > 0 is an integer such that fm = 0,
then this allows us to recursively define a sequence Xm, . . . , X2, X1 of subspaces
as in Lemma 4.4 with the extra property that f restricts to an injective map
Xj ↪→ Xj−1 for 1 < j ≤ m. This is the main idea for the proof of Theorem 4.3,
which also keeps track of bases for the subspaces.

Proof of Theorem 4.3. Let m be a positive integer such that fm = 0. In
each of m steps, numbered j = m,m− 1, . . . , 2, 1, we will construct an integer tj
and vectors wj1, . . . , wjtj ∈ ker f j such that the elements

(2)
(
fk−j(wkl)

)
j≤k≤m
1≤l≤tk

form a basis for a complementary space Xj of ker f
j−1 inside ker f j. For j = m,

we take any basis (wm1, . . . , wmtm) for a complementary subspace Xm of ker fm−1

inside ker fm = V . Assume 1 ≤ j < m and suppose that we have already
constructed integers and vectors as above in all steps m,m − 1, . . . , j + 1. Then
the elements

(3)
(
fk−(j+1)(wkl)

)
j+1≤k≤m
1≤l≤tk
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form a basis for a complementary space Xj+1 of ker f
j inside ker f j+1. The map f

restricts to an injective map Xj+1 → ker f j by Lemma 4.6. This implies that the
images

(4)
(
fk−j(wkl)

)
j+1≤k≤m
1≤l≤tk

of the elements in (3) form a basis for the subspace f(Xj+1) ⊂ ker f j (for linear
independence, see Lemma 7.13 of Linear Algebra I, 2015 edition (or later)), which
satisfies f(Xj+1) ∩ ker f j−1 = {0}, again by Lemma 4.6. By Lemma 2.6 we can
extend the basis (4) for f(Xj+1) to a basis for a complementary subspace Xj

of ker f j−1 inside ker f j; we denote the added basis vectors by wj1, wj2, . . . , wjtj .
Adding these elements to (4) gives (2), with the new elements corresponding to
k = j.

By Lemma 4.4, we have V = X1 ⊕X2 ⊕ . . .⊕Xm, so the bases (2) for the Xj are
disjoint and their union forms a basis for V (see Lemma 2.2). Writing i = k − j,
this union consists of the elements

(5)
(
f i(wkl)

)
1≤k≤m
1≤l≤tk
0≤i<k

.

Note that for any indices 1 ≤ k ≤ m and 1 ≤ l ≤ tk, we have wkl ∈ ker fk, so
f(fk−1(wkl)) = 0. Hence, if we order the elements of (5) lexicographically by their
index triples (k, l, i), then we obtain a basis as mentioned in the theorem. □

4.9. Remark. If (v1, . . . , vn) is a basis as in Theorem 4.3, then the matrix
A = (aij) representing f with respect to (vn, . . . , v2, v1), has all entries zero except
aj,j+1 = 1 if f(vn−j) = vn+1−j. Therefore A is a block diagonal matrix

A =


B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · Bk


where for each i there is an integer m ≥ 1 such that the i-th block Bi is the m×m
block

B(m) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


with all zeroes except for ones just above the diagonal. Note that we reversed
the order of the basis elements! Also note that B(m)m = 0, and for each integer
1 ≤ s < m, the matrix B(m)s is the m×m matrix with all zeroes, except for ones
on the diagonal that is s positions above the main diagonal.

4.10. Corollary. Every nilpotent matrix is similar to a matrix of the form
just described.

Proof. This is clear from our discussion. □
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4.11. Corollary. A matrix A ∈ Mat(n, F ) is nilpotent if and only if its char-
acteristic polynomial is PA(x) = xn.

Proof. If PA(x) = xn, then An = 0 by the Cayley-Hamilton Theorem 3.1,
hence A is nilpotent. Conversely, if A is nilpotent, then it is similar to a matrix
of the form above, which visibly has characteristic polynomial xn. □

4.12. Remark. The statement of Corollary 4.11 would also follow from the
fact that PA(x) divides some power of MA(x) = xm, see Remark 3.8. However, we
have proved this only in the case that PA(x) splits into linear factors (which we
know is true, but only after the fact).

4.13. Example. Consider

A =

3 4 −7
1 2 −3
2 3 −5

 ∈ Mat(3,R) .

We find

A2 =

−1 −1 2
−1 −1 2
−1 −1 2


and A3 = 0, so A is nilpotent. Let us find a basis as given in Theorem 4.3.
The first step in the process comes down to finding a complementary subspace of
ker(A2) = L

(
(2, 0, 1)⊤, (−1, 1, 0)⊤

)
within kerA3 = R3. We can take (1, 0, 0)⊤, for

example, as the basis for a complement. This will be w31 in the notation of the
proof of Theorem 4.3. We then have Aw31 = (3, 1, 2)⊤ and A2w31 = (−1,−1,−1)⊤,
and these three already form a basis B = (A2w31, Aw31, w31). With

Q = [id]BE =

−1 3 1
−1 1 0
−1 2 0


we obtain

Q−1AQ = [id]EB · [fA]EE · [id]BE = [fA]
B
B =

0 1 0
0 0 1
0 0 0

 .

The following proposition tells us how many blocks of each size to expect.

4.14. Proposition. Let f : V → V be a nilpotent endomorphism of a finite-
dimensional vector space V . Let B = (vn, . . . , v1) be a basis for V such that its
reverse is a basis as in Theorem 4.3. Let A = [f ]BB be the associated matrix. For
every integer j ≥ 0 we set rj = dimker f j, and for every integer j ≥ 1 we set
sj = rj − rj−1 and tj = sj − sj+1. Then for every integer j ≥ 1 there are exactly tj
blocks of the form B(j) of size j × j along the diagonal of A.

Proof. The matrix A is described in Remark 4.9. Let m1,m2, . . . ,mk ≥ 0 be
integers such that the blocks along the diagonal of A are B(m1), . . . , B(mk). For
each integer j ≥ 0, the matrix Aj is a block matrix with blocks B(m1)

j, . . . , B(mk)
j

along the diagonal. Therefore, the matrixAj is in row echelon form, and for every i,
the first min(mi, j) columns corresponding to the i-th block B(mi)

j do not contain
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a pivot, while the other columns do contain pivots. Hence, the kernel of Aj has
dimension

rj =
k∑
i=1

min(mi, j)

and we find

sj = rj − rj−1 =
k∑
i=1

(
min(mi, j)−min(mi, j − 1)

)
.

As for integers a, b the value min(a, b) − min(a, b − 1) equals 0 for a < b and it
equals 1 otherwise, we conclude that sj equals the number of blocks of size at
least j. Therefore, the number of blocks of size exactly j is sj − sj+1 = tj. □

4.15. Remark. The tk from the proof of Theorem 4.3 are the same as the
tk from the proof of Proposition 4.14. Indeed, for fixed integers 1 ≤ k ≤ m and
1 ≤ l ≤ tk, with tk as in the proof of Theorem 4.3, the k elements f i(wkl) with
0 ≤ i < k in (5) form a basis for a subspace that corresponds to a block of size
k×k, so there are tk such blocks. Moreover, with rk and sk as in Proposition 4.14,
the proof of Theorem 4.3 shows

dimXk = dimker fk − dimker fk−1 = rk − rk−1 = sk.

This also implies for tk as defined in the proof of Theorem 4.3 that we have

tk = dimXk − dim f(Xk+1) = dimXk − dimXk+1 = sk − sk+1.

While this seems to give another proof of Proposition 4.14, this argument a priori
only holds for bases that are obtained as in the proof of Theorem 4.3. It is however
not hard to show that every basis as mentioned in Theorem 4.3 can indeed be
obtained through the construction in the proof of Theorem 4.3, so it does yield a
second proof.

4.16. Example. In Example 4.13, we have rkA = 2 and rkA2 = 1 and
A3 = 0, so we get the following table.

j rj sj tj
0 0
1 1 1 0
2 2 1 0
3 3 1 1
4 3 0 0
5 3 0

We conclude, as we have seen in the example above, that there is an invertible
matrix Q such that Q−1AQ consists of one block B(3).

4.17. Corollary. Let A,A′ ∈ Mat(n, F ) be two nilpotent matrices. Then A
and A′ are similar if and only if for each integer 1 ≤ j < n we have dimkerAj =
dimkerA′j.

Proof. For every integer j ≥ 0, and every square matrix M , set rj(M) =
dimkerM j. For j ≥ 1, also set sj(M) = rj(M)− rj−1(M) and tj(M) = sj(M)−
sj+1(M). Of course, if A and A′ are similar, then rj(A) = rj(A

′) for each j.
Conversely, suppose that for each integer 1 ≤ j < n we have rj(A) = rj(A

′). By
Cayley-Hamilton, we have An = A′n = 0, so for j ≥ n we have rj(A) = rj(A

′) as
well, as both equal n. For j = 0 both equal 0, so we have rj(A) = rj(A

′) for all
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j ≥ 0. This implies that for all j ≥ 1 we have sj(A) = sj(A
′) and tj(A) = tj(A

′),
so by Proposition 4.14, both A and A′ are similar to a block diagonal matrix with
tj(A) = tj(A

′) blocks of the form B(j) along the diagonal for every j ≥ 1. Any
two such matrices are similar to each other; in fact they can be obtained from
each other by a permutation of the basis. By transitivity of similarity, also A and
A′ are similar. □

4.18. Example. Consider the real matrix

A =


−5 10 −8 4 1
−4 8 −10 8 2
−3 6 −12 12 3
−2 4 −8 4 10
−1 2 −4 2 5


and the linear map f = fA : R5 → R5 associated to it. We compute

A2 =


0 0 0 −18 36
0 0 0 −36 72
0 0 0 −54 108
0 0 0 −36 72
0 0 0 −18 36

 and A3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

so for m = 3 we have Am = 0. The kernel kerA is generated by

x = (−3, 0, 3, 2, 1) and x′ = (2, 1, 0, 0, 0).

(We urge the reader to verify this, either by bringing A into row echelon form
by elementary row operations, or by verifying that A has rank 3, concluding
that kerA has dimension 2, and checking that x and x′ are linearly independent
elements contained in kerA.) The kernel kerA2 is generated by

e1 = (1, 0, 0, 0, 0), e2 = (0, 1, 0, 0, 0), e3 = (0, 0, 1, 0, 0), and y = (0, 0, 0, 2, 1).

Clearly, we have kerA3 = R5. In terms of Proposition 4.14, with rj = dimkerAj,
we find r0 = 0 and r1 = 2 and r2 = 4 and rn = 5 for n ≥ 3; this yields s1 = 2 and
s2 = 2 and s3 = 1 and s4 = 0. Finally, we obtain t1 = 0 and t2 = 1 and t3 = 1,
so we already find that the standard nilpotent form consists of one block of size 2
and one block of size 3.

To find an appropriate basis, we start with step j = m = 3 (as in the proof of
Theorem 4.3) by picking a complementary space X3 of kerA2 inside kerA3 = R5.
Since dimkerA3 − dimkerA2 = 5 − 4 = 1, it suffices to pick any element of
R5 that is not contained in kerA2. We choose w31 = e5 = (0, 0, 0, 0, 1), which
gives Aw31 = (1, 2, 3, 10, 5) and A2w31 = 36(1, 2, 3, 2, 1) and A3w31 = 0. We
take X3 = ⟨w31⟩. In the next step (j = 2), we extend f(X3) ⊂ kerA2 to a
complementary space X2 of kerA inside kerA2. In order to do this, we follow the
proof of Lemma 2.6: take a basis for kerA and for f(X3) and put the elements
of these two bases as columns in a matrix; we also take generators for kerA2 and
add these as columns to the matrix. We obtain

−3 2 1 1 0 0 0
0 1 2 0 1 0 0
3 0 3 0 0 1 0
2 0 10 0 0 0 2
1 0 5 0 0 0 1

 .
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A row echelon form for this matrix is
1 0 5 0 0 0 1
0 1 2 0 1 0 0
0 0 12 0 0 −1 3
0 0 0 1 −2 1 0
0 0 0 0 0 0 0

 ,

which has pivots in the first three columns as expected. Of the last four columns,
only the first contains a pivot, so in order to extend f(X3) to a complementary
space X2 as mentioned, it suffices to add the first generator for kerA2, so we take
w21 = (1, 0, 0, 0, 0), which gives Aw21 = −(5, 4, 3, 2, 1). The last step (j = 1),
namely finding a complementary space X1 for kerA0 = {0} inside kerA that
contains f(X2), turns out to be trivial. Indeed, f(X2) is generated by A2w31 and
Aw21, so dim f(X2) = 2 = dimkerA, so we have X1 = f(X2) and we do not need
to extend.

Hence, we obtain a basis B = (A2w31, Aw31, w31, Aw21, w21) (note the order of the
elements). If we denote the standard basis for R5 by E, the basis transformation
matrix

P = [id]BE =


36 1 0 −5 1
72 2 0 −4 0
108 3 0 −3 0
72 10 0 −2 0
36 5 1 −1 0


satisfies

P−1AP = [fA]
B
B =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 .

4.19. Example. From small examples one does not always get a good idea
of the general case, so we now do a bigger example. If the reader wishes to verify
the calculations, we recommend using a computer.

Let M be the 11× 11 real matrix

M =



14 15 0 8 −40 32 −2 −72 −8 0 −20
−29 −34 −7 −16 55 −64 14 137 16 0 31
6 10 2 4 −18 15 −2 −33 −5 0 −10
−3 −2 2 −1 −10 0 −2 3 0 1 −6
−6 −7 0 −4 24 −15 −1 34 4 0 12
14 7 −4 6 −28 24 5 −56 −4 0 −12
−3 −4 −1 −2 9 −8 2 17 2 0 5
10 7 −2 5 −26 20 2 −46 −4 0 −12
−67 −77 −14 −38 130 −148 30 319 36 1 72
−53 −54 −2 −28 102 −108 10 241 26 1 52
12 15 2 8 −42 30 −1 −66 −8 0 −22


.

One checks that M4 = 0, so M is nilpotent.
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Moreover, one checks that M , M2, and M3 have rank 7, 4, and 1, respectively.
This gives the following table.

j rj sj tj
0 0
1 4 4 1
2 7 3 0
3 10 3 2
4 11 1 1
5 11 0 0
6 11 0

We conclude that there is an invertible matrix Q such that Q−1MQ is a block
matrix consisting of one block B(1), two blocks B(3), and one block B(4) along
its diagonal.

To find such a matrixQ, we will construct a basis (v1, v2, . . . , v11) as in Theorem 4.3
following the proof of that theorem. We note that Mm = 0 for m = 4, so we start
with j = m = 4. We want to pick a basis for a complementary space X4 of kerM

3

inside kerM4 = R11; given that we have dimkerM3 = 10, we find dimX4 = 1, so
it suffices to find one vector w41 ∈ R11 that is not contained in kerM3. The 3-rd,
7-th, and 10-th column of M3 are the only zero columns, so the standard basis
vector ei is not contained in kerM3 for i ̸∈ {3, 7, 10}. Because the fourth column
of M3 contains relatively small numbers, we choose w41 = e4. This gives

w41 =



0
0
0
1
0
0
0
0
0
0
0


, Mw41 =



8
−16
4
−1
−4
6
−2
5

−38
−28
8


, M2w41 =



4
−7
3
0
−2
0
−1
1

−15
−11
4


, M3w41 =



1
−2
0
−2
0
2
0
1
−5
−6
0


.

These vectors correspond to a block of the form B(4). To check consistency, one
could verify that indeed the last vector is contained in the kernel of M .

We continue with j = 3. We want to pick a basis for some complementary space
X3 of kerM2 inside kerM3 that contains M4−jw41 = Mw41 (this is indeed the
only vector of the four that we already found that is contained in kerM3 but not
in kerM2). We do this following the proof of Lemma 2.6. One computes that the
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kernel kerM2 is generated by the columns of the matrix

K2 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
2 3 0 0 0 0 4
4 5 −1 0 −1 0 7

−32 −41 9 1 9 4 −61
−7 −7 1 1 1 0 −11
−1 −1 0 0 −2 0 −1


.

Moreover, the kernel kerM3 is generated by the columns of the matrix

K3 =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 2 0
0 0 0 0 0 0 0 0 0 1
1 1 0 0 −2 2 0 −5 −1 0


Lemma 2.6 tells us that in order to extend Mw41 to a basis for a complementary
space of kerM2 inside kerM3, we take the columns ofK2 together with one column
Mw41, and extend this to a basis for kerM3 by adding some of the columns of
K3. We do this by taking the extended matrix

(K2|Mw41|K3)

and using elementary row operations to bring this into (reduced) row echelon form.
This yields

1 0 0 0 0 0 0 0 0 0 −18 7 −18 −4 24 −15 2 −7
0 1 0 0 0 0 0 0 0 3 36 −12 36 8 −50 28 −4 12
0 0 1 0 0 0 0 0 0 2 −7 4 −8 0 10 −12 0 −4
0 0 0 1 0 0 0 0 0 2 3 1 3 2 −5 −2 −1 0
0 0 0 0 1 0 0 0 0 3 10 −2 11 4 −15 2 −2 2
0 0 0 0 0 1 0 0 0 3 −12 6 −12 1 15 −18 0 −6
0 0 0 0 0 0 1 0 0 0 −16 6 −16 −2 22 −17 1 −6
0 0 0 0 0 0 0 1 0 2 3 0 3 2 −5 −2 −1 0
0 0 0 0 0 0 0 0 1 4 2 1 2 4 −4 −9 −2 −1
0 0 0 0 0 0 0 0 0 5 2 2 2 4 −5 −10 −2 −2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


.

Since the first two columns of the right part of this matrix are the ones that
contain a pivot, we see that we may add the corresponding first two columns of
K3 to Mw41 to obtain a complementary space of kerM2 inside kerM3. The first
two columns of K3 are w31 = e1 + e11 and w32 = e2 + e11, so we find

X3 = L
(
Mw41, w31, w32

)
.
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Note as a consistency check that indeed we have dimX3+dimkerM2 = dimkerM3,
that is, 3 + 7 = 10. For 1 ≤ l ≤ 2, the vectors w3l,Mw3l,M

2w3l span a subspace
that corresponds to a block of the form B(3).

We proceed with j = 2. We want to pick a basis for some complementary space X2

of kerM inside kerM2 that contains M4−jw41 = M2w41 and M3−jw31 = Mw31

and M3−jw32 = Mw32 (these are indeed the only vectors of the ten that we
found so far that are contained in kerM2 but not in kerM). From dimX2 =
dimkerM2−dimkerM = 7−4 = 3, we find that the linearly independent vectors
M2w41 and Mw31 and Mw32 already span X2. This corresponds to the fact that
there are no blocks of the form B(2), as we had already seen.

Finally, for j = 1, we want to pick a basis for some complementary space X1

of kerM0 = ker I11 = {0} inside kerM that contains M4−jw41 = M3w41 and
M3−jw31 = M2w31 and M3−jw32 = M2w32 (these are indeed the vectors among
those that we found so far that are contained in kerM but not in kerM0 = {0}).
We do this by writing down an extended matrix with M3w41 and M2w31 and
M2w32 as columns on the left, and four generators for kerM on the right, say



1 −2 −1 1 0 0 0
−2 4 2 2 4 0 0
0 −1 1 0 0 1 0
−2 4 2 −4 −2 0 0
0 2 3 0 0 0 1
2 −6 −10 0 −2 −2 −2
0 0 0 0 0 0 0
1 −3 −5 0 −1 −1 −1
−5 11 9 4 9 1 1
−6 13 10 −3 3 1 1
0 −4 −6 −1 −1 0 −2


.

Note that here we have no columns coming from a basis for kerM0 = {0}. The
associated reduced row echelon form is



1 0 2 0 −1 0 1
0 1 4 0 0 1 1
0 0 5 0 0 2 1
0 0 0 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.
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Since the first column on the right is the only column on the right with a pivot,
we add only the first of the four chosen generators for kerM , so

w11 =



1
2
0
−4
0
0
0
0
4
−3
−1


.

We conclude that

(w11, w31,Mw31,M
2w31, w32,Mw32,M

2w32, w41,Mw41,M
2w41,M

3w41)

is a basis as in Theorem 4.3. Putting the eleven vectors in reverse order, we obtain
the basis B. If we let E denote the standard basis, and we set

Q = [id]BE =



1 4 8 0 −1 −5 0 −2 −6 1 1
−2 −7 −16 0 2 −3 1 4 2 0 2
0 3 4 0 1 0 0 −1 −4 0 0
−2 0 −1 1 2 −8 0 4 −9 0 −4
0 −2 −4 0 3 5 0 2 6 0 0
2 0 6 0 −10 −5 0 −6 2 0 0
0 −1 −2 0 0 1 0 0 2 0 0
1 1 5 0 −5 −5 0 −3 −2 0 0
−5 −15 −38 0 9 −5 0 11 5 0 4
−6 −11 −28 0 10 −2 0 13 −1 0 −3
0 4 8 0 −6 −7 1 −4 −10 1 −1


,

then we find

Q−1MQ = [id]EB[fM ]EE[id]
B
E = [fM ]BB =



0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


.

Exercises.

(1) Let A be a nilpotent n× n matrix. Show that idn+A is invertible.
(2) Let A be a nilpotent n× n matrix. Show that An = 0.
(3) Let N be a 9× 9 matrix for which N3 = 0. Suppose that N2 has rank 3.

Prove that N has rank 6.
(4) Let N be a 12× 12 matrix for which N4 = 0.

(a) Show that the kernel of N2 contains the image of N2.
(b) Show that the rank of N is at most 9.
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(c) Show that the rank of N is equal to 9 if the kernel of N2 is equal to
the image of N2.

(5) Let A be a square matrix over any field. Suppose that r > 0 is an integer
for which dimkerAr = dimkerAr+1. Show that for every integer s > r
we have kerAr = kerAs.

(6) For which x ∈ R is the following matrix nilpotent? 2x x −1
−4 −1 −3
5 2 3


(7) For each of the matrices 4 −4 12

1 −1 3
−1 1 −3

  2 0 8
0 1 1

−1 1 −3


give a basis for R3 for which the matrix sends each basis vector either to
0 or to the next basis vector in the basis.

(8) Do the same for R4 and the matrix
1 1 0 0

−5 −2 2 −1
−3 0 2 −1
−5 −2 2 −1

 .



CHAPTER 5

The Jordan Normal Form Theorem

In this section, we will formulate and prove the Jordan Normal Form Theorem,
which will tell us that any matrix whose characteristic polynomial is a product of
linear factors is similar to a matrix of a very special near-diagonal form.

Just like true diagonal forms are related to eigenspaces, the Jordan normal form
is related to so-called generalised eigenspaces.

5.1. Definition. Let V be a vector space over a field F , and f : V → V an
endomorphism. Let λ ∈ F be an element. The generalised λ-eigenspace of f is

Ẽλ(f) = { v ∈ V : (f − λ idV )
l(v) = 0 for some l ≥ 1 } =

⋃
l≥1

ker (f − λ idV )
l .

We leave it to the reader to check that the generalised λ-eigenspace is indeed a
subspace of V (Exercise 1). Clearly, it contains the λ-eigenspace

Eλ(f) = ker(f − λ idV ).

Moreover, if the generalised λ-eigenspace Ẽλ(f) contains a nonzero element v, then
for some integer l ≥ 1 we have (f − λ idV )

l(v) = 0; for the smallest such integer l
we set w = (f − λ idV )

l−1(v) and find w ̸= 0 and (f − λ idV )(w) = 0, so λ is an
eigenvalue of f and w is an eigenvector for the eigenvalue λ. The nonzero elements
of Ẽλ(f) are called generalised eigenvectors for the eigenvalue λ.

The following theorem shows that if V is finite-dimensional, then there exists an
integer m such that Ẽλ(f) = ker(f − λ idV )

m (cf. Exercise 2).

5.2. Theorem. Let V be a finite-dimensional vector space over a field F ,
and let f : V → V be an endomorphism. Let p ∈ F [x] be a polynomial with
coefficients in F satisfying p(f) = 0. Let λ ∈ F be any element, and factorise p
as p(x) = (x− λ)mq(x) with q(λ) ̸= 0. Set

U = ker(f − λ idV )
m and U ′ = ker q(f).

Then we have Ẽλ(f) = U and V = U ⊕ U ′ and f = f |U ⊕ f |U ′. Moreover, if p is
equal to the minimal polynomial Mf or the characteristic polynomial Pf of f , then

the characteristic polynomial of f |U is a multiple of (x−λ)m, and dim Ẽλ(f) ≥ m.

Proof. By Lemma 2.15, we know that (x− λ)m and q are coprime. The fact
that V = U ⊕ U ′ and f = f |U ⊕ f |U ′ then follows directly from Lemma 2.12.

Since q
(
f |U ′

)
= 0, the minimal polynomial of f |U ′ divides q, so it does not have

λ has a root. Then by Proposition 3.7, the characteristic polynomial Pf |U′ of f |U ′

does not have a factor x − λ, so λ is not an eigenvalue of f |U ′ . We conclude
that f − λ idV restricts to an automorphism of U ′, and hence so does every power
(f−λ idV )l. This implies that the rank of (f−λ idV )l is at least dimU ′ for every l,
and therefore

dim ker(f − λ idV )
l ≤ dimV − dimU ′ = dimU.

31
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For l ≥ m, the containment ker(f − λ idV )
l ⊃ ker(f − λ idV )

m = U is therefore an
equality, which implies Ẽλ(f) = U .

Now suppose that p is equal toMf or Pf . By definition of the minimal polynomial,
we have Mf (f) = 0, and by the Cayley-Hamilton Theorem 3.1, we know that
Pf (f) = 0, so in both cases all the above arguments apply. Since Mf divides Pf ,
in both cases the polynomial (x − λ)m divides the characteristic polynomial Pf ,
which by Remark 2.8 we know to be equal to Pf |U ·Pf |U′ . We have seen that x−λ
does not divide Pf |U′ , so (x−λ)m is a divisor of Pf |U . This implies dimU ≥ m. □

5.3. Remark. In fact, in the notation of Theorem 5.2, if we have p = Pf , then

one can prove that Pf |U = (x − λ)m and dim Ẽλ(f) = m, as we will now sketch.
As we have seen in Remark 3.8, it is a fact that the characteristic polynomial
of an endomorphism divides some power of the minimal polynomial, though we
have only proved that in the case that the characteristic polynomial splits into
linear factors (see Proposition 3.7), and the case that F = R (see Exercise 12 of
Chapter 3).
Since we know that the minimal polynomial of f |U divides (x−λ)m, it would follow
from this not-in-full-generality-proven fact that the characteristic polynomial Pf |U
is a power of x− λ. As it is a multiple of (x− λ)m by Theorem 5.2 and it divides
Pf , we would indeed find Pf |U = (x−λ)m and hence Pf |U′ = q(x) and dimU = m.

The following theorem also concludes the equality dim Ẽλ(f) = m in the restricted
case that the characteristic polynomial Pf splits into linear factors, and the mul-
tiplicity of λ as a root of Pf is m, just as it was above.

5.4. Theorem. Let V be a finite-dimensional vector space over a field F , and
let f : V → V be an endomorphism. Let p ∈ F [x] be a polynomial with coefficients
in F satisfying p(f) = 0 that splits into linear factors:

p(x) = (x− λ1)
m1 · · · (x− λk)

mk ,

where the λi ∈ F are distinct. Then for the generalised λi-eigenspaces Ui = Ẽλi(f)
of f we have Ui = ker(f−λi idV )mi and V = U1⊕· · ·⊕Uk and f = f |U1⊕· · ·⊕f |Uk

.

Moreover, if p = Pf , then dim Ẽλi(f) = mi.

Proof. Write p(x) = p1(x) · · · pk(x) with pi(x) = (x−λi)
mi . By Theorem 5.2

we have Ẽλi(f) = Ui = ker pi(f) = ker(f − λi idV )
mi . By Lemma 2.15, we know

that the pi(x) are coprime in pairs. The facts that V and f are direct sums as
stated then follow from Proposition 2.14. Now suppose p = Pf . By the Cayley-
Hamilton Theorem 3.1, we know that Pf (f) = 0, so all the arguments above apply.

From Theorem 5.2 we then also find dimUi = dim Ẽλi(f) ≥ mi for all i, so we
obtain

dimV =
∑
i

dimUi ≥
∑
i

mi = degPf = dimV,

which implies that all inequalities dimUi ≥ mi are actually equalities. □

5.5. Theorem (Jordan Normal Form). Let V be a finite-dimensional vec-
tor space, and let f : V → V be an endomorphism whose characteristic polynomial
splits into linear factors:

Pf (x) = (x− λ1)
m1 · · · (x− λk)

mk ,
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where the λi are distinct. Then there is a basis for V such that the matrix rep-
resenting f with respect to that basis is a block diagonal matrix with blocks of the
form

B(λ,m) =



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 ∈ Mat(m,F )

where λ ∈ {λ1, . . . , λk}.

Proof. We keep the notations of Theorem 5.4. We know that on Ui, we have
(f − λi id)

mi = 0, so f |Ui
= λi idUi

+ gi, where g
mi
i = 0, i.e., gi is nilpotent. By

Theorem 4.3, there is a basis for Ui such that gi is represented by a block diagonal
matrix Bi with blocks of the form B(0,m) (such that the sum of the m’s is mi).
Therefore, f |Ui

is represented by Bi + λiIdimUi
, which is a block diagonal matrix

composed of blocks B(λi,m) (with the same m’s as before). The basis for V
that is the concatenation of the various bases for the Ui then does what we want,
compare Remark 2.8. □

We say that a matrix is in Jordan normal form if it is a diagonal block matrix
with all blocks along the diagonal of the form B(λ,m) for some λ ∈ F and some
integer m ≥ 0.

5.6. Remark. Let V , f , and λ1, . . . , λk ∈ F be as in Theorem 5.5. Let B be
a basis as is claimed to exist, and let A = [f ]BB be the matrix associated to f with
respect to B. Take any element λ ∈ F . For every integer j ≥ 0 we set rj(λ) =
dimker(f − λ idV )

j, and for every integer j ≥ 1 we set sj(λ) = rj(λ) − rj−1(λ)
and tj(λ) = sj(λ)− sj+1(λ). Then for every integer j ≥ 1 there are exactly tj(λ)
blocks of the form B(λ, j) along the diagonal of A.

Indeed, for λ not a root of the characteristic polynomial Pf , we get rj(λ) =
sj(λ) = tj(λ) = 0 for all j, and no blocks of the form B(λ, j) for any j. If λ = λi
for some i, then in terms of the notation of the proof of Theorem 5.5, we can apply
Proposition 4.14 to the nilpotent endomorphisn gi = f |Ui

− λ idUi
, which satisfies

gmi
i = 0. Note that for every integer j ≥ 0 the kernel ker(f − λi idV )

j is contained

in ker(f − λi idV )
mi = Ui by Theorem 5.4. Hence this kernel equals ker gji , and we

find rj(λi) = dimker gji . Proposition 4.14 then states that there are tj(λi) blocks
of the form B(0, j) in a diagonal block matrix for gi, and these blocks correspond
to blocks in A of the form B(λi, j).

5.7. Corollary. Let A,A′ ∈ Mat(n, F ) be two square matrices such that the
characteristic polynomial of A splits into linear factors, that is,

PA(x) = (x− λ1)
m1 · · · (x− λk)

mk .

Then A and A′ are similar if and only if for each index 1 ≤ i ≤ k and each integer
1 ≤ j ≤ mi we have dimker(A− λiI)

j = dimker(A′ − λiI)
j.

Proof. If A and A′ are similar, then the claimed equality of dimensions holds.
For the converse, assume that for every index 1 ≤ i ≤ k and for each integer
1 ≤ j ≤ mi we have dimker(A − λiI)

j = dimker(A′ − λiI)
j. Then in particular,

this holds for j = mi. Since ker(A−λiI)mi is the generalised eigenspace associated
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to λi for A, we find that for each i, the dimension of the generalised eigenspace
associated to λi is at least as large for A

′ as for A. Since the sum of the dimensions
of all generalised eigenspaces for A and for A′ are both equal to n, we find that
equality holds for each i, and furthermore, A′ has no other eigenvalues. It follows
that the characteristic polynomials of A and A′ are the same. From Remark 5.6
we conclude that A and A′ are both similar to a block diagonal matrices B and B′,
respectively, where B and B′ have the same blocks along the diagonal. For details,
compare to the proof of Corollary 4.17. Then B and B′ are similar, as they can
be obtained from each other by a permutation of the basis. So by transitivity of
similarity, also A and A′ are similar. □

Here is a less precise, but for many applications sufficient version of Theorem 5.5.

5.8. Corollary. Let V be a finite-dimensional vector space, and let f : V →
V be an endomorphism whose characteristic polynomial splits into linear factors,
as above. Then we can write f = d + n, with endomorphisms d and n of V, such
that d is diagonalizable, n is nilpotent, and d and n commute: d ◦ n = n ◦ d.

Proof. We just take d to be the endomorphism corresponding to the ‘diagonal
part’ of the matrix given in Theorem 5.5 and n to be that corresponding to the
‘nilpotent part’ (obtained by setting all diagonal entries equal to zero). Since the
two parts commute within each ‘Jordan block,’ the two endomorphisms commute.

□

5.9. Example. Let us compute the Jordan Normal Form and a suitable basis
for the endomorphism f : R3 → R3 given by the matrix

A =

 0 1 0
0 0 1
−4 0 3

 .

We first compute the characteristic polynomial:

Pf (x) =

∣∣∣∣∣∣
x −1 0
0 x −1
4 0 x− 3

∣∣∣∣∣∣ = x2(x− 3) + 4 = x3 − 3x2 + 4 = (x− 2)2(x+ 1) .

We see that it splits into linear factors, which is good. We now have to find the
generalised eigenspaces. The eigenvalue −1 has algebraic multiplicity 1, so its
generalised eigenspace has dimension 1. It is therefore equal to the eigenspace

E−1(f) = ker

 1 1 0
0 1 1
−4 0 4

 = L
(
(1,−1, 1)⊤

)
,

so for a basis we can choose v = (1,−1, 1)⊤. The other eigenspace is

E2(f) = ker

−2 1 0
0 −2 1
−4 0 1

 = L
(
(1, 2, 4)⊤

)
.

This space has only dimension 1, so f is not diagonalizable, and we have to look
at the generalised eigenspace:

ker
(
(f − 2 id)2

)
= ker

 4 −4 1
−4 4 −1
4 −4 1

 = L
(
(1, 1, 0)⊤, (1, 0,−4)⊤

)
.
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To construct a basis for this generalised eigenspace, we follow the proof of The-
orem 4.3, applied to the nilpotent endomorphism that is f − 2 id restricted to
its generalised eigenspace. We start with a basis for a complementary space of
ker(f − 2 id) inside ker(f − 2 id)2. Such a complementary space has dimension
dimker(f − 2 id)2 − dimker(f − 2 id) = 2− 1 = 1, so we can take any element in
ker(f − 2 id)2 that is not contained in ker(f − 2 id), say w21 = (1, 1, 0)⊤. As basis
for this generalised eigenspace, we then obtain (w21, (f − 2 id)(w21)). Reversing
the order, and adding the basis (v) for the generalised eigenspace for λ = −1, we
get a basis

B = ((f − 2 id)(w21), w21, v) =
(
(−1,−2,−4)⊤, (1, 1, 0)⊤, (1,−1, 1)⊤

)
,

for R3. With

P = [id]BE =

−1 1 1
−2 1 −1
−4 0 1


we obtain

[fA]
B
B = [id]EB · [fA]EE · [id]BE = P−1AP =

2 1 0
0 2 0
0 0 −1

 .

As mentioned in Example 4.19, from small examples one does not always get an
idea of the general case, so at the end of this chapter, we will do some bigger
examples.

5.10. Application. One important application of the Jordan Normal Form
Theorem is to the explicit solution of systems of linear first-order differential equa-
tions with constant coefficients. Such a system can be written

d

dt
y(t) = A · y(t) ,

where y is a vector-valued function and A is a matrix. One can then show (Exer-
cise) that there is a unique solution with y(0) = y0 for any specified initial value y0,
and it is given by

y(t) = exp(tA) · y0
with the matrix exponential

exp(tA) =
∞∑
n=0

tn

n!
An .

If A is in Jordan Normal Form, the exponential can be easily determined. In
general, A can be transformed into Jordan Normal Form, the exponential can be
evaluated for the transformed matrix, then we can transform it back — note that

exp(tP−1AP ) = P−1 exp(tA)P .

5.11. Remark. Writing an endomorphism f : V → V as f = n + d with d
diagonalizable and n nilpotent and d ◦ n = n ◦ d is very useful for computing
powers of f , as for every positive integer k, the relation d ◦ n = n ◦ d implies

fk =
k∑
i=0

(
k

i

)
dk−ini,

and if nm = 0 for some integer m, then all terms with i ≥ m vanish.
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5.12. Remark. What can we do when the characteristic polynomial does
not split into linear factors (which is possible when the field F is not algebraically
closed)? In this case, we have to use a weaker notion than that of diagonalizability.
Define the endomorphism f : V → V to be semi-simple if every f -invariant
subspace U ⊂ V has an f -invariant complementary subspace in V . One can show
(exercise) that if the characteristic polynomial of f splits into linear factors, then
f is semi-simple if and only if it is diagonalizable. The general version of the
Jordan Normal Form Theorem then is as follows.

Let V be a finite-dimensional vector space, f : V → V an endomorphism. Then
f = s + n with endomorphisms s and n of V such that s is semi-simple, n is
nilpotent, and s ◦ n = n ◦ s.
Unfortunately, we do not have the means and time to prove this result here.

However, we can state the result we get over F = R.

5.13. Theorem (Real Jordan Normal Form). Let V be a finite-dimensional
real vector space, f : V → V an endomorphism. Then there is a basis for V such
that the matrix representing f with respect to this basis is a block diagonal matrix
with blocks of the form B(λ,m) and of the form (with µ > 0)

B′(λ, µ,m) =



λ −µ 1 0 · · · 0 0 0 0
µ λ 0 1 · · · 0 0 0 0
0 0 λ −µ · · · 0 0 0 0
0 0 µ λ · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · λ −µ 1 0
0 0 0 0 · · · µ λ 0 1
0 0 0 0 · · · 0 0 λ −µ
0 0 0 0 · · · 0 0 µ λ


∈ Mat(R, 2m) .

Blocks B(λ,m) occur for eigenvalues λ of f ; blocks B′(λ, µ,m) occur if Pf (x) is
divisible by x2 − 2λx+ λ2 + µ2.

Warning: the Real Jordan Normal Form in this theorem is not a Jordan Normal
Form, unless the characteristic polynomial of f splits into linear factors, in which
case only blocks of the form B(λ,m) occur.

Proof. Here is a sketch that gives the main ideas. First choose any basis
B = (x1, . . . , xn) for V , so that φB : Rn → V given by (λ1, . . . , λn) 7→

∑
i λixi

is an isomorphism. Identifying V with Rn through this isomorphism reduces the
problem to the case V = Rn, which is naturally contained in Cn, and f : Rn → Rn

being given by a real n× n matrix A.

Over C, the characteristic polynomial Pf = PA will split into linear factors. Some
of them will be of the form x − λ with λ ∈ R, the others will be of the form
x− (λ+ µi) with λ, µ ∈ R and µ ̸= 0. These latter ones occur in pairs

(x− (λ+ µi))(x− (λ− µi)) = x2 − 2λx+ λ2 + µ2 .

If v1, . . . , vm ∈ Cn is a basis for the generalised eigenspace (over C) for the eigen-
value λ + µi, then v̄1, . . . , v̄m is a basis for the generalised eigenspace for the
eigenvalue λ− µi, where v̄ denotes the vector obtained from v ∈ Cn by replacing
each coordinate with its complex conjugate. If we now consider

(v1 + v̄1), i(v1 − v̄1), . . . , (vm + v̄m), i(vm − v̄m) ,
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then these vectors are in Rn and form a basis for the sum of the two generalised
eigenspaces. If (v1, . . . , vm) gives rise to a Jordan block B(λ+µi,m), then we have

f(vi + v̄i) = f(vi) + f(v̄i) = f(vi) + f(vi)

= (λ+ µi)vi + v′i−1 + (λ− µi)v̄i + v′i−1

= λ(vi + v̄i) + µi(vi − v̄i) + v′i−1 + v′i−1,

f(i(vi − v̄i)) = if(vi)− if(v̄i) = i · f(vi)− i · f(vi)
= i(λ+ µi)vi + iv′i−1 − i(λ− µi)v̄i − iv′i−1

= λi(vi − v̄i)− µ(vi + v̄i) + i(v′i−1 − v′i−1),

for v′i−1 = 0 if i = 1 and v′i−1 = vi−1 if i > 1, so the new basis gives rise to a block
of the form B′(λ, µ,m). □

5.14. Theorem. Let V be a finite-dimensional vector space, f1, . . . , fk : V →
V diagonalizable endomorphisms that commute in pairs. Then f1, . . . , fk are si-
multaneously diagonalizable, i.e., there is a basis for V consisting of vectors that
are eigenvectors for all the fj at the same time. In particular, any linear combi-
nation of the fj is again diagonalizable.

Proof. First note that if f and g are commuting endomorphisms and v is a
λ-eigenvector of f , then g(v) is again a λ-eigenvector of f (or zero):

f
(
g(v)

)
= g
(
f(v)

)
= g(λv) = λg(v) .

We now proceed by induction on k. For k = 1, there is nothing to prove. So assume
k ≥ 2. We can write V = U1⊕· · ·⊕Ul, where the Ui are the nontrivial eigenspaces
of fk. By the observation just made, we have splittings, for j = 1, . . . , k − 1,

fj = f
(1)
j ⊕ · · · ⊕ f

(l)
j with f

(i)
j : Ui → Ui.

By Corollary 3.12, the restrictions f
(i)
j : Ui → Ui are diagonalizable, so by the

induction hypothesis, f
(i)
1 , . . . , f

(i)
k−1 are simultaneously diagonalizable on Ui, for

each i. Since Ui consists of eigenvectors of fk, any basis for Ui that consists of
eigenvectors for all the fj with j < k, will also consist of eigenvectors for all the
fj with j ≤ k, that is, including j = k. To get a suitable basis for V , we take the
concatenation of the bases of the various Ui. □

To finish this section, here is a uniqueness statement related to Corollary 5.8.

5.15. Theorem. The diagonalizable and nilpotent parts of f in Corollary 5.8
are uniquely determined.

Proof. Let f = d + n = d′ + n′, where d and n are constructed as in the
Jordan Normal Form Theorem 5.5, so with d diagonalizable and n nilpotent and
d ◦ n = n ◦ d, and where d′ is diagonalizable, n′ is nilpotent, and d′ ◦ n′ = n′ ◦ d′.
Then d′ and n′ commute with f (as d′ ◦f = d′ ◦d′+d′ ◦n′ = d′ ◦d′+n′ ◦d′ = f ◦d′,
same for n′). Now let g be any endomorphism commuting with f , and consider
v ∈ Uj = ker((f − λj id)

mj). Then

(f − λj id)
mj
(
g(v)

)
= g
(
(f − λj id)

mj(v)
)
= g(0) = 0 ,

so g(v) ∈ Uj, i.e., Uj is g-invariant. So g = g1 ⊕ · · · ⊕ gk splits as a direct sum
of endomorphisms of the generalised eigenspaces Uj of f . Since on Uj, we have
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f |Uj
= λj id+n|Uj

and g commutes with f , we find that gj commutes with n|Uj

for all j, hence g commutes with n (and also with d).

Applying this to d′ and n′, we see that d and d′ commute, and that n and n′

commute. We can write

d− d′ = n′ − n ;

then the right hand side is nilpotent (for this we need that n and n′ commute!).
By Theorem 5.14, the left hand side is diagonalizable, so from Proposition 4.2 we
conclude d− d′ = n′ − n = 0, that is, d′ = d and n′ = n. □

As promised, we will now give some bigger examples of matrices that we will put
in Jordan normal form.

5.16. Example. Consider the matrix

A =


2 3 3 3 3
0 −1 0 −1 −1
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1

 .

We want an invertible matrix Q and a matrix J in Jordan normal form such
that A = QJQ−1. The characteristic polynomial of A is (x − 2)(x + 1)4, so the
eigenvalues are 2 and −1. The dimensions of the generalised eigenspaces equal the
algebraic multiplicities, so they equal 1 and 4, respectively.

The dimension of the eigenspace associated to an eigenvalue is at least 1, so for
the eigenvalue λ = 2 the associated eigenspace ker(A − 2I) is the whole gener-
alised eigenspace, as both have dimension 1. The element e1 is contained in the
eigenspace, so e1 generates this subspace.

For the eigenvalue λ = −1, we follow the proof of Theorem 4.3 (as A + I is
nilpotent on the generalised eigenspace for λ = −1). We have

A+ I =


3 3 3 3 3
0 0 0 −1 −1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 , (A+ I)2 =


9 9 9 9 9
0 0 0 0 −1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0


and

(A+ I)3 =


27 27 27 27 27
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Because (A+I)3 has rank 1 we have dimker(A+I)3 = 5−1 = 4. As the generalised
eigenspace has dimension 4, the subspace U = ker(A+I)3 is the whole generalised
eigenspace. For each n = 1, 2, 3, the kernel ker(A+ I)n is easy to determine, since
(A+ I)n is almost in row echelon form. We find

ker(A+ I) = L
(
(−1, 1, 0, 0, 0), (−1, 0, 1, 0, 0)

)
,

ker(A+ I)2 = L
(
(−1, 1, 0, 0, 0), (−1, 0, 1, 0, 0), (−1, 0, 0, 1, 0)

)
,

ker(A+ I)3 = L
(
(−1, 1, 0, 0, 0), (−1, 0, 1, 0, 0), (−1, 0, 0, 1, 0), (−1, 0, 0, 0, 1)

)
.
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For the dimension rn(−1) = dimker(A+ I)n we have r1(−1) = 2 and r2(−1) = 3
and r3(−1) = 4. We get s1(−1) = 2 and s2(−1) = 1 and s3(−1) = 1. We also get
t1(−1) = 1 and t2(−1) = 0 and t3(−1) = 1, so there are two Jordan blocks, one
of size 1× 1 and one of size 3× 3.

For the largest block, we choose a complementary subspace of ker(A + I)2 inside
ker(A + I)3; this complementary space has dimension s3 = r3 − r2 = 1, so it
suffices to pick one vector: a vector in ker(A + I)3 \ ker(A + I)2, so for example
w31 = (−1, 0, 0, 0, 1). The other two vectors associated to the 3 × 3 block are
(A+ I)w31 = (0,−1, 0, 1, 0) and (A+ I)2w31 = (0,−1, 1, 0, 0).

Any complementary subspace for ker(A + I) inside ker(A + I)2 has dimension
s2 = r2 − r1 = 1 as well, so (A + I)w31 already generates such a complementary
space. A complementary subspace for ker(A + I)0 = {0} inside ker(A + I) is
equal to ker(A + I), which has dimension 2; we already have a vector, namely
(A+ I)2w31 = (0,−1, 1, 0, 0), so in order to generate ker(A+ I), it suffices to add
a vector from ker(A + I) that is not a multiple of (A + I)2w31. For example, we
may choose w11 = (−1, 1, 0, 0, 0). This vector corresponds to the 1× 1 block.

The vectors e1, (A + I)2w31, (A + I)w31, w31, w11 form a basis B. If we put the
vectors in this order in a matrix, then we get

Q = [id]BE =


1 0 0 −1 −1
0 −1 −1 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 ,

where E is the standard basis. The associated Jordan normal form is then

J = [fA]
B
B =


2 0 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 0
0 0 0 0 −1

 .

Indeed, one verifies QJQ−1 = [id]BE · [fA]BB · [id]EB = [fA]
E
E = A.

5.17. Example. We consider the real matrix

M =



−1 1 −1 1 −1 1 −1 1 −1 1
0 −1 3 −3 3 −3 3 −3 3 −3
0 0 2 0 1 −1 1 −1 1 −1
0 0 0 2 1 −1 1 −1 1 −1
0 0 0 0 2 0 1 −1 1 −1
0 0 0 0 0 2 1 −1 1 −1
0 0 0 0 0 0 2 0 1 −1
0 0 0 0 0 0 0 2 1 0
0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 2


,

which has characteristic polynomial (x + 1)2(x − 2)8. Therefore, we have to deal
with the two generalised eigenspaces

U1 = ker(M + I)2 and U2 = ker(M − 2I)8

of dimensions 2 and 8, respectively. Indeed, by Theorem 5.4, we have R10 =
U1 ⊕ U2. Let e1, . . . , e10 ∈ R10 denote the standard basis vectors.
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We start with the larger case, namely U2. By definition of U2, the restriction of
fM−2I to U2 is nilpotent, as f 8

M−2I restricts to 0 on U2. By finding a row echelon
form for (M − 2I)n for 1 ≤ n ≤ 3, we find r1(2) = dimker(M − 2I) = 4 and
r2(2) = dimker(M − 2I)2 = 7 and r3(2) = dimker(M − 2I)3 = 8. For n > 3 we
have

8 = dimker(M − 2I)3 ≤ dimker(M − 2I)n ≤ dimU2 = 8,

so we conclude ker(M − 2I)3 = U2 and rn(2) = dimker(M − 2I)n = 8 for n ≥ 3.
This yields the following table for sn(2) = rn(2) − rn−1(2) and tn(2) = sn(2) −
sn+1(2).

n rn(2) sn(2) tn(2)
0 0
1 4 4 1
2 7 3 2
3 8 1 1
4 8 0 0
5 8 0 0

We conclude that in any Jordan Normal Form for M , there is one Jordan block
for eigenvalue 2 of size 1, there are two of size 2, and there is one of size 3.

As mentioned before, the restriction of fM−2I to U2 is nilpotent by definition of U2.
In fact, we have (fM−2I |U2)

3 = 0. To find a suitable basis for U2, we follow the
proof of Theorem 4.3, applied to this nilpotent endomorphism of U2. We consider
the filtration

{0} ⊂ ker(M − 2I) ⊂ ker(M − 2I)2 ⊂ ker(M − 2I)3 = U2

and we will choose integers t1, t2, t3 ≥ 0 (which should turn out to be the values
tj(2) from the table above) and elements wjl ∈ ker(M − 2I)j with 1 ≤ j ≤ 3 and
1 ≤ l ≤ tj such that for each index 1 ≤ j ≤ 3 the sequence(

(M − 2I)k−j(wkl)
)
j≤k≤3
1≤l≤tk

is a basis for a complementary subspace Xj of ker(M−2I)j−1 inside ker(M−2I)j.

We had already brought (M − 2I)n into row echelon form before and we can use
that to find explicit bases for ker(M − 2I)n for 1 ≤ n ≤ 3. We find

ker(M − 2I) = ⟨x1, x2, x3, x4⟩,
ker(M − 2I)2 = ⟨y1, y2, y3, y4, y5, y6, y7⟩,
ker(M − 2I)3 = ⟨z1, z2, z3, z4, z5, z6, z7, z8⟩,

with

x1 = (0, 1, 0,−1, 0, 0, 0, 0, 0, 0),

x2 = (0, 0, 1, 1, 0, 0, 0, 0, 0, 0),

x3 = (0, 0, 0, 0, 1, 1, 0, 0, 0, 0),

x4 = (0, 0, 0, 0, 0, 0, 1, 1, 0, 0),

y1 = (0, 1, 0, 0, 0, 0, 0, 0, 1, 0),

y2 = (0, 0, 1, 0, 0, 0, 0, 0,−1, 0),

y3 = (0, 0, 0, 1, 0, 0, 0, 0, 1, 0),

y4 = (0, 0, 0, 0, 1, 0, 0, 0,−1, 0),

y5 = (0, 0, 0, 0, 0, 1, 0, 0, 1, 0),

y6 = (0, 0, 0, 0, 0, 0, 1, 0,−1, 0),

y7 = (0, 0, 0, 0, 0, 0, 0, 1, 1, 0),

z1 = (0, 1, 0, 0, 0, 0, 0, 0, 0,−1),

z2 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 1),

z3 = (0, 0, 0, 1, 0, 0, 0, 0, 0,−1),

z4 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 1),

z5 = (0, 0, 0, 0, 0, 1, 0, 0, 0,−1),

z6 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 1),

z7 = (0, 0, 0, 0, 0, 0, 0, 1, 0,−1),

z8 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1).
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In the first step, corresponding to j = m in the notation of the proof of Theo-
rem 4.3, we want a complementary subspaceX3 of ker(M−2I)2 inside the subspace
ker(M − 2I)3 = U2. One way to do this is to put the basis elements y1, . . . , y7
for ker(M − 2I)2 as columns in a matrix, and add the generators z1, . . . , z8 for
ker(M − 2I)3 as more columns to the right:



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 −1 1 −1 1 −1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 −1 1 −1 1 −1 1 −1 1


.

The reduced row echelon form for this matrix is



1 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


.

Of the added columns to the right, only the first has a pivot. This implies that
the first of the added generators, namely z1, generates a complementary space of
ker(M − 2I)2 inside ker(M − 2I)3. [Of course, we could have seen this without
any computation. From the last coordinate, we see that no zi is contained in
ker(M − 2I)2, as the last coordinate of all the yi is 0; since ker(M − 2I)2 has
codimension 1 inside ker(M − 2I)3 (meaning the difference of their dimensions
is 1), any element in ker(M −2I)3 that is not contained in ker(M −2I)2 generates
a complementary space of ker(M − 2I)2 inside ker(M − 2I)3.] So, we take t3 = 1
and w31 = z1 and X3 = ⟨w31⟩.

The second step corresponds to j = 2. We want to extend (M − 2I)(X3), that is,
the image of X3 under multiplication byM−2I, to a complementary subspace X2

of ker(M − 2I) inside ker(M − 2I)2. We follow the proof of Lemma 2.6. First,
note that (M − 2I)(X2) has basis (M − 2I)w31 = (0, 0, 1, 1, 1, 1, 1, 0,−1, 0). We
put the basis elements x1, . . . , x4 for ker(M − 2I) as columns in a matrix, we add
(M − 2I)w31 as a column to the right, and we finally add the generators y1, . . . , y7
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for ker(M − 2I)2 as columns to the far right:

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0
−1 1 0 0 1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 −1 1 −1 1 −1 1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0


.

The reduced row echelon form for this matrix is

1 0 0 0 0 0 1 −1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 −1 1
0 0 1 0 0 0 0 0 0 1 −1 1
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1 −1
0 0 0 0 0 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


.

So of the last seven columns, the first and the fourth contain a pivot. This means
that if we add y1 and y4 to (M−2I)w31, then we obtain a basis for a complementary
space X2 of ker(M − 2I) inside ker(M − 2I)2. Hence, we set t2 = 2 and w21 = y1
and w22 = y4 and we denote the space ⟨(M − 2I)w31, w21, w22⟩ by X2.

In the step corresponding to j = 1, we extend (M − 2I)(X2) to a complementary
space X1 of ker(M − 2I)0 inside ker(M − 2I). Since we have (M − 2I)0 = I,
we find ker(M − 2I)0 = {0}, so X1 = ker(M − 2I). Note that (M − 2I)(X2) is
generated by

(M − 2I)2w31 = (0, 0, 0, 0, 0, 0,−1,−1, 0, 0),

(M − 2I)w21 = (0, 0, 1, 1, 1, 1, 1, 1, 0, 0),

(M − 2I)w22 = (0, 0, 0, 0,−1,−1,−1,−1, 0, 0).

We put these as columns in a matrix and add columns for the generators x1, . . . , x4
for ker(M − 2I). 

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 −1 1 0 0
0 1 −1 0 0 1 0
0 1 −1 0 0 1 0
−1 1 −1 0 0 0 1
−1 1 −1 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.
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The reduced row echelon form for this matrix is

1 0 0 0 0 1 −1
0 1 0 0 1 0 0
0 0 1 0 1 −1 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Since only the first of the right-most four columns has a pivot, it suffices to add x1
to the elements we already had in order to get a basis for ker(M − 2I). In other
words, we set t1 = 1 and w11 = x1 and let X1 be the subspace generated by(

(M − 2I)2w31, (M − 2I)w21, (M − 2I)w22, w11

)
.

We now reorder the elements of the bases for X1, X2, X3 to get a basis

C =
(
(M − 2I)2w31, (M − 2I)w31, w31, (M − 2I)w22, w22, (M − 2I)w21, w21, w11

)
for the generalised eigenspace X1 ⊕X2 ⊕X3 = U2. Note that indeed the integers
tj coincide with the integers tj(2) in the table above.

We continue with the generalised eigenspace U1. By definition of U1, the restriction
of fM+I to U1 is nilpotent, as f 2

M+I restricts to 0 on U1. It is easy to verify that
ker(M + I) is generated by e1, while ker(M + I)2 is generated by e1 and e2. We
proceed exactly the same as for U2, but everything is much easier in this case.
The vector e2 generates a complementary space of ker(M + I) inside ker(M + I)2,
so we set v21 = e2. Its image under M + I is (M + I)v21 = e1, which, as we said,
generates ker(M + I). Together, v21 and (M + I)v21 = e1 form a basis D for the
generalised eigenspace U1.

The bases C and D together yield the basis

B =
(
(M−2I)2w31, (M−2I)w31, w31, (M−2I)w22, w22, (M−2I)w21, w21, w11, (M+I)v21, v21

)
for U1 ⊕U2 = R10. If we let E denote the standard basis for R10, then the matrix
P = [id]BE has the elements of B as columns, that is,

P =



0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 1 1 0 1
0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 −1 0 0
0 1 0 −1 1 1 0 0 0 0
0 1 0 −1 0 1 0 0 0 0
−1 1 0 −1 0 1 0 0 0 0
−1 0 0 −1 0 1 0 0 0 0
0 −1 0 0 −1 0 1 0 0 0
0 0 −1 0 0 0 0 0 0 0


.

We now already know that [fM ]BB = [id]EB[fM ]EE[id]
B
E = P−1MP is a matrix

in Jordan Normal Form, with Jordan blocks B(2, 3), B(2, 2), B(2, 2), B(2, 1) and
B(−1, 2) in this order along the diagonal (for this notation, see Theorem 5.5).
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Indeed, a simple but tedious calculation shows

P−1MP =



2 1 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 0 2 1 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 2 1 0 0 0
0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 −1


.

Exercises.

(1) Let V be a vector space over a field F , and f : V → V an endomorphism,
and λ ∈ F an element. Show that the generalised λ-eigenspace Ẽλ(f) is
a subspace.

(2) Give an example of an endomorphism f of a vector space V over a field F ,
and an element λ ∈ F , such that the generalised λ-eigenspace Ẽλ(f) is
not equal to ker(f − λ idV )

l for any l ≥ 0.
(3) Let J ∈ Mat(n, F ) be a matrix in Jordan Normal Form. Factorise the

minimal polynomial MJ of J as

MJ = (x− λ1)
m1(x− λ2)

m2 · · · (x− λk)
mk

with λi ̸= λj for i ̸= j. Show that for each i, the multiplicity mi is equal
to the largest ℓ for which there is a block B(λi, ℓ) that occurs in J .

(4) In each of the following cases, give an example of a real 4 × 4-matrix A
with the given properties, or explain why such a matrix does not exist.
Here I denotes the 4× 4 identity matrix.
(a) A2 = 0 and A has rank 1;
(b) A2 = 0 and A has rank 2;
(c) A2 = 0 and A has rank 3;
(d) A has rank 2, and A− I has rank 1;
(e) A has rank 2, and A− I has rank 2;
(f) A has rank 2, and A− I has rank 3.

(5) Let V be a finite-dimensional vector space over any field F . Let f be an
endomorphism of V , and let λ ∈ F be any scalar. Suppose r > 0 is an
integer satisfying rk(f − λ idV )

r = rk(f − λ idV )
r+1. Show that for all

s > r we have im(f − λ idV )
r = im(f − λ idV )

s.
(6) For the following matrices A, B give their Jordan normal forms, and

decide if they are similar.

A =


2 0 0 0
0 2 2 0
1 1 2 −1
0 0 2 2

 B =


2 0 0 −2
1 2 1 0
0 0 2 2
0 0 0 2


(7) Give the Jordan normal form of the matrix

2 2 0 −1
0 0 0 1
1 5 2 −2
0 −4 0 4


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(8) Give the Jordan normal form of the matrix
1 0 1 0
1 1 1 0
0 0 1 0
0 0 1 1


(9) Let A be the 3× 3 matrix

A =

 1 1 2
0 1 3
0 0 1

 .

Compute A100.

(10) Consider the matrix A =

(
1 4

−1 5

)
.

(a) Give the eigenvalues and eigenspaces of A.
(b) Give a diagonalizable matrix D and a nilpotent matrix N for which

D +N = A and DN = ND.
(c) Give a formula for An when n = 1, 2, 3, . . .

(11) For the matrix

A =

 2 1 1
0 1 1
0 0 1


give a diagonalizable matixD and a nilpotent matrixN so that A = D+N
and ND = DN .

(12) For A =

 2 1 −1
0 4 −2
0 2 0

 compute the matrix eA.

(13) Let ϕ : R3 → R3 be the linear map given by ϕ(x) = Ax where A is the
matrix  3 1 0

0 3 0
0 0 1

 .

We proved in class that generalised eigenspaces for ϕ are ϕ-invariant.
What are these spaces in this case? Give all other ϕ-invariant subspaces
of R3.

(14) Compute the characteristic polynomial of the matrix

A =


1 −2 2 −2
1 −1 2 0
0 0 −1 2
0 0 −1 1


Does A have a Jordan normal form as 4× 4 matrix over R? What is the
Jordan normal form of A as a 4× 4 matrix over C?
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(15) Let n be a positive integer, and A a real n× n matrix. The table below
shows the dimension of several subspaces of Rn.

U dimU
kerA 3
kerA2 3
imA3 8
ker(A− 2In) 3
ker(A− 2In)

2 6
ker(A− 2In)

3 7
ker(A− 3In)

2 1

(a) Prove that we have kerA = kerA2 = kerA3.
(b) Prove that n = 11.
(c) Prove that A has a Jordan normal form over R (this does not refer

to the real Jordan Normal Form as in Theorem 5.13).
(d) Show that the Jordan normal form for A is the determined uniquely,

up to the order of the Jordan blocks, by the information in the table.
Give a Jordan normal form for A.

(16) Suppose that for a 20 × 20 matrix A the rank of Ai for i = 0, 1, . . . 9
is given by the sequence 20, 15, 11, 7, 5, 3, 1, 0, 0, 0. What sizes are the
Jordan-blocks in the Jordan normal form of A?

(17) Let V be a complex vector space of dimension at most 3, and f an en-
domorphism of V . Show that f is determined, up to similarity, by its
characteristic and minimal polynomial together.

(18) For a complex square matrix A, we define

sin(A) =
∞∑
n=0

(−1)n

(2n+ 1)!
A2n+1.

You do not need to show that the sum converges. What is the sine of the

matrix

(
π π
0 π

)
?



CHAPTER 6

The Dual Vector Space

6.1. Definition. Let V be an F -vector space. A linear form or linear func-
tional on V is a linear map ϕ : V → F .

The dual vector space of V is V ∗ = Hom(V, F ), the vector space of all linear forms
on V .

Recall how the vector space structure on V ∗ = Hom(V, F ) is defined: for ϕ, ψ ∈ V ∗

and λ, µ ∈ F , we have, for v ∈ V ,

(λϕ+ µψ)(v) = λϕ(v) + µψ(v) .

6.2. Example. Consider the standard example V = F n. Then the coordinate
maps

pj : (x1, . . . , xn) 7−→ xj

are linear forms on V .

The following result is important.

6.3. Proposition and Definition. Let V be a finite-dimensional vector space
with basis (v1, . . . , vn). Then V

∗ has a unique basis (v∗1, . . . , v
∗
n) such that

v∗i (vj) = δij =

{
1 if i = j

0 if i ̸= j
.

This basis (v∗1, . . . , v
∗
n) of V

∗ is called the dual basis of (v1, . . . , vn) or the basis dual
to (v1, . . . , vn).

Proof. Since linear maps are uniquely determined by their images on a basis,
there certainly exist unique linear forms v∗i ∈ V ∗ with v∗i (vj) = δij. We have to
show that they form a basis of V ∗. First, it is easy to see that they are linearly
independent, by applying a linear combination to the basis vectors vj:

0 = (λ1v
∗
1 + · · ·+ λnv

∗
n)(vj) = λ1δ1j + · · ·+ λnδnj = λj .

It remains to show that the v∗i generate V ∗. So let ϕ ∈ V ∗. Then

ϕ = ϕ(v1)v
∗
1 + · · ·+ ϕ(vn)v

∗
n ,

since both sides take the same values on the basis v1, . . . , vn. □

It is important to keep in mind that the dual basis vectors depend on all of
v1, . . . , vn — the notation v∗j is not intended to imply that v∗j depends only on vj!

Note that for ϕ ∈ V ∗, we have

ϕ =
n∑
j=1

ϕ(vj)v
∗
j ,

47
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and for v ∈ V , we have

v =
n∑
i=1

v∗i (v)vi

(write v = λ1v1 + · · ·+ λnvn, then v
∗
i (v) = λi).

6.4. Example. Consider V = F n, with the canonical basis E = (e1, . . . , en).
Then the dual basis is P = (p1, . . . , pn) consisting of the coordinate maps from
Example 6.2.

6.5. Corollary. If V is finite-dimensional, then dimV ∗ = dimV .

Proof. Clear from Prop. 6.3. □

6.6. Remark. The statement in Corollary 6.5 is actually an equivalence, if
we define dimension to be the cardinality of a basis. If V has infinite dimension,
then the dimension of V ∗ is “even more infinite”. This is related to the following
fact. Let B be a basis for V. Then the power set of B, i.e., the set of all subsets
of B, has larger cardinality than B. To each subset S of B, we can associate an
element ψS ∈ V ∗ such that ψS(b) = 1 for b ∈ S and ψS(b) = 0 for b ∈ B \ S. Now
there are certainly linear relations between the ψS, but one can show that, if B is
infinite, no subset of {ψS : S ⊂ B} whose cardinality is that of B can generate all
the ψS. Therefore any basis for V ∗ must be of strictly larger cardinality than B.

Note that again, we are implicitly assuming that every vector space has a basis
(cf. Remark 2.3). Also, we are using the fact that for any basis B = (vi)i∈I of V
and any collection C = (wi)i∈I of elements in a vector space W , there is a linear
map φ : V → W that sends vi to wi for each i ∈ I. Indeed, this follows from the
fact that the map φB : F

(I) → V that sends (λi)i∈I to
∑

i λivi is an isomorphism,
so the map φ : V → W is φC ◦ φ−1B . See Exercises 3.1.9, 4.4.7 of Linear Algebra I,
2018 edition, also to recall that F (I) denotes the vector space of all functions from
I → F that are zero for all but finitely many elements of I.

6.7. Example. If V = L(sin, cos) (a linear subspace of the real vector space
of real-valued functions on R), then the basis dual to sin, cos is given by the
functionals f 7→ f(π/2), f 7→ f(0).

6.8. Theorem. Let V be a vector space and V ∗∗ = (V ∗)∗ its bidual. Then the
map αV : V → V ∗∗ that sends v ∈ V to the linear map αV (v) : V

∗ → F given by
V ∗ ∋ ϕ 7→ ϕ(v) is an injective homomorphism; moreover, αV is an isomorphism
when V is finite-dimensional.

Proof. We sometimes denote the evaluation map αV (v) : V
∗ → F by evv,

though this notation may also be used for any other evaluation map (cf. Exam-
ple 6.10). Then αV (v) is a linear form on V ∗ by the definition of the linear
structure on V ∗. Also, αV is itself linear:

αV (λv + λ′v′)(ϕ) = ϕ(λv + λ′v′) = λϕ(v) + λ′ϕ(v′)

= λαV (v)(ϕ) + λ′αV (v
′)(ϕ) = (λαV (v) + λ′αV (v

′))(ϕ) .

In order to prove that αV is injective, it suffices to show that its kernel is trivial.
So let 0 ̸= v ∈ V . Using Zorn’s Lemma from Set Theory (cf. Remark 2.3 and
see Appendix E of Linear Algebra I, 2020 edition, or later), we can choose a basis
for V containing v. Then there is a linear form ϕ on V such that ϕ(v) = 1 (and
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ϕ(w) = 0 on all the other basis elements, say). But this means αV (v)(ϕ) = 1, so
αV (v) ̸= 0 and v ̸∈ kerαV .

Finally, if V is finite-dimensional, then by Corollary 6.5, we have dimV ∗∗ =
dimV ∗ = dimV , so αV must be surjective as well (use dim im(αV ) = dimV −
dimker(αV ) = dimV ∗∗.) □

6.9. Corollary. Let V be a finite-dimensional vector space, and let (ϕ1, . . . , ϕn)
be a basis for V ∗. Then there is a unique basis (v1, . . . , vn) of V with ϕi(vj) = δij.

Proof. By Prop. 6.3, there is a unique dual basis (ϕ∗1, . . . , ϕ
∗
n) of V

∗∗ = (V ∗)∗.
Since αV is an isomorphism, there are unique v1, . . . , vn in V such that αV (vj) = ϕ∗j .
They form a basis for V , and

ϕi(vj) = evvj(ϕi) = αV (vj)(ϕi) = ϕ∗j(ϕi) = δij .

□

In other words, (ϕ1, . . . , ϕn) is the basis for V ∗ dual to (v1, . . . , vn).

6.10. Example. Let V be the vector space of polynomials of degree less
than n; then dimV = n. For any α ∈ F , the evaluation map

evα : V ∋ p 7→ p(α) ∈ F

is a linear form on V . Now pick α1, . . . , αn ∈ F distinct. Then evα1 , . . . , evαn ∈ V ∗

are linearly independent, hence form a basis. (This comes from the fact that the
Vandermonde matrix (αji )1≤i≤n,0≤j≤n−1 has determinant

∏
i<j(αj−αi) ̸= 0.) What

is the basis for V dual to that? What we need are polynomials p1, . . . , pn of degree
less than n such that pi(αj) = δij. So pi(x) has to be a multiple of

∏
j ̸=i(x− αj).

We then obtain

pi(x) =
∏
j ̸=i

x− αj
αi − αj

,

these are exactly the Lagrange interpolation polynomials.

We then find that the unique polynomial of degree less than n that takes the value
βj on αj, for all j, is given by

p(x) =
n∑
j=1

βjpj(x) =
n∑
j=1

βj
∏
i ̸=j

x− αi
αj − αi

.

So far, we know how to ‘dualize’ vector spaces (and bases). Now we will see how
we can also ‘dualize’ linear maps.

6.11. Definition. Let V and W be F -vector spaces, f : V → W a linear
map. Then the transpose or dual linear map of f is defined as

f⊤ : W ∗ −→ V ∗ , ψ 7−→ f⊤(ψ) = ψ ◦ f .
A diagram clarifies perhaps what is happening here.

V
f // W

ψ // F

The composition ψ ◦ f is a linear map from V to F , and is therefore an element
of V ∗. It is easy to see that f⊤ is again linear: for ψ1, ψ2 ∈ W ∗ and λ1, λ2 ∈ F , we
have

f⊤(λ1ψ1+λ2ψ2) = (λ1ψ1+λ2ψ2)◦f = λ1ψ1◦f+λ2ψ2◦f = λ1f
⊤(ψ1)+λ2f

⊤(ψ2) .
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Also note that for linear maps f1, f2 : V → W and scalars λ1, λ2, we have

(λ1f1 + λ2f2)
⊤ = λ1f

⊤
1 + λ2f

⊤
2 ,

and for linear maps f1 : V1 → V2, f2 : V2 → V3, we obtain (f2 ◦ f1)⊤ = f⊤1 ◦ f⊤2 —
note the reversal.

Another simple observation is that id⊤V = idV ∗ .

6.12. Proposition. Let f : V → W be an isomorphism. Then f⊤ : W ∗ → V ∗

is also an isomorphism, and (f⊤)−1 = (f−1)⊤.

Proof. We have f ◦ f−1 = idW and f−1 ◦ f = idV . This implies that

(f−1)⊤ ◦ f⊤ = idW ∗ and f⊤ ◦ (f−1)⊤ = idV ∗ .

The claim follows. □

We denote the standard scalar product (dot product) on F n by ⟨ , ⟩. While
working with general vector spaces, it is often advisable to avoid choosing a basis,
as there usually is no natural choice. However, the vector space F n comes with
a standard basis E = (e1, e2, . . . , en), and its dual (F n)∗ with the associated dual
basis P = (p1, . . . , pn) of coordinate maps (see Example 6.2). We denote the
associated map φP : F

n → (F n)∗ by φn; it sends ei to the linear form pi = ⟨ei, ⟩,
which sends x ∈ F n to ⟨ei, x⟩. We conclude that, in general, φn sends a ∈ F n to
the linear form ⟨a, ⟩. Indeed, φn and the map F n → (F n)∗ given by a 7→ ⟨a, ⟩
coincide on a basis, so they are the same.

6.13. Lemma. Let V be a finite-dimensional F -vector space with basis B of
dimension n, and let B∗ be the corresponding dual basis for the dual space V ∗. Let
φB : F

n → V and φB∗ : F n → V ∗ be the usual linear maps sending the i-th standard
basis vector to the i-th vector in B and B∗, respectively. Then the composition
φ⊤B ◦ φB∗ : F n → (F n)∗ is φn.

Proof. It suffices to check that the two maps are the same on the standard
basis vectors ei ∈ F n. Write B = (v1, . . . , vn) and B

∗ = (v∗1, . . . , v
∗
n). Then for each

index 1 ≤ i ≤ n, we have φB∗(ei) = v∗i , and therefore (φ⊤B ◦ φB∗)(ei) = φ⊤B(v
∗
i ) =

v∗i ◦ φB. For each index 1 ≤ j ≤ n we have (v∗i ◦ φB)(ej) = v∗i (vj) = δij = pi(ej),
which implies that v∗i ◦ φB = pi = φn(ei). The statement follows. □

The reason for calling f⊤ the “transpose” of f becomes clear through the following
result.

6.14. Lemma. Let m,n be nonnegative integers, and A ∈ Mat(m × n, F ) a
matrix. Let fA : F

n → Fm and fA⊤ : Fm → F n be the linear maps associated to
A and its transpose A⊤, respectively. Then we have fA⊤ = φ−1n ◦ f⊤A ◦ φm and the
diagram

(Fm)∗
f⊤A // (F n)∗

Fm

f
A⊤

//

φm

OO

F n

φn

OO

commutes.
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Proof. Both statements are equivalent to the equality φn ◦ fA⊤ = f⊤A ◦ φm,
which we now verify. For each a ∈ Fm and x ∈ F n, we have, if we identify them
with an m× 1 and an n× 1 matrix, respectively,(

(φn ◦ fA⊤)(a)
)
(x) =

(
φn(A

⊤a)
)
(x) = ⟨A⊤a, x⟩ = (A⊤a)⊤x = a⊤Ax,

and(
(f⊤A ◦ φm)(a)

)
(x) =

(
f⊤A (⟨ , a⟩)

)
(x) =

(
⟨a, ⟩ ◦ fA

)
(x) = ⟨a,Ax⟩ = a⊤Ax.

These are equal for all x ∈ F n, so we conclude (φn ◦ fA⊤)(a) = (f⊤A ◦ φm)(a) for
all a ∈ Fm, which implies φn ◦ fA⊤ = f⊤A ◦ φm. □

The following proposition is a generalisation of the previous lemma.

6.15. Proposition. Let V and W be finite-dimensional vector spaces, with
bases B = (v1, . . . , vn) and C = (w1, . . . , wm), respectively. Let B∗ = (v∗1, . . . , v

∗
n)

and C∗ = (w∗1, . . . , w
∗
m) be the corresponding dual bases of V

∗ and W ∗, respectively.
Let f : V → W be a linear map, represented by the matrix A with respect to the
given bases of V and W. Then the matrix representing f⊤ with respect to the dual
bases is A⊤, that is

[f⊤]C
∗

B∗ = ([f ]BC)
⊤.

Proof. We have the following two commutative diagrams

V
f // W W ∗ f⊤ // V ∗

F n

fA

//

φB

OO

Fm

φC

OO

Fm

fA′
//

φC∗

OO

F n

φB∗

OO

with A = [f ]BC and A′ = [f⊤]C
∗

B∗ . The dual of the first diagram can be combined
with the second to obtain the following commutative diagram

(Fm)∗
f⊤A // (F n)∗

W ∗ f⊤ //

φ⊤
C

OO

V ∗

φ⊤
B

OO

Fm

φm

::

fA′
//

φC∗

OO

F n

φB∗

OO
φn

dd

where the two curved compositions are φm and φn by Lemma 6.13. We conclude
from Lemma 6.14 that fA′ = φ−1n ◦ f⊤A ◦ φm = fA⊤ , so A′ = A⊤. □

Alternative proof. Let A = (aij)1≤i≤m,1≤j≤n; then

f(vj) =
m∑
i=1

aijwi .

We then have(
f⊤(w∗i )

)
(vj) = (w∗i ◦ f)(vj) = w∗i

(
f(vj)

)
= w∗i

( m∑
k=1

akjwk

)
= aij .
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Since we always have, for ϕ ∈ V ∗, that ϕ =
∑n

j=1 ϕ(vj)v
∗
j , this implies that

f⊤(w∗i ) =
n∑
j=1

aijv
∗
j .

Therefore the columns of the matrix representing f⊤ with respect to the dual
bases are exactly the rows of A. □

Note that for every invertible matrix P we have (P−1)⊤ = (P⊤)−1; we will denote
this matrix by P−⊤.

6.16. Corollary. Let V be a finite-dimensional vector space, and let B =
(v1, . . . , vn) and C = (w1, . . . , wn) be two bases of V. Let B∗ = (v∗1, . . . , v

∗
n) and

C∗ = (w∗1, . . . , w
∗
n) be the corresponding dual bases. Then we have

[idV ∗ ]B
∗

C∗ =
(
[idV ]

B
C

)−⊤
.

Proof. Using id⊤V = idV ∗ , we find from Proposition 6.15 that [idV ∗ ]C
∗

B∗ =(
[idV ]

B
C

)⊤
. The statement now follows from the fact that the matrices [idV ∗ ]C

∗
B∗

and [idV ∗ ]B
∗

C∗ are each other’s inverses. □

This corollary is reflected in the matrices we use to change bases. If f : V → V
is an endomorphism and we set A = [f ]BB and A′ = [f ]CC , then for the matrix
P = [idV ]

B
C we have A′ = PAP−1. The matrices A⊤ = [f⊤]B

∗
B∗ and A′⊤ = [f⊤]C

∗
C∗

are then related by A′⊤ = (PAP−1)⊤ = P−⊤A⊤P⊤.

As is to be expected, we have a compatibility between f⊤⊤ and the canonical
map αV .

6.17. Proposition. Let V and W be vector spaces, f : V → W a linear map.
Then the following diagram commutes.

V
f //

αV

��

W

αW

��
V ∗∗

f⊤⊤
// W ∗∗

Proof. We have to show that f⊤⊤ ◦αV = αW ◦ f . So let v ∈ V and ψ ∈ W ∗.
Then

f⊤⊤
(
αV (v)

)
(ψ) = (αV (v) ◦ f⊤)(ψ) = αV (v)

(
f⊤(ψ)

)
= αV (v)(ψ ◦ f) = (ψ ◦ f)(v)
= ψ

(
f(v)

)
= αW

(
f(v)

)
(ψ) .

□

6.18. Proposition. Let V and W be finite-dimensional vector spaces. Then

Hom(V,W ) ∋ f 7−→ f⊤ ∈ Hom(W ∗, V ∗)

is an isomorphism.
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Proof. By the observations made in Definition 6.11, the map is linear. We
claim that the map

Hom(W ∗, V ∗) ∋ g 7−→ α−1W ◦ g⊤ ◦ αV ∈ Hom(V,W ) ,

is the inverse of the given map. Because Hom(V,W ) and Hom(W ∗, V ∗) have the
same finite dimension, it suffices to verify that the composition of the two maps
in only one of the two orders is the identity. Indeed, by Proposition 6.17 we have

α−1W ◦ (f⊤)⊤ ◦ αV = f.

□

The following lemma states that every linear form on a subspace U of a vector
space V can be extended to a linear form on V . Note that if j : U → V is
an inclusion map, then j⊤ : V ∗ → U∗ is the restriction map that sends φ ∈ V ∗

to φ|U .

6.19. Lemma. Let V be a vector space and U ⊂ V a subspace. Let j : U ↪→ V
denote the inclusion map. Then j⊤ : V ∗ → U∗ is surjective.

Proof. Let U ′ ⊂ V be a complementary space of U (using Zorn’s Lemma if
V is infinite-dimensional), and π : V → U the projection onto U along U ′. That
is, for v = u + u′ with u ∈ U and u′ ∈ U ′, we have π(v) = u. Then we have
π ◦ j = idU , so j

⊤ ◦ π⊤ = (π ◦ j)⊤ = idU∗ , which implies that j⊤ is surjective. □

6.20. Proposition. Let f : U → V and g : V → W be two linear maps of
vector spaces.

(1) If we have im f ⊂ ker g, then we have im g⊤ ⊂ ker f⊤.
(2) If we have im f ⊃ ker g, then we have im g⊤ ⊃ ker f⊤.
(3) If we have im f = ker g, then we have im g⊤ = ker f⊤.

Proof. (1) Suppose im f ⊂ ker g. Then the composition g ◦f is the zero
map. Hence so is the dual of this composition, which is the composition
f⊤ ◦ g⊤ of the duals. This implies im g⊤ ⊂ ker f⊤.

(2) Write g as the composition g = j ◦ g̃ with g̃ : V → im g and j : im g → W
the inclusion map. Then we have ker g = ker g̃. From Lemma 6.19 we
find that j⊤ is surjective, so from g⊤ = g̃⊤ ◦ j⊤ we obtain im g⊤ = im g̃⊤.
Hence it suffices to prove the statement with g̃ instead of g, so without
loss of generality, we may and will assume g is surjective.

Suppose ker g ⊂ im f . Take any φ ∈ ker f⊤, so f⊤(φ) = 0, that is,
for all u ∈ U we have φ(f(u)) = 0. For each w ∈ W , there is a v ∈ V
with g(v) = w, since g is surjective; for v, v′ ∈ V with g(v) = g(v′) = w,
we have v − v′ ∈ ker g ⊂ im f , so there is a u ∈ U with f(u) = v − v′,
and therefore φ(v) = φ(v− v′)+φ(v′) = φ(f(u))+φ(v′) = φ(v′). Hence,
there is a well-defined map ψ : W → F with ψ(g(v)) = φ(v) for all v ∈ V .
To verify that ψ is linear, note that if w = g(v) and w′ = g(v′), then we
have w + w′ = g(v + v′), so

ψ(w + w′) = φ(v + v′) = φ(v) + φ(v′) = ψ(w) + ψ(w′);

The fact that ψ respects scalar multiplication follows similarly. We con-
clude that ψ ∈ W ∗, and φ = g⊤(ψ) ∈ im g⊤, so ker f⊤ ⊂ im g⊤.

(3) This follows from the previous statements.

□
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6.21. Definition. A sequence

V0
f1−→ V1

f2−→ . . .
fn−→ Vn

of composable linear maps is called exact if for all indices 1 ≤ i < n we have
im fi = ker fi+1.

Proposition 6.20 states that if U → V → W is an exact sequence, then the induced
sequence W ∗ → V ∗ → U∗ is exact as well. Note that a linear map f : V → W is

injective if and only if the sequence 0 → V
f→ W is exact, while f is surjective if

and only if the sequence V
f→ W → 0 is exact.

6.22. Corollary. Let f : V → W be a linear map of vector spaces. If f is
injective, then f⊤ is surjective. If f is surjective, then f⊤ is injective.

Proof. If f is injective, then the sequence 0 → V
f→ W is exact. Then by

Proposition 6.20 the sequence W ∗ f
⊤
→ V ∗ → 0 is exact, so f⊤ is surjective. As an

alternative proof, we could have also written f as the composition f = j ◦ f̃ of the
isomorphism f̃ : V → im f induced by f , and the inclusion j : im f → W ; then by
Proposition 6.12 and Lemma 6.19, the map f⊤ = f̃⊤ ◦ j⊤ is the composition of a
surjection and an isomorphism, and thus surjective.

If f is surjective, then the sequence V
f→ W → 0 is exact. Then by Proposi-

tion 6.20 the sequence 0 → W ∗ f
⊤
→ V ∗ is exact, so f⊤ is injective. □

6.23. Proposition. Let f : V → W be a linear map of finite-dimensional
vector spaces. Then we have dim im f = dim im f⊤.

Proof. The map f is the composition of the surjection f̃ : V → im f induced
by f and the inclusion j : im f → W . By Corollary 6.22, the dual map f⊤ is
the composition of the surjective map j⊤ : W ∗ → (im f)∗ and the injective map

f̃⊤ : (im f)∗ → V ∗. We conclude im f⊤ = im f̃⊤ and hence

dim im f⊤ = dim im f̃⊤ = dim(im f)∗ = dim im f.

□

Note that [BR2] claims (in Theorem 7.8) that we also have dimker(f⊤) = dimker(f).
However, this is false unless dimV = dimW !

6.24. Remark. The equality of dimensions dim im(f⊤) = dim im(f) is, by
Prop. 6.15, equivalent to the statement “row rank equals column rank” for matri-
ces.

6.25. Definition. Let A ∈ Mat(m×n, F ) be a matrix. A kernel matrix of A
is a matrix whose columns span the kernel of A.

If B is a kernel matrix of A, then we have im fB = ker fA. By Proposition 6.20,
this implies im f⊤A = ker f⊤B ⊂ (F n)∗. Applying φ−1n , we obtain the equality
im fA⊤ = ker fB⊤ by Lemma 6.14. This shows that A⊤ is a kernel matrix of B⊤.

Next, we study how subspaces relate to dualization.
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6.26. Definition. Let V be a vector space and S ⊂ V a subset. Then

S◦ = {ϕ ∈ V ∗ : ϕ(v) = 0 for all v ∈ S} ⊂ V ∗

is called the annihilator of S.

The set S◦ is a linear subspace of V ∗, since we can write

S◦ =
⋂
v∈S

ker
(
αV (v)

)
.

Trivial examples are {0V }◦ = V ∗ and V ◦ = {0V ∗}.

6.27. Remark. As we have seen before, if U is a subspace of a vector space V ,
and j : U → V is the inclusion map, then j⊤ : V ∗ → U∗ is the restriction map,
which sends each linear form ψ ∈ V ∗ to its restriction ψ|U ; we have

U◦ = ker j⊤.

6.28. Theorem. Let V be a finite-dimensional vector space, U ⊂ V a linear
subspace. Then we have

dimU + dimU◦ = dimV and αV (U) = U◦◦ .

Proof. As in Remark 6.27, the dual of the inclusion j : U ↪→ V is a surjective
map V ∗ → U∗, of which the kernel is U◦. Hence, we have dimU◦ + dimU∗ =
dimV ∗, even if V were not finite-dimensional. Because V is finite-dimensional, we
have dimV = dimV ∗ and dimU = dimU∗, so the first equality follows. Applying
it to U◦, we obtain dimU = dimU◦◦.

For the second equality, note that U◦ consists of all the linear forms on V that
vanish on U . Hence, for every u ∈ U , the evaluation map evu : V

∗ → F sending
φ ∈ V ∗ to φ(u) sends all of U◦ to 0. This implies that the element αV (u) =
evu ∈ V ∗∗ is contained in U◦◦, so we have αV (U) ⊂ U◦◦, even if V were not finite-
dimensional. Because V is finite-dimensional, we have dimαV (U) = dimU =
dimU◦◦, so the inclusion αV (U) ⊂ U◦◦ is an equality. □

The theorem implies that we have U◦◦ = U if we identify V and V ∗∗ via αV .

6.29. Theorem. Let f : V → W be a linear map of vector spaces. Then we
have (

ker(f)
)◦

= im(f⊤) and
(
im(f)

)◦
= ker(f⊤).

Proof. Let j : ker f → V be the inclusion map. Apply Proposition 6.20 to
the exact sequence

ker f
j→ V

f→ W

to get the exact sequence

W ∗ f⊤−→ V ∗
j⊤−→ (ker f)∗ ,

which implies im f⊤ = ker j⊤ = (ker f)◦, which proves the first equality. For the
second equality, let i : im f → W denote the inclusion map, and write f as the
composition f = i ◦ f̃ with f̃ : V → im f induced by f . Then f⊤ = f̃⊤ ◦ i⊤, and
since f̃⊤ is injective, we obtain ker f⊤ = ker i⊤ = (im f)◦. □
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6.30. Interpretation in Terms of Matrices. Let us consider the vector
spaces V = F n and W = Fm and a linear map f : V → W . Then f is represented
by a matrix A, and the image of f is the column space of A, i.e., the subspace
of Fm spanned by the columns of A. We identify V ∗ = (F n)∗ and W ∗ = (Fm)∗

with F n and Fm via the dual bases consisting of the coordinate maps (see the
text above Lemma 6.13). Then for x ∈ W ∗, we have x ∈ (im(f))◦ if and only if
x⊤y = ⟨x, y⟩ = 0 for all columns y of A, which is the case if and only if x⊤A = 0.
This is equivalent to A⊤x = 0, which says that x ∈ ker(f⊤) — remember that A⊤

represents f⊤ : W ∗ → V ∗.

Exercises.

(1) Define ϕi : Rn → R by ϕi(x1, . . . , xn) = x1+x2+ · · ·+xi for i = 1, 2, . . . n.
Show that Φ = (ϕ1, . . . , ϕn) is a basis for (Rn)∗, and compute a basis B
for Rn of which Φ is the dual basis.

(2) Let V be an n-dimensional vector space, let v1, . . . , vn ∈ V and let
ϕ1, . . . , ϕn ∈ V ∗. Show that det((ϕi(vj))i,j) is non-zero if and only if
(v1, . . . , vn) is a basis for V and (ϕ1, . . . , ϕn) is a basis for V ∗.

(3) Let V be the 3-dimensional vector space of polynomial functions R → R
of degree at most 2. In each of the following cases, we define ϕi ∈ V ∗ for
i = 0, 1, 2. In each case, indicate whether (ϕ0, ϕ1, ϕ2) is a basis for V ∗,
and if so, give the dual basis for V .
(a) ϕi(f) = f(i)
(b) ϕi(f) = f (i)(0), i.e., the ith derivative of f evaluated at 0.
(c) ϕi(f) = f (i)(1)

(d) ϕi(f) =
∫ i
−1 f(x)dx

(4) Let V = R[X]2 be the space of polynomials of degree at most two. Take
α, β, γ ∈ V ∗ to be given by

α(f) = f(0),

β(f) =

1∫
0

f(x) dx,

γ(f) = f ′(0)

for all f ∈ V , and where f ′ denotes the derivative of f . Show that (α, β, γ)
is a basis for V ∗.

(5) For each positive integer n show that there are constants a1, a2, . . . , an so
that

1∫
0

f(x)exdx =
n∑
i=1

aif(i)

for all polynomial functions f : R → R of degree less than n.
(6) Let A and B be matrices for which the product AB exists. Show that B is

a kernel matrix of A if and only if we have AB = 0 and rkB = dimkerA.
(7) Let Z be any set. For any set X, we call the set ZX = Map(X,Z) the

Z-dual of X; if the set Z is clear from the context (as it will be in this
exercise), we will denote this Z-dual ZX by X×, and we will write X××

for (X×)× .
(a) Verify that any map f : X → Y of sets induces a map f † : Y × → X×

on the associated Z-duals by sending g ∈ Y × to the composition
g ◦ f ∈ X×.
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(b) Verify that for any set X there is a canonical map βX : X → X××

that sends x ∈ X to the evaluation map evx : X
× → Z, which sends

f ∈ X× to f(x).

(c) Show that for every set X we have β†X ◦ βX× = idX× .
(d) Show that for every vector space V we have α⊤V ◦ αV ∗ = idV ∗ ; if V is

finite-dimensional, then α⊤V = α−1V ∗ .

(e) In the proof of Proposition 6.18, it was shown that the composition
of two maps is the identity. Use the previous part of this exercise
to show directly that the composition in the opposite order is the
identity as well.

(8) Suppose we have a long exact sequence

0 −→ V1−→V2 −→ · · · −→ Vn −→ 0

of finite-dimensional vector spaces. Show that we have
n∑
i=1

(−1)i dimVi = 0.

[Hint: first do the case n = 3].
(9) Suppose f : U → V and g : V → W are linear maps such that

U
f−→ V

g−→ W −→ 0

is an exact sequence. Suppose that FU : U → U and FV : V → V are
endomorphisms such that FV ◦ f = f ◦ FU . Show that there exists an
endomorphism FW : W → W such that FW ◦ g = g ◦ FV . In other words,
show that there exists an endomorphism FW ofW such that the following
diagram commutes.

U V W 0

U V W 0

f

FU

g

FV FW

f g

(10) Suppose V is a vector space and W is a subspace. Let f : V → V be a
linear map.
(a) Assume that f(w) = w for all w ∈ W . Show that f⊤(φ) − φ ∈ W ◦

for all φ ∈ V ∗.
(b) Conversely, assume that f⊤(φ)− φ ∈ W ◦ for all φ ∈ V ∗. Show that

f(w) = w for all w ∈ W .
(11) Let f : U → V and g : V → W be two linear maps of finite-dimensional

vector spaces. Suppose that the dual sequence

W ∗ g⊤−→ V ∗
f⊤−→ U∗

is exact. Show that the sequence

U
f−→ V

g−→ W

is exact.
(12) * Let V be a finite-dimensional vector space and let U ⊂ V and W ⊂ V ∗

be subspaces. We identify V and V ∗∗ via αV (so W ◦ ⊂ V ). Show that

dim(U◦ ∩W ) + dimU = dim(U ∩W ◦) + dimW .
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(13) Let ϕ1, . . . , ϕn ∈ (Rn)∗. Prove that the solution set C of the linear in-
equalities ϕ1(x) ≥ 0, . . . , ϕn(x) ≥ 0 has the following properties:
(a) α, β ∈ C =⇒ α + β ∈ C .

(b) α ∈ C, t ∈ R≥0 =⇒ tα ∈ C.

(c) If ϕ1, . . . , ϕn form a basis for (Rn)∗, then

C =
{
t1α1 + . . .+ tnαn : ti ∈ R≥0, ∀i ∈ {1, . . . , n}

}
,

where α1, . . . , αn is the basis for Rn dual to ϕ1, . . . , ϕn.



CHAPTER 7

Norms on Real Vector Spaces

The following has some relevance for Analysis.

7.1. Definition. Let V be a real vector space. A norm on V is a map V → R,
usually written x 7→ ∥x∥, such that

(i) ∥x∥ ≥ 0 for all x ∈ V , and ∥x∥ = 0 if and only if x = 0;

(ii) ∥λx∥ = |λ|∥x∥ for all λ ∈ R, x ∈ V ;

(iii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ V (triangle inequality).

7.2. Examples. If V = Rn, then we have the following standard examples of
norms.

(1) The maximum norm:

∥(x1, . . . , xn)∥∞ = max{|x1|, . . . , |xn|} .
(2) The Euclidean norm (see Section 9 below):

∥(x1, . . . , xn)∥2 =
√
x21 + · · ·+ x2n .

(3) The sum norm (or 1-norm):

∥(x1, . . . , xn)∥1 = |x1|+ · · ·+ |xn| .

7.3. Remark. A norm on a real vector space V induces a metric: we set

d(x, y) = ∥x− y∥ ,
then the axioms of a metric (positivity, symmetry, triangle inequality) follow from
the properties of a norm.

Recall that the usual Euclidean topology on Rn is induced by the Euclidean metric
given by d(x, y) = ∥x − y∥2 for all x, y ∈ Rn. With respect to this topology, we
have the following result.

7.4. Lemma. Every norm on Rn is continuous (as a map from Rn to R).

Proof. Note that the maximum norm on Rn is bounded from above by the
Euclidean norm:

max{|xj| : j ∈ {1, . . . , n}} ≤
√
x21 + · · ·+ x2n .

Let ∥ · ∥ be a norm, and set C =
∑n

j=1 ∥ej∥, where e1, . . . , en is the canonical basis

for Rn. Then for x = (x1, . . . , xn) ∈ Rn we have

∥x∥ = ∥(x1, . . . , xn)∥ = ∥x1e1 + · · ·+ xnen∥ ≤ ∥x1e1∥+ · · ·+ ∥xnen∥
= |x1|∥e1∥+ · · ·+ |xn|∥en∥ ≤ max{|x1|, . . . , |xn|} · C ≤ ∥x∥2 · C .

From the triangle inequality, we then get∣∣∥x∥ − ∥y∥
∣∣ ≤ ∥x− y∥ ≤ C · ∥x− y∥2 .
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So for any ε > 0, if ∥x− y∥2 < ε/C, then
∣∣∥x∥ − ∥y∥

∣∣ < ε. □

7.5. Definition. Let V be a real vector space, x 7→ ∥x∥1 and x 7→ ∥x∥2 two
norms on V (any norms, not necessarily those of Example 7.2!). The two norms
are said to be equivalent, if there are C1, C2 > 0 such that

C1∥x∥1 ≤ ∥x∥2 ≤ C2∥x∥1 for all x ∈ V .

7.6. Theorem. On a finite-dimensional real vector space, all norms are equiv-
alent.

Proof. Without loss of generality, we can assume that our space is Rn, and
we can assume that one of the norms is the Euclidean norm ∥ · ∥2 defined above.
Let S ⊂ Rn be the unit sphere, i.e., S = {x ∈ Rn : ∥x∥2 = 1}. We know from
Analysis that S is compact (it is closed as the zero set of the continuous function
x 7→ x21 + · · · + x2n − 1 and bounded). Let ∥ · ∥ be another norm on Rn. Then
x 7→ ∥x∥ is continuous by Lemma 7.4, hence it attains a maximum C2 and a
minimum C1 on S. Then C2 ≥ C1 > 0 (since 0 /∈ S). Now let 0 ̸= x ∈ Rn, and
let e = ∥x∥−12 x; then ∥e∥2 = 1, so e ∈ S. This implies that C1 ≤ ∥e∥ ≤ C2, and
therefore

C1∥x∥2 ≤ ∥x∥2 · ∥e∥ ≤ C2∥x∥2 .
From ∥x∥2 · ∥e∥ =

∥∥∥x∥2e∥∥ = ∥x∥ we conclude C1∥x∥2 ≤ ∥x∥ ≤ C2∥x∥2. So every
norm is equivalent to ∥ · ∥2, which implies the claim, since equivalence of norms is
an equivalence relation. □

7.7. Examples. If V is infinite-dimensional, then the statement of the theo-
rem is no longer true. As a simple example, consider the space of finite sequences
(an)n≥0 (such that an = 0 for n sufficiently large). Then we can define norms ∥·∥1,
∥·∥2, ∥·∥∞ as in Examples 7.2, but they are pairwise inequivalent now — consider
the sequences sn = (1, . . . , 1, 0, 0, . . . ) with n ones, then ∥sn∥1 = n, ∥sn∥2 =

√
n

and ∥sn∥∞ = 1.

Here is a perhaps more natural example. Let V be the vector space C([0, 1]) of
real-valued continuous functions on the unit interval. We can define norms

∥f∥1 =
1∫

0

|f(x)| dx , ∥f∥2 =

√√√√√ 1∫
0

f(x)2 dx , ∥f∥∞ = max{|f(x)| : x ∈ [0, 1]}

in a similar way as in Examples 7.2, and again they are pairwise inequivalent.
Taking f(x) = xn, we have

∥f∥1 =
1

n+ 1
, ∥f∥2 =

1√
2n+ 1

, ∥f∥∞ = 1 .

Exercises.

Let V and W be normed vector spaces over R. For a linear map f : V → W set

∥f∥ = sup
x∈V, ∥x∥=1

∥f(x)∥ .

(1) Consider V = Rn with the standard inner product and the norm ∥ · ∥2.
Suppose that f : V → V is a diagonalizable map whose eigenspaces are
orthogonal (i.e., V has an orthogonal basis consisting of eigenvectors of
f). Show that ∥f∥ as defined above is equal to the largest absolute value
of an eigenvalue of f .
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(2) (a) Show that B(V,W ) = {f ∈ Hom(V,W ) : ∥f∥ < ∞} is a subspace
of Hom(V,W ), and that ∥ · ∥ is a norm on B(V,W ).

(b) Show that B(V,W ) = Hom(V,W ) if V is finite-dimensional.
(c) Taking V = W above, we obtain a norm on B(V, V ). Show that

∥f ◦ g∥ ≤ ∥f∥ · ∥g∥ for all f, g ∈ B(V, V ).
(3) Consider the rotation map f : R2 → R2 which rotates the plane by 45

degrees. For any norm on R2 the previous exercise defines a norm ∥f∥
of f . Show that ∥f∥ = 1 when we take the standard Euclidean norm ∥·∥2
on R2. What is ∥f∥ when we take the maximum norm ∥ · ∥∞ on R2?

(4) Consider the vector space V of polynomial functions [0, 1] → R with the
sup-norm: ∥f∥ = sup0≤x≤1 |f(x)|. Consider the functional ϕ ∈ V ∗ defined
by ϕ(f) = f ′(0). Show that ϕ ̸∈ B(V,R). [Hint: consider the polynomials
(1− x)n for n = 1, 2, . . ..]





CHAPTER 8

Bilinear Forms

We have already seen multilinear maps when we were discussing the determinant
in Linear Algebra I. Let us remind ourselves of the definition in the special case
when we have two arguments.

8.1. Definition. Let V ,W andX be F -vector spaces. A map ϕ : V ×W → X
is bilinear if it is linear in both arguments, i.e.

∀λ, λ′ ∈ F, x, x′ ∈ V, y ∈ W : ϕ(λx+ λ′x′, y) = λϕ(x, y) + λ′ϕ(x′, y) and

∀λ, λ′ ∈ F, x ∈ V, y, y′ ∈ W : ϕ(x, λy + λ′y′) = λϕ(x, y) + λ′ϕ(x, y′) .

When X = F is the field of scalars, ϕ is called a bilinear form.

If V = W and X = F , then ϕ is a bilinear form on V. It is symmetric if
ϕ(x, y) = ϕ(y, x) for all x, y ∈ V , and alternating if ϕ(x, x) = 0 for all x ∈ V . The
latter property implies that ϕ is skew-symmetric, i.e. ϕ(x, y) = −ϕ(y, x) for all
x, y ∈ V. To see this, consider

0 = ϕ(x+ y, x+ y) = ϕ(x, x) + ϕ(x, y) + ϕ(y, x) + ϕ(y, y) = ϕ(x, y) + ϕ(y, x) .

The converse holds if char(F ) ̸= 2, since (taking x = y)

0 = ϕ(x, x) + ϕ(x, x) = 2ϕ(x, x) .

We denote by Bil(V,W ) the set of all bilinear forms V ×W → F , and by Bil(V )
the set of all bilinear forms on V, so Bil(V ) = Bil(V, V ). These sets are F -vector
spaces in the usual way, by defining addition and scalar multiplication point-wise.

8.2. Examples. The standard ‘dot product’ on Rn is a symmetric bilinear
form on Rn.

The map that sends
(
( ab ) , (

c
d )
)
∈ R2 × R2 to | a cb d | = ad − bc is an alternating

bilinear form on R2.

The map (A,B) 7→ Tr(A⊤B) is a symmetric bilinear form on Mat(m× n, F ).

If K : [0, 1]2 → R is continuous, then the following defines a bilinear form on the
space of continuous real-valued functions on [0, 1]:

(f, g) 7−→
1∫

0

1∫
0

K(x, y)f(x)g(y) dx dy .

Evaluation defines a bilinear form on V × V ∗: (v, ϕ) 7−→ ϕ(v).
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8.3. Definition. A bilinear form ϕ : V ×W → F induces linear maps

ϕL : V −→ W ∗, v 7→
(
w 7→ ϕ(v, w)

)
and ϕR : W −→ V ∗, w 7→

(
v 7→ ϕ(v, w)

)
.

Indeed, by the definition of bilinear forms, the maps w 7→ ϕ(v, w) (for any fixed
v ∈ V ) and v 7→ ϕ(v, w) (for any fixed w ∈ W ) are linear forms contained in
W ∗ and V ∗, respectively, so ϕL and ϕR are well-defined as maps. Then using the
definition of bilinearity again, we see that ϕL and ϕR are themselves linear maps.

The subspace ker(ϕL) ⊂ V is called the left kernel of ϕ; it is the set of all v ∈ V
such that ϕ(v, w) = 0 for all w ∈ W . Similarly, the subspace ker(ϕR) ⊂ W is
called the right kernel of ϕ. The bilinear form ϕ is said to be nondegenerate if ϕL
and ϕR are isomorphisms.

8.4. Remark. If ϕ : V ×W → F is a nondegenerate bilinear form, then V
and W have the same finite dimension (Exercise, cf. Remark 6.6).

8.5. Lemma. Let ϕ : V ×W → F be a bilinear form with V or W finite-
dimensional. Then ϕ is nondegenerate if and only if both its left and right kernel
are trivial.

Proof. To prove this statement, first observe that the left and right kernels
are certainly trivial when ϕL and ϕR are isomorphisms. For the converse statement,
first suppose that W is finite-dimensional. Assume that the left and right kernels
are trivial. Then ϕL is injective, and since W is finite-dimensional, we obtain
dimV ≤ dimW ∗ = dimW , so V is finite-dimensional as well. From ϕR being
injective, we similarly get dimW ≤ dimV , so dimV = dimW and ϕL and ϕR are
isomorphisms. The case that V is finite-dimensional works analogously. □

8.6. Example. For the ‘evaluation pairing’ ev : V × V ∗ → F , we find that
the map evL : V → V ∗∗ is αV , and evR : V

∗ → V ∗ is the identity. So this bilinar
form ev is nondegenerate if and only if αV is an isomorphism, which is the case if
and only if V is finite-dimensional (see Remark 6.6).

8.7. Example. The standard scalar (dot) product ϕ on F n given by ϕ(v, w) =
⟨v, w⟩ is a nondegenerate symmetric bilinear form. In fact, here ϕL equals φn as
defined in the paragraph above Lemma 6.13: it sends the standard basis vector ej
to the j-th coordinate map in (F n)∗, so it maps a basis to a basis and is therefore
an isomorphism.

8.8. Proposition. Let V,W be F -vector spaces, and let ϕ : V ×W → F be a
nondegenerate bilinear form. Then for every linear form ψ ∈ W ∗ there is a unique
v ∈ V such that for every w ∈ W we have ψ(w) = ϕ(v, w).

Proof. The condition that for every w ∈ W we have ψ(w) = ϕ(v, w) is
equivalent with the equality ψ = ϕ(v, ), which means that ψ = ϕL(v). The claim
now follows from the fact that ϕL : V → W ∗ is an isomorphism. □
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8.9. Example. Let V be the real vector space of polynomials of degree at
most 2. Then

ϕ : V × V → R, (p, q) 7−→
1∫

0

p(x)q(x) dx

is a bilinear form on V. It is nondegenerate since for p ̸= 0, we have ϕ(p, p) > 0.
Evaluation at zero q 7→ q(0) defines a linear form on V, which by Proposition 8.8
must be representable in the form q(0) = ϕ(p, q) for some p ∈ V. To find p, we
write p = a0 + a1x+ a2x

2, and we want to find a0, a1, a2 such that for all b0, b1, b2
and q = b0 + b1x+ b2x

2 we have

b0 = q(0) = ϕ(a0 + a1x+ a2x
2, b0 + b1x+ b2x

2)

= a0b0 +
1
2
(a0b1 + a1b0) +

1
3
(a0b2 + a1b1 + a2b0) +

1
4
(a1b2 + a2b1) +

1
5
a2b2 .

This leads to

a0 +
1
2
a1 +

1
3
a2 = 1 , 1

2
a0 +

1
3
a1 +

1
4
a2 = 0 , 1

3
a0 +

1
4
a1 +

1
5
a2 = 0

so p(x) = 9− 36x+ 30x2, and we get

q(0) =

1∫
0

(9− 36x+ 30x2)q(x) dx

for all q ∈ V .

8.10. Remarks.

(1) The bilinear form ϕ : V × V → F is symmetric if and only if ϕR = ϕL.

(2) Suppose V and W have the same finite dimension. If ϕ : V ×W → F
is a bilinear form, then ϕ is nondegenerate if and only if its left kernel is
trivial (if and only if its right kernel is trivial).

Indeed, in this case, dimW ∗ = dimV , so if ϕL is injective, it is also
surjective, hence an isomorphism. Proposition 6.12 gives that ϕ⊤L is an
isomorphism as well. By Theorem 6.8, the map αW is also an isomor-
phism, so the identity ϕR = ϕ⊤L ◦ αW (which we leave as an exercise for
the reader) shows that ϕR is an isomorphism as well. If ϕR is injective,
then we use the identity ϕL = ϕ⊤R ◦ αV instead.

In fact, we can say a little bit more.

8.11. Proposition. Let V and W be F -vector spaces. There is an isomor-
phism

βV,W : Bil(V,W ) −→ Hom(V,W ∗) , ϕ 7−→ ϕL
with inverse given by

f 7−→
(
(v, w) 7→ (f(v))(w)

)
.

Proof. We leave the (by now standard) proof that the given maps are linear
as an exercise. It remains to check that they are inverses of each other. Call the
second map γV,W . So let ϕ : V × W → F be a bilinear form. Then γV,W (ϕL)
sends (v, w) to (ϕL(v))(w) = ϕ(v, w), so γV,W ◦ βV,W is the identity. Conversely,
let f ∈ Hom(V,W ∗), and set ϕ = γV,W (f). Then for v ∈ V , the linear form ϕL(v)
sends w to (ϕL(v))(w) = ϕ(v, w) = (f(v))(w), so ϕL(v) = f(v) for all v ∈ V , hence
ϕL = f . This shows that βV,W ◦ γV,W is also the identity map. □

If V = W , we write βV : Bil(V ) → Hom(V, V ∗) for this isomorphism.
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8.12. Example. Let V now be finite-dimensional. We see that a nondegener-
ate bilinear form ϕ on V allows us to identify V with V ∗ via the isomorphism ϕL.
Conversely, if we fix a basis B = (v1, . . . , vn), we also obtain an isomorphism
ι : V → V ∗ by sending vj to v

∗
j , where B

∗ = (v∗1, . . . , v
∗
n) is the dual basis for V ∗.

What is the bilinear form ϕ : V × V → F corresponding to this map? We have,
for v =

∑n
j=1 λjvj, w =

∑n
j=1 µjvj,

ϕ(v, w) =
(
ι(v)

)
(w) =

(
ι
( n∑
j=1

λjvj

))( n∑
k=1

µkvk

)
=
( n∑
j=1

λjv
∗
j

)( n∑
k=1

µkvk

)
=

n∑
j,k=1

λiµk v
∗
j (vk) =

n∑
j,k=1

λiµkδjk =
n∑
j=1

λjµj .

This is just the standard dot product if we identify V with F n using the given
basis; it is a symmetric bilinear form on V.

Alternatively, we note that φB∗ = ι ◦φB, so we obtain the following commutative
diagram by Lemma 6.13.

V
ι // V ∗

φ⊤
B
��

F n

φB

OO
φB∗

;;

φn

// (F n)∗

Hence, indeed, if we identify V with F n through φB (and likewise V ∗ with (F n)∗

through φ⊤B), then ι : V → V ∗ corresponds to the map φn : F
n → (F n)∗, which

sends a ∈ F n to the linear form ⟨ , a⟩. As we have seen in Example 8.7, this map
corresponds to the bilinear form that is the usual scalar (dot) product.

8.13. Remark. Let A be an m × n matrix over F . Then the associated
bilinear form

F n × Fm → F, (x, y) 7→ y⊤Ax

can also be expressed using the standard dot products on Fm and F n, both denoted
by ⟨ , ⟩, as we have

⟨y, Ax⟩ = y⊤Ax = (A⊤y)⊤x = ⟨A⊤y, x⟩.

8.14. Representation by Matrices. Let ϕ : F n × Fm → F be a bilinear
form. Then we can represent ϕ by a matrix A = (aij) ∈ Mat(m × n, F ), with
entries aij = ϕ(ej, ei). In terms of column vectors x ∈ F n and y ∈ Fm, we have

ϕ(x, y) = y⊤Ax .

Similarly, if V and W are finite-dimensional F -vector spaces, and we fix bases
B = (v1, . . . , vn) and C = (w1, . . . , wm) of V andW , respectively, then any bilinear
form ϕ : V ×W → F is given by a matrix relative to these bases, by identifying
V and W with F n and Fm in the usual way, that is, through the isomorphisms
φB : F

n → V and φC : F
m → W . If A = (aij) is the matrix as above, then

aij = ϕ(vj, wi). If v = x1v1 + · · ·+ xnvn and w = y1w1 + · · ·+ ymwm, then

ϕ(v, w) =
m∑
i=1

n∑
j=1

aijxjyi .
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8.15. Proposition. Let V andW be finite-dimensional F -vector spaces. Pick
two bases B = (v1, . . . , vn) and B′ = (v′1, . . . , v

′
n) of V and two bases C =

(w1, . . . , wm) and C ′ = (w′1, . . . , w
′
m) of W . Let A be the matrix representing a

bilinear form ϕ : V ×W → F with respect to B and C, and let A′ be the matrix
representing ϕ with respect to B′ and C ′. Then for P = [idV ]

B′
B and Q = [idW ]C

′
C

we have
A′ = Q⊤AP .

Proof. Let x′ ∈ F n be the coefficients of v ∈ V with respect to the new
basis B′. Then x = Px′, where x represents v with respect to the old basis B.
Similary for y′, y ∈ Fm representing w ∈ W with respect to the two bases B′ and
B, respectively, we have y = Qy′. So

y′
⊤
A′x′ = ϕ(v, w) = y⊤Ax = y′

⊤
Q⊤APx′ .

Given that this holds for all x′ ∈ F n and all y′ ∈ Fm, this implies the claim. □

V ×W
ϕ // F ∋ y⊤Ax = y′⊤A′x′

F n × Fm

(φB ,φC)

OO 99

(x, y)
6

::

A′ = Q⊤AP

F n × Fm

(P,Q)

OO(φB′ ,φC′ )

;; BB

(x′, y′)
2

88

_

OO

A =
(
ϕ(vj, wi)

)
i,j

In particular, if V is an n-dimensional vector space V with basis B, and ϕ is a
bilinear form on V , then ϕ is represented with respect to B by a square matrix
A ∈ Mat(n, F ). If we change the basis B to a basis B′, then the new matrix will
be A′ = P⊤AP , with P = [idV ]

B′
B ∈ Mat(n, F ) invertible. Matrices A and A′

for which there is an invertible matrix P ∈ Mat(n, F ) such that A′ = P⊤AP are
called congruent.

8.16. Example. Let V be the real vector space of polynomials of degree less
than n, and consider again the symmetric bilinear form

ϕ(p, q) =

1∫
0

p(x)q(x) dx .

With respect to the standard basis (1, x, . . . , xn−1), it is represented by the “Hilbert
matrix” Hn =

(
1

i+j−1

)
1≤i,j≤n.

It follows from Proposition 8.15 that the notion of rank of a bilinear form is well
defined.

8.17. Definition. Let ϕ : V ×W → F be a bilinear form. Then the rank of
ϕ is the rank of the matrix representing ϕ with respect to some bases B and C for
V and W , respectively.

For completeness, we summarize in one commutative diagram the ways to associate
a matrix to linear maps and bilinear forms. Let V and W be finite-dimensional
vector spaces, with bases B and C, respectively. Let C∗ denote the dual basis
for W ∗. Also set ι = φC∗ ◦ φ−1C : W → W ∗, which sends the i-th basis vector of
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C to the i-th basis vector of C∗. Recall that φm = φ⊤C ◦ φC∗ : Fm → (Fm)∗ sends
a ∈ Fm to ⟨a, ⟩. Then all maps in the following diagram are isomorphisms.

Bil(V ×W,F ) Hom(V,W ∗)

Bil(F n × Fm, F ) Hom(F n, (Fm)∗) Hom(V,W )

Mat(m× n, F ) Hom(F n, Fm)

ϕ 7−→ ϕL

ϕ ◦
(φB

,φC
) ←
−[ ϕ

φ
⊤
C
◦h
◦φB

←−
[ h

φ
−
1

C
∗
◦h
◦φ

B
←−

[ h

ϕ 7−→ ϕL

φ
−1

C

◦ g
◦φB

←−
[ g

g
7−→

ι
◦
g

A 7−→ (x 7→Ax)

A
7−→

(x 7→
⟨Ax

, ⟩)

A
7−→

((
x
,y
)7→

y
⊤ A
x
)

f
7−→

φ
m
◦
f

This diagram shows, for example, that if A is the matrix representing the bilinear
form ϕ : V ×W → F with respect to the bases B and C of V and W , respectively,
then A = [ϕL]

B
C∗ is also the matrix associated to the linear map ϕL : V → W ∗ with

respect to the bases B and C∗, since the map φ−1C∗ ◦ ϕL ◦ φB is fA.

8.18. Lemma. Let ϕ : V ×W → F be a bilinear form, and B and C bases of
the finite-dimensional vector spaces V and W , respectively. Let A be the matrix
that represents ϕ with respect to B and C. Then ϕ is nondegenerate if and only if
A is invertible.

Proof. We have just seen that A = [ϕL]
B
C∗ , so the left kernel of ϕ corresponds

to the kernel of A, which is trivial if and only if dimV = rkA. Similarly, the
right kernel of ϕ is trivial if and only if dimW = rkA. The statement therefore
follows from Lemma 8.5 and the fact that the equalities dimV = dimW = rkA
are equivalent with A being invertible. □

8.19. Lemma. Let ϕ be a bilinear form on the finite-dimensional vector space V,
represented (with respect to some basis) by the matrix A. Then

(1) ϕ is symmetric if and only if A⊤ = A;

(2) ϕ is skew-symmetric if and only if A⊤ + A = 0;

(3) ϕ is alternating if and only if A⊤ + A = 0 and all diagonal entries of A
are zero.

Proof. Let B = (v1, . . . , vn) be the basis for V. Since aij = ϕ(vj, vi), the
implications “⇒” in the first three statements are clear. On the other hand,
assume that A⊤ = ±A. Then

x⊤Ay = (x⊤Ay)⊤ = y⊤A⊤x = ±y⊤Ax ,
which implies “⇐” in the first two statements. For the third statement, we com-
pute ϕ(v, v) for v = x1v1 + · · ·+ xnvn:

ϕ(v, v) =
n∑

i,j=1

aijxixj =
n∑
i=1

aiix
2
i +

∑
1≤i<j≤n

(aij + aji)xixj = 0 ,
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since the assumption implies that both aii and aij + aji vanish. □

8.20. Definition. Let ϕ : V ×W → F be a bilinear form. For any subspace
U ⊂ W we set

U⊥ = {v ∈ V : ϕ(v, u) = 0 for all u ∈ U} .
For any subspace U ⊂ V we set

U⊥ = {w ∈ W : ϕ(u,w) = 0 for all u ∈ U} .
In both cases we call U⊥ the subspace orthogonal to U (with respect to ϕ).

8.21. Remark. Note that for a subspace U ⊂ W , the set U⊥ is indeed a
subspace, as it is the kernel of the composition of ϕL : V → W ∗ with the restriction
map resWU : W ∗ → U∗ that sends ψ ∈ W ∗ to the restriction ψ|U . Alternatively, U⊥
is in this case the left kernel of the restricted bilinear form V × U → F .
Similarly, for a subspace U ⊂ V , the subspace U⊥ is the kernel of the composition
of ϕR : W → V ∗ with the restriction map resVU : V

∗ → U∗. Alternatively, U⊥ is in
this case the right kernel of the restricted bilinear form U ×W → F . Moreover,
as the kernel of resVU is the annihilator U◦, we also find U⊥ = ϕ−1R (U◦).

8.22. Remark. For a general bilinear form ϕ on V and a subspace U ⊂ V ,
the notation U⊥ is ambiguous, as the left kernel of the restriction V ×U → F and
the right kernel of the restriction U×V → F need not coincide. If ϕ is symmetric,
then they do coincide, and the space U⊥ is well defined.

8.23. Example. Let V be a vector space over F , and consider the bilinear
form ev : V × V ∗ → F of Example 8.6. Let U ⊂ V be a subspace. Then the
orthogonal subspace U⊥ with respect to ev consists of all f ∈ V ∗ that satisfy
f(u) = ev(u, f) = 0 for all u ∈ U . This means that the subspace U⊥ = U◦ is
the annihilator of U . Note that this is a special case of Remark 8.21, as we have
evR = idV ∗ (see Example 8.6).

8.24. Lemma. Let ϕ : V ×W → F be a nondegenerate bilinear form. Let U
be a subspace of either V or W . Then we have dimU+dimU⊥ = dimV = dimW .
Moreover, we have (U⊥)⊥ = U .

Proof. From Remark 8.4 we recall that V and W are finite-dimensional, and
dimV = dimW . First suppose U ⊂ W . By Lemma 6.19, the restriction map
resWU : W ∗ → U∗ is surjective. So is the map ϕL : V → W ∗, and therefore so is
the composition V → U∗. The kernel of this composition is U⊥, so we obtain
dimV = dimU⊥ + dimU∗ = dimU⊥ + dimU . The case U ⊂ V follows similarly
by considering the composition of ϕR with the restriction map resVU , thus proving
the identity dimU + dimU⊥ = dimV in all cases. Applying this identity to U⊥

as well, we find dim(U⊥)⊥ = dimU . For all u ∈ U and all w ∈ U⊥, we have
ϕ(u,w) = 0, so there is an inclusion U ⊂ (U⊥)⊥ of subspaces of the same finite
dimension. Hence, this inclusion is an equality. □

We leave it to the reader to find an example of a bilinear form ϕ on a finite-
dimensional vector space V that is degenerate and for which there is a subspace
U ⊂ V with (U⊥)⊥ ̸= U .

As with endomorphisms, we can also split bilinear forms into direct sums in some
cases.
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8.25. Definition. If V = U ⊕ U ′, ϕ is a bilinear form on V , ψ and ψ′ are
bilinear forms on U and U ′, respectively, and for all u1, u2 ∈ U , u′1, u

′
2 ∈ U ′, we

have

ϕ(u1 + u′1, u2 + u′2) = ψ(u1, u2) + ψ′(u′1, u
′
2) ,

then ϕ is the orthogonal direct sum of ψ and ψ′.

Given V = U⊕U ′ and ϕ, this is the case if and only if ϕ(u, u′) = 0 and ϕ(u′, u) = 0
for all u ∈ U , u′ ∈ U ′ (and then ψ = ϕ|U×U , ψ′ = ϕ|U ′×U ′).

This can be generalised to an arbitrary number of summands.

If V is finite-dimensional and we represent ϕ by a matrix with respect to a basis
that is compatible with the splitting, then the matrix will be block diagonal.

8.26. Proposition. Let ϕ be a symmetric bilinear form on V, and let U ⊂ V
be a linear subspace such that ϕ|U×U is nondegenerate. Then V = U ⊕ U⊥, and ϕ
splits accordingly as an orthogonal direct sum.

When the restriction of ϕ to U × U is nondegenerate, we call U⊥ the orthogonal
complement of U .

Proof. We have to check a number of things. First, U ∩ U⊥ = {0} since
v ∈ U ∩ U⊥ implies ϕ(v, u) = 0 for all u ∈ U , but ϕ is nondegenerate on U , so v
must be zero. Second, U + U⊥ = V : let v ∈ V, then U ∋ u 7→ ϕ(v, u) is a linear
form on U , and since ϕ is nondegenerate on U , by Proposition 8.8 there must be
u′ ∈ U such that ϕ(v, u) = ϕ(u′, u) for all u ∈ U . This means that ϕ(v−u′, u) = 0
for all u ∈ U , hence v − u′ ∈ U⊥, and we see that v = u′ + (v − u′) ∈ U + U⊥ as
desired. So we have V = U ⊕U⊥. The last statement is clear, since by definition,
ϕ is zero on U × U⊥. □

Theorem 8.28 gives the first and quite general classification result for symmetric
bilinear forms on finite-dimensional vector spaces: they can always be diagonal-
ized. We first state a useful lemma.

8.27. Lemma. Assume that char(F ) ̸= 2, let V be an F -vector space and ϕ a
symmetric bilinear form on V. If ϕ ̸= 0, then there is v ∈ V such that ϕ(v, v) ̸= 0.

Proof. If ϕ ̸= 0, then there are v, w ∈ V such that ϕ(v, w) ̸= 0. Note that
we have

0 ̸= 2ϕ(v, w) = ϕ(v, w) + ϕ(w, v) = ϕ(v + w, v + w)− ϕ(v, v)− ϕ(w,w) ,

so at least one of ϕ(v, v), ϕ(w,w) and ϕ(v + w, v + w) must be nonzero. □

8.28. Theorem. Assume that char(F ) ̸= 2, let V be a finite-dimensional
F -vector space and ϕ a symmetric bilinear form on V. Then there is a basis
(v1, . . . , vn) of V such that ϕ is represented by a diagonal matrix with respect to
this basis.

Equivalently, every symmetric matrix A ∈ Mat(n, F ) is congruent to a diagonal
matrix.
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Proof. If ϕ = 0, there is nothing to prove. Otherwise, we proceed by induc-
tion on the dimension n. Since ϕ ̸= 0, by Lemma 8.27, there is v1 ∈ V such that
ϕ(v1, v1) ̸= 0 (in particular, n ≥ 1). Let U = L(v1), then ϕ is nondegenerate on U .
By Prop. 8.26, we have an orthogonal splitting V = L(v1) ⊕ U⊥. By induction
(dimU⊥ = n − 1), U⊥ has a basis (v2, . . . , vn) such that ϕ|U⊥×U⊥ is represented
by a diagonal matrix. But then ϕ is also represented by a diagonal matrix with
respect to the basis (v1, v2, . . . , vn). □

8.29. Remark. The entries of the diagonal matrix are not uniquely deter-
mined. For example, we can always scale the basis elements; this will multiply the
entries by arbitrary nonzero squares in F . But this is not the only ambiguity. For
example, we have (

2 0
0 2

)
=

(
1 −1
1 1

)(
1 0
0 1

)(
1 1
−1 1

)
.

On the other hand, the number of nonzero entries is uniquely determined, since it
is the rank of the matrix, which does not change when we multiply on the left or
right by an invertible matrix.

8.30. Example. Let us see how we can find a diagonalizing basis in practice.
Consider the bilinear form on F 3 (with char(F ) ̸= 2) given by the matrix

A =

0 1 1
1 0 1
1 1 0

 .

Following the proof above, we first have to find an element v1 ∈ F 3 such that
v⊤1 Av1 ̸= 0. Since the diagonal entries of A are zero, we cannot take one of
the standard basis vectors. However, the proof of Lemma 8.27 tells us that (for
example) v1 = (1, 1, 0)⊤ will do. So we make a first change of basis to obtain

A′ =

1 1 0
0 1 0
0 0 1

A

1 0 0
1 1 0
0 0 1

 =

2 1 2
1 0 1
2 1 0

 .

Now we have to find a basis for the orthogonal complement L(v1)
⊥. This can be

done by adding suitable multiples of v1 to the other basis elements, in order to
make the off-diagonal entries in the first row and column of the matrix zero. Here
we have to add −1/2 times the first basis vector to the second, and add −1 times
the first basis vector to the third. This gives

A′′ =

 1 0 0
−1

2
1 0

−1 0 1

A′

1 −1
2

−1
0 1 0
0 0 1

 =

2 0 0
0 −1

2
0

0 0 −2

 .

We are lucky: this matrix is already diagonal. (Otherwise, we would have to
continue in the same way with the 2 × 2 matrix in the lower right.) The total
change of basis is indicated by the product of the two change-of-basis matrices
that we have used:

P =

1 0 0
1 1 0
0 0 1

1 −1
2

−1
0 1 0
0 0 1

 =

1 −1
2

−1
1 1

2
−1

0 0 1


so the desired basis is v1 = (1, 1, 0)⊤, v2 = (−1

2
, 1
2
, 0)⊤, v3 = (−1,−1, 1)⊤.
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8.31. Example. Consider the bilinear form ϕ on R3 given by (x, y) 7→ y⊤Ax
with

A =

0 1 0
1 1 1
0 1 1

 .

First we switch the first two basis vectors to get a 1 in the top left. This yields

A′ = P⊤1 AP1 =

1 1 1
1 0 0
1 0 1

 , with P1 =

0 1 0
1 0 0
0 0 1

 .

From the new basis (e2, e1, e3), in order to get generators for e⊥2 , we subtract e2
from the other two to get (e2, e1 − e2, e3 − e2). This corresponds to

A′′ = P⊤2 A
′P2 =

1 0 0
0 −1 −1
0 −1 0

 , with P2 =

1 −1 −1
0 1 0
0 0 1

 .

The middle vector e1 − e2 is not orthogonal to itself, as the corresponding entry
along the diagonal of A′ is nonzero, so we keep it as second vector. In order to
find generators for the orthogonal complement of the subspace spanned by e2 and
e1 − e2, we subtract this middle vector e1 − e2 from the last vector to obtain the
basis (e2, e1 − e2, e3 − e1). This corresponds to

A′′′ = P⊤3 A
′′P3 =

1 0 0
0 −1 0
0 0 1

 , with P3 =

1 0 0
0 1 −1
0 0 1

 .

Setting

P = P1P2P3 =

0 1 −1
1 −1 0
0 0 1

 ,

we find P⊤AP = A′′′. Note that indeed the basis vectors e2, e1−e2, and e3−e1, or
better said, their coefficients with respect to the standard basis, are in the columns
of P .

For algebraically closed fields like C, we get a very nice result.

8.32. Theorem (Classification of Symmetric Bilinear Forms Over C).
Let F be algebraically closed of characteristic different from 2, for example F = C.
Then every symmetric matrix A ∈ Mat(n, F ) is congruent to a matrix(

Ir 0
0 0

)
,

and the rank 0 ≤ r ≤ n is uniquely determined.

Proof. By Theorem 8.28, A is congruent to a diagonal matrix, and we can
assume that all zero diagonal entries come at the end. Let ajj be a non-zero
diagonal entry. Then we can scale the corresponding basis vector by 1/

√
ajj (which

exists in F , since F is algebraically closed); in the new matrix we get, this entry
is then 1.

The uniqueness statement follows from the fact that n− r is the dimension of the
(left or right) kernel of the associated bilinear form. □

If F = R, we have a similar statement. Let us first make a definition.
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8.33. Definition. Let V be a real vector space, ϕ a symmetric bilinear form
on V. Then ϕ is positive definite if

ϕ(v, v) > 0 for all v ∈ V \ {0}.

8.34. Remark. A positive definite symmetric bilinear form ϕ on a finite-
dimensional real vector space is nondegenerate: if v ̸= 0, then ϕ(v, v) > 0, so
ϕ(v, v) ̸= 0. Hence v is not in the (left or right) kernel of ϕ. For example, this
implies that the Hilbert matrix from Example 8.16 is invertible.

8.35. Theorem (Classification of Symmetric Bilinear Forms Over R).
Every symmetric matrix A ∈ Mat(n,R) is congruent to a unique matrix of the
form  Ir 0 0

0 −Is 0
0 0 0

 .

The number r + s is the rank of A or of the corresponding bilinear form, the
number r − s is called the signature of A or of the corresponding bilinear form.

Proof. By Theorem 8.28, the matrix A is congruent to a diagonal matrix, so
there is a basis (v1, . . . , vn) for Rn such that the bilinear form ϕ : (x, y) 7→ y⊤Ax
is represented by a diagonal matrix D with respect to that basis. We can assume
that the diagonal entries are ordered in such a way that we first have positive,
then negative and then zero entries.

If dii is a non-zero diagonal entry of D, we scale the corresponding basis vector by
1/
√
|dii|. Then the new diagonal matrix we get has positive entries 1 and negative

entries −1, so it is of the form given in the statement.

The number r + s is the rank of D, and hence of A, so it is uniquely determined.
We claim that the number r is the maximal dimension of a subspace on which
the bilinear form ϕ is positive definite. Indeed, if we let r′ denote this maximal
dimension, then we have r ≤ r′, as the bilinear form ϕ is positive definite on
the subspace generated by v1, . . . , vr. Moreover, if we have a subspace U ⊂ Rn on
which ϕ is positive definite, then for the subspace V ⊂ Rn generated by vr+1, . . . , vn
we have U ∩ V = {0}, as any nonzero element x ∈ U ∩ V satisfies ϕ(x, x) > 0 as
well as ϕ(x) ≤ 0; so we have dimU ≤ dimRn − dimV = n− (n− r) = r, and we
conclude r′ ≤ r.

Therefore r and s only depend on the bilinear form, so they are uniquely deter-
mined. □

8.36. Example. Let V be again the real vector space of polynomials of degree
≤ 2. Consider the symmetric bilinear form on V given by

ϕ(p, q) =

1∫
0

(2x− 1)p(x)q(x) dx .

What are the rank and signature of ϕ?

We first find the matrix representing ϕ with respect to the standard basis (1, x, x2).

Using
∫ 1

0
(2x− 1)xn dx = 2

n+2
− 1

n+1
= n

(n+1)(n+2)
, we obtain

A =

0 1
6

1
6

1
6

1
6

3
20

1
6

3
20

2
15

 =
1

60

 0 10 10
10 10 9
10 9 8

 .
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The rank of this matrix is 2 (the kernel is generated by 10x2 − 10x+1). We have
that ϕ(x, x) = 1

6
> 0 and ϕ(x− 1, x− 1) = 1

6
− 21

6
+ 0 = −1

6
< 0, so r and s must

both be at least 1. The only possibility is then r = s = 1, so the rank is 2 and
the signature is 0. In fact, we have ϕ(x, x− 1) = 0, so

√
6x ,

√
6(x− 1) , 10x2 − 10x+ 1

is a basis such that the matrix representing ϕ is1 0 0
0 −1 0
0 0 0

 .

8.37. Theorem (Criterion for Positive Definiteness). Let A ∈ Mat(n,R)
be symmetric. Let Aj be the submatrix of A consisting of the upper left j× j block.
Then (the bilinear form given by) A is positive definite if and only if detAj > 0
for all 1 ≤ j ≤ n.

Proof. First observe that if a matrix B represents a positive definite sym-
metric bilinear form, then detB > 0: by Theorem 8.35, there is an invertible
matrix P such that P⊤BP is diagonal with entries 1, −1, or 0, and the bilinear
form is positive definite if and only if all diagonal entries are 1, i.e., P⊤BP = I.
But this implies 1 = det(P⊤BP ) = detB(detP )2, and since (detP )2 > 0, this
implies detB > 0.

Now if A is positive definite, then all Aj are positive definite, since they represent
the restriction of the bilinear form to subspaces. So detAj > 0 for all j.

Conversely, assume that detAj > 0 for all j. We use induction on n. For n = 1
(or n = 0), the statement is clear. For n ≥ 2, we apply the induction hypothesis
to An−1 and obtain that An−1 is positive definite. Then there is an invertible
matrix P ∈ Mat(n− 1,R) such that(

P⊤ 0
0 1

)
A

(
P 0
0 1

)
=

(
I b

b⊤ α

)
=: B ,

with some vector b ∈ Rn−1 and α ∈ R. Setting

Q =

(
I −b
0 1

)
,

we get

Q⊤BQ =

(
I 0
0 β

)
,

and so A is positive definite if and only if β > 0. But we have (note detQ = 1)

β = det(Q⊤BQ) = detB = det(P⊤) detA detP = (detP )2 detA ,

so β > 0, since detA = detAn > 0, and A is positive definite. □

Exercises.

(1) Let V,W,X, Y be vector spaces over a field F , and let b : V ×W → X be
a bilinear map. Show that for each linear map f : X → Y the composition
f ◦ b is bilinear.

(2) Let V,W be vector spaces over a field F . If b : V × V → W is both
bilinear and linear, show that b is the zero map.
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(3) Give an example of two vector spaces V,W over a field F and a bilinear
map b : V × V → W for which the image of b is not a subspace of W .

(4) Let V,W be two 2-dimensional subspaces of the standard R-vector space
R3. The restriction of the standard scalar product R3×R3 → R to R3×W
is a bilinear map b : R3 ×W → R.
(a) What is the left kernel of b? And the right kernel?
(b) Let b′ : V ×W → R be the restriction of b to V ×W . Show that b′

is degenerate if and only if the angle between V and W is 90◦.
[Recall that the angle between two (hyper-)planes is defined as the
angle between their (any) normal vectors.]

(5) Let ϕ : R4 × R3 → R be the bilinear form given by (x, y) 7→ y⊤Ax with

A =

1 2 3 4
2 3 4 5
3 4 5 6

 .

Let f : R4 → R4 be the isomorphism given by

(x1, x2, x3, x4) 7→ (x1, x1 + x2, x1 + x2 + x3, x1 + x2 + x3 + x4).

Let g : R3 → R3 be the isomorphism given by

(x1, x2, x3) 7→ (x1, x1 + x2, x1 + x2 + x3).

Let b : R4 × R3 → R be the map given by b(x, y) = ϕ(f(x), g(y)).
(a) Determine the kernel of ϕL and ϕR.
(b) Show that b is bilinear.
(c) Give the matrix associated to b with respect to the standard bases

for R4 and R3.
(6) Let V be a finite-dimensional vector space over F , and ev : V × V ∗ → F

the bilinear form that sends (v, φ) to φ(v). Let B be a basis for V , and
B∗ its dual basis for V ∗. What is the matrix associated to ev with respect
to the bases B and B∗?

(7) Let V be a vector space over R, and let b : V × V → R be a sym-
metric bilinear map. Let the “quadratic form” associated to b be the
map q : V → R that sends x ∈ V to b(x, x). Show that b is uniquely
determined by q.

(8) Let V be a vector space over R, and let b : V × V → R be a bilinear
map. Show that b can be uniquely written as a sum of a symmetric and
a skew-symmetric bilinear form.

(9) Consider the real matrix

A =

 1 −2 4
−2 −2 −2
4 −2 1

 .

Find an invertible matrix P such that P⊤AP is diagonal.
(10) Consider the real matrix

B =

 1 2 −4
2 3 −3
−4 −3 −9

 .

(a) Show that (−6, 5, 1) is an eigenvector of B.
(b) Is B positive definite?
(c) Find an invertible matrix Q such that Q⊤BQ is diagonal.
(d) What is the signature of B?
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(11) Let V be the 3-dimensional vector space of polynomials of degree at most 2
with coefficients in R. For f, g ∈ V define the bilinear form ϕ : V ×V → R
by

ϕ(f, g) =

1∫
−1

xf(x)g(x)dx.

(a) Is ϕ nondegenerate?
(b) Give a basis for V for which the matrix associated to ϕ is diagonal.
(c) Show that V has a 2-dimensional subspace U for which U ⊂ U⊥.

(12) Let e1, . . . , en be the standard basis for V = Rn, and define a symmetric
bilinear form ϕ on V by ϕ(ei, ej) = 2 for all i, j ∈ {1, . . . , n}. Give the
signature of ϕ and a diagonalizing basis for ϕ.

(13) Suppose V is a vector space over R of finite dimension n with a nonde-
generate bilinear form ϕ : V × V → R, and suppose that U is a subspace
of V with U ⊂ U⊥. Then show that the dimension of U is at most n/2.

(14) For x ∈ R consider the matrix

Ax =

(
x −1

−1 x

)
(a) What is the signature of A1 and A−1?
(b) For which x is Ax positive definite?

(c) For which x is

 x −1 1
−1 x 1
1 1 1

 positive definite?

(15) Let A be the matrix from exercise (14c). Find an invertible matrix P
such that P⊤AP is diagonal.

(16) Let V be a vector space over R, let b : V × V → R be a skew-symmetric
bilinear form, and let x ∈ V be an element that is not in the left kernel
of b.
(a) Show that there exist y ∈ V such that b(x, y) = 1 and a linear

subspace U ⊂ V such that V = ⟨x, y⟩ ⊕ U is an orthogonal direct
sum with respect to b.
Remark. The notation ⟨x, y⟩ denotes the subspace spanned by x
and y, and of course has nothing to do with an inner product.
Hint. Take U = ⟨x, y⟩⊥ = {v ∈ V : b(x, v) = b(y, v) = 0}.

(b) Conclude that if dimV < ∞, then then there exists a basis for V
such that the matrix representing b with respect to this basis is a
block diagonal matrix with blocks B1, . . . , Bl of the form(

0 1
−1 0

)
and zero blocks Bl+1, . . . , Bk.

(17) Let V,W be vector spaces over F . Let ϕ : V ×W → F be a bilinear form.
Show that there is a commutative diagram

V × V ∗

ev

##
V ×W

ϕ
//

(idV ,ϕR)

OO

F

which shows that if ϕ is nondegenerate, and we use ϕR to identify W
with V ∗, then ϕ corresponds to the evaluation pairing.



CHAPTER 9

Inner Product Spaces

In many applications, we want to measure distances and angles in a real vector
space. For this, we need an additional structure, a so-called inner product.

9.1. Definition. Let V be a real vector space. An inner product on V is a
positive definite symmetric bilinear form on V . It is usually written in the form
(x, y) 7→ ⟨x, y⟩ ∈ R. Recall the defining properties:

(1) ⟨λx+ λ′x′, y⟩ = λ⟨x, y⟩+ λ′⟨x′, y⟩;
(2) ⟨y, x⟩ = ⟨x, y⟩;
(3) ⟨x, x⟩ > 0 for x ̸= 0.

A real vector space together with an inner product on it is called a real inner
product space.

Recall that an inner product on V induces an injective homomorphism V → V ∗,
given by sending x ∈ V to the linear form y 7→ ⟨x, y⟩; this homomorphism is
an isomorphism when V is finite-dimensional, in which case the inner product is
nondegenerate.

Frequently, it is necessary to work with complex vector spaces. In order to have
a similar structure there, we cannot use a bilinear form: if we want to have ⟨x, x⟩
to be real and positive, then we would get

⟨ix, ix⟩ = i2⟨x, x⟩ = −⟨x, x⟩ ,
which would be negative. The solution to this problem is to consider Hermit-
ian forms instead of symmetric bilinear forms. The difference is that they are
conjugate-linear in the second argument.

9.2. Definition. Let V be a complex vector space. A sesquilinear form on V
is a map ϕ : V × V → C that is linear in the first and conjugate-linear in the
second argument (“sesqui” means 11

2
):

ϕ(λx+ λ′x′, y) = λϕ(x, y) + λ′ϕ(x′, y) , ϕ(x, λy + λ′y′) = λ̄ϕ(x, y) + λ̄′ϕ(x, y′) .

A Hermitian form on V is a sesquilinear form ϕ on V such that ϕ(y, x) = ϕ(x, y)
for all x, y ∈ V . Note that this implies ϕ(x, x) ∈ R. The Hermitian form ϕ is
positive definite if ϕ(x, x) > 0 for all x ∈ V \{0}. An inner product on the complex
vector space V is a positive definite Hermitian form on V ; in this context, the form
is again usually written as (x, y) 7→ ⟨x, y⟩ ∈ C.
Warning: this means that from now on, the notation ⟨x, y⟩ may refer to other
pairings than the ordinary scalar (dot) product.

For an inner product on V , we have

(1) ⟨λx+ λ′x′, y⟩ = λ⟨x, y⟩+ λ′⟨x′, y⟩;
(2) ⟨y, x⟩ = ⟨x, y⟩;

77
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(3) ⟨x, x⟩ > 0 for x ̸= 0.

A complex vector space together with an inner product on it is called a complex
inner product space or Hermitian inner product space. A real or complex vector
space with an inner product on it is an inner product space.

9.3. Definition. If V is a complex vector space, we denote by V̄ the complex
vector space with the same underlying set and addition as V , but with scalar
multiplication modified by taking the complex conjugate: λ · v = λ̄v, where on
the left, we have scalar multiplication on V̄ , and on the right, we have scalar
multiplication on V . We call V̄ the complex conjugate of V . If V is a real vector
space, then we set V̄ = V .

9.4. Remark. Let V be a complex vector space. Note that any basis for V
is also a basis for V̄ , so we have dimV = dim V̄ . Note that if f : V → W is a
linear map, then it is also linear as a map from V̄ to W̄ . If we denote this (same)
map by f ′ : V̄ → W̄ to distinguish it from f , which has a different vector space
structure on its domain and codomain, and B and C are finite bases for V andW ,

respectively, then we have [f ′]BC = [f ]BC .

We denote by V̄ ∗ = (V̄ )∗ the dual of this complex conjugate space. If V is a
complex inner product space, then the sesquilinear form ϕ : V×V → C corresponds
to a bilinear form V × V̄ → C, and we again get homomorphisms

V −→ V̄ ∗ , x 7−→ (y 7→ ⟨x, y⟩) = ⟨x, ⟩

and

V̄ −→ V ∗ , y 7−→ (x 7→ ⟨x, y⟩) = ⟨ , y⟩ .
These maps are injective because we have ⟨x, x⟩ ̸= 0 for x ̸= 0. When V is finite-
dimensional, this implies that they are isomorphisms, that is, the bilinear form
V × V̄ → C is nondegenerate.

9.5. Remark. Note that the dual V̄ ∗ of V̄ is not the same as V ∗, which is the
dual of V with the modified scalar multiplication. In fact, the map V̄ ∗ → V ∗ that
sends ϕ ∈ V̄ ∗ to the function ϕ̄ that sends x ∈ V to ϕ(x) is a homomorphism.

9.6. Examples. We have seen some examples of real inner product spaces
already: the space Rn together with the usual scalar (dot) product is the standard
example of a finite-dimensional real inner product space. An example of a different
nature, important in analysis, is the space of continuous real-valued functions on
an interval [a, b], with the inner product

⟨f, g⟩ =
b∫

a

f(x)g(x) dx .

For complex inner product spaces, the finite-dimensional standard example is Cn

with the standard (Hermitian) inner product

⟨(z1, . . . , zn), (w1, . . . , wn)⟩ = z1w̄1 + · · ·+ znw̄n ,

so ⟨z, w⟩ = z · w̄ in terms of the usual scalar (dot) product. Note that

⟨z, z⟩ = |z1|2 + · · ·+ |zn|2 ≥ 0 .
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The complex version of the function space example is the space of complex-valued
continuous functions on [a, b], with inner product

⟨f, g⟩ =
b∫

a

f(x)g(x) dx .

9.7. Definition. Let V be an inner product space.

(1) For x ∈ V , we set ∥x∥ =
√
⟨x, x⟩ ≥ 0. The vector x is a unit vector if

∥x∥ = 1.

(2) We say that x, y ∈ V are orthogonal, x ⊥ y, if ⟨x, y⟩ = 0.

(3) A subset S ⊂ V is orthogonal if x ⊥ y for all x, y ∈ S such that x ̸= y.
The set S is an orthonormal set if in addition, ∥x∥ = 1 for all x ∈ S.

(4) A sequence (v1, . . . , vk) of elements in V is orthogonal if vi ⊥ vj for all
1 ≤ i < j ≤ k. The sequence is orthonormal if in addition, ∥vi∥ = 1 for
all 1 ≤ i ≤ k.

(5) An orthonormal basis or ONB of V is a basis of V that is orthonormal.

(6) For any set S ⊂ V , we define S⊥ as

S⊥ = {v ∈ V : v ⊥ s for all s ∈ S }.

Note that being perpendicular is symmetric, that is, we have x ⊥ y if and only if
y ⊥ x. Also note that, as mentioned before, the inner product corresponds to a
bilinear form V × V̄ → F where F is R or C. If U ⊂ V is a subspace, then the
definition of U⊥ above coincides with the one given in Definition 8.20 with respect
to this bilinear form (where we use that V and V̄ are the same on the level of sets,
and we may choose to view U as a subset of either V or V̄ ). In particular, if V is
finite-dimensional, and the inner product is therefore nondegenerate, then we find
from Lemma 8.24 that (U⊥)⊥ = U and dimU + dimU⊥ = dimV .

9.8. Proposition. Let V be a finite-dimensional inner product space, and
U ⊂ V a subspace. Then we have V = U ⊕ U⊥.

Proof. As mentioned just before the proposition, we have dimU +dimU⊥ =
dimV . Since inner products are positive definite, we have U ∩ U⊥ = {0}, so the
dimension theorem for subspaces gives

dimU + dimU⊥ = dim(U + U⊥) + dim(U ∩ U⊥) = dim(U + U⊥).

We conclude dim(U + U⊥) = dimV , so U + U⊥ = V . Because the intersection
U ∩ U⊥ is trivial, we get V = U ⊕ U⊥. □

If we have V = U ⊕ U⊥, so in particular when V is finite-dimensional, then we
call U⊥ the orthogonal complement of U . If V is a real inner product space, then
this coincides with Proposition 8.26 and the sentence below it; if V is a complex
inner product space, then we can not apply Proposition 8.26 directly, as a complex
inner product is not a bilinear form.
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9.9. Proposition. Let V be an inner product space.

(1) For x ∈ V and a scalar λ, we have ∥λx∥ = |λ| · ∥x∥.
(2) (Cauchy-Schwarz inequality) For x, y ∈ V , we have

|⟨x, y⟩| ≤ ∥x∥ · ∥y∥,

with equality if and only if x and y are linearly dependent.

(3) (Triangle inequality) For x, y ∈ V , we have ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Note that these properties imply that ∥·∥ is a norm on V in the sense of Section 7.
In particular,

d(x, y) = ∥x− y∥

defines a metric on V ; we call d(x, y) the distance between x and y. If V = Rn

with the standard inner product, then this is just the usual Euclidean distance.

Proof.

(1) We have

∥λx∥ =
√

⟨λx, λx⟩ =
√
λλ̄⟨x, x⟩ =

√
|λ|2⟨x, x⟩ = |λ|

√
⟨x, x⟩ = |λ| ∥x∥ .

(2) This is clear when y = 0, so assume y ̸= 0. Consider

z = x− ⟨x, y⟩
∥y∥2

y ;

then ⟨z, y⟩ = 0 (in fact z is the projection of x on y⊥). We find that

0 ≤ ⟨z, z⟩ = ⟨z, x⟩ = ⟨x, x⟩ − ⟨x, y⟩
∥y∥2

⟨y, x⟩ = ∥x∥2 − |⟨x, y⟩|2

∥y∥2
,

which implies the inequality. If x = λy, we have equality by the first part
of the proposition. Conversely, if we have equality, we must have z = 0,
hence x = λy (with λ = ⟨x, y⟩/∥y∥2).

(3) We have

∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩
= ∥x∥2 + 2Re⟨x, y⟩+ ∥y∥2 ≤ ∥x∥2 + 2|⟨x, y⟩|+ ∥y∥2

≤ ∥x∥2 + 2∥x∥ ∥y∥+ ∥y∥2 = (∥x∥+ ∥y∥)2 ,

using the Cauchy-Schwarz inequality.

□

Next we show that given any basis for a finite-dimensional inner product space,
we can modify it in order to obtain an orthonormal basis. In particular, every
finite-dimensional inner product space has orthonormal bases.
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9.10. Theorem (Gram-Schmidt Orthonormalization Process). Let V
be an inner product space. Let x1, . . . , xk ∈ V be linearly independent, and define

y1 = x1

y2 = x2 −
⟨x2, y1⟩
⟨y1, y1⟩

y1

y3 = x3 −
⟨x3, y1⟩
⟨y1, y1⟩

y1 −
⟨x3, y2⟩
⟨y2, y2⟩

y2

...

yk = xk −
⟨xk, y1⟩
⟨y1, y1⟩

y1 − · · · − ⟨xk, yk−1⟩
⟨yk−1, yk−1⟩

yk−1 .

Finally, set zi = yi/∥yi∥ for i = 1, . . . , k. Then (z1, . . . , zk) is an orthonormal
basis for L(x1, . . . , xk).

Proof. We first prove by induction on k that (y1, . . . , yk) is an orthogonal
basis for L(x1, . . . , xk). The case k = 1 (or k = 0) is clear — x1 ̸= 0, so it is a
basis for L(x1).

If k ≥ 2, we know by the induction hypothesis that y1, . . . , yk−1 is an orthogonal
basis for L(x1, . . . , xk−1). In particular, y1, . . . , yk−1 are nonzero, so yk is well
defined. Since y1, . . . , yk−1 are pairwise orthogonal, that is, ⟨yi, yj⟩ = 0 for i ̸= j,
we find for 1 ≤ j ≤ k − 1 that

⟨yk, yj⟩ = ⟨xk, yj⟩ −
k−1∑
i=1

⟨xk, yi⟩
⟨yi, yi⟩

· ⟨yi, yj⟩ = ⟨xk, yj⟩ − ⟨xk, yj⟩ = 0.

Hence, in fact y1, . . . , yk are pairwise orthogonal. By construction, we have an
inclusion L(y1, . . . , yk) ⊂ L(x1, . . . , xk). As it is also clear that xk can be expressed
in y1, . . . , yk, the opposite inclusion also holds. In particular, this implies that
L(y1, . . . , yk) has dimension k, so (y1, . . . , yk) is linearly independent and hence an
orthogonal basis for L(x1, . . . , xk).

Since y1, . . . , yk are linearly independent, they are nonzero, so we may indeed
normalise and set zi = yi/∥yi∥ for i = 1, . . . , k. After normalising, we have
∥zi∥ = 1 and ⟨zi, zj⟩ = 0 for i ̸= j. Clearly, we have L(z1, . . . , zk) = L(y1, . . . , yk) =
L(x1, . . . , xk), so (z1, . . . , zk) is an orthonormal basis for L(x1, . . . , xk). □

9.11. Corollary. Every finite-dimensional inner product space has an ONB.

Proof. Apply Theorem 9.10 to a basis for the space. □

9.12. Proposition. Let V be an inner product space.

(1) If (v1, v2, . . . , vk) is an orthogonal sequence of nonzero elements in V , then
v1, . . . , vk are linearly independent.

(2) If S ⊂ V is an orthogonal set of nonzero vectors, then S is linearly
independent.

Proof.
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(1) Let (v1, v2, . . . , vk) be an orthogonal sequence of nonzero elements in V ,
and assume we have a linear combination

k∑
i=1

λivi = 0 .

Now we take the inner product with vj for a fixed j:

0 =
〈 k∑

i=1

λivi, vj

〉
=

k∑
i=1

λi⟨vi, vj⟩ = λj⟨vj, vj⟩ .

Since vj ̸= 0, we have ⟨vj, vj⟩ ̸= 0, therefore we must have λj = 0. Since
this is true for every index 1 ≤ j ≤ k, the linear combination is trivial.

(2) By part (1), every finite subset of S is linearly independent, which makes
the set S linearly independent by definition.

□

9.13. Proposition. Suppose V is an n-dimensional inner product space. Then
for every orthonormal sequence (e1, . . . , ek) of elements in V , there are elements
ek+1, . . . , en ∈ V such that (e1, . . . , en) is an ONB of V.

Proof. By Proposition 9.12, the elements e1, . . . , ek are linearly independent.
Extend e1, . . . , ek to a basis for V in some way and apply Theorem 9.10 to this
basis. This will not change the first k basis elements, since they are already
orthonormal. □

Orthonormal bases are rather nice, as we will see.

9.14. Theorem (Bessel’s Inequality). Let V be an inner product space,
and let (e1, . . . , en) be an orthonormal sequence of elements in V . Then for all
x ∈ V , we have the inequality

n∑
j=1

∣∣⟨x, ej⟩∣∣2 ≤ ∥x∥2 .

Let U = L(e1, . . . , en) be the subspace spanned by e1, . . . , en. Then for x ∈ V , the
following statements are equivalent:

(1) x ∈ U ;

(2)
n∑
j=1

∣∣⟨x, ej⟩∣∣2 = ∥x∥2;

(3) x =
n∑
j=1

⟨x, ej⟩ej;

(4) for all y ∈ V , ⟨x, y⟩ =
n∑
j=1

⟨x, ej⟩⟨ej, y⟩.

In particular, statements (2) to (4) hold for all x ∈ V when (e1, . . . , en) is an ONB
of V .

When (e1, . . . , en) is an ONB, then (4) (and also (2)) is called Parseval’s Identity.
The relation in (3) is sometimes called the Fourier expansion of x relative to the
given ONB.
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Proof. Let z = x−
∑n

j=1⟨x, ej⟩ej. Then for any 1 ≤ k ≤ n we have

⟨z, ek⟩ = ⟨x, ek⟩ −
n∑
j=1

⟨x, ej⟩ · ⟨ej, ek⟩ = ⟨x, ek⟩ − ⟨x, ek⟩ = 0.

This implies ⟨z, z⟩ = ⟨z, x⟩, so we find

0 ≤ ⟨z, z⟩ = ⟨z, x⟩ = ⟨x, x⟩ −
n∑
j=1

⟨x, ej⟩ · ⟨ej, x⟩ = ∥x∥2 −
n∑
j=1

∣∣⟨x, ej⟩∣∣2 .
This implies the inequality and also gives the implication (2) ⇒ (3), as equality in
(2) implies ⟨z, z⟩ = 0, so z = 0. The implication (3) ⇒ (4) is a simple calculation,
and (4) ⇒ (2) follows by taking y = x. (3) ⇒ (1) is trivial. Finally, to show
(1) ⇒ (3), let

x =
n∑
j=1

λjej .

Then

⟨x, ek⟩ =
n∑
j=1

λj⟨ej, ek⟩ = λk ,

which gives the relation in (3). □

Next, we want to discuss linear maps on inner product spaces.

9.15. Theorem. Let V and W be two inner product spaces over the same
field (R or C), and let f : V → W be linear. Then there is at most one map
f ∗ : W → V such that

⟨f(v), w⟩ = ⟨v, f ∗(w)⟩
for all v ∈ V , w ∈ W . If such a map exists, then it is linear. Moreover, if V is
finite-dimensional, then such a map does exist.

Proof. Recall that we have an injective linear map V̄ → V ∗ that sends
x ∈ V̄ to ⟨ , x⟩, and where we use V̄ = V if the base field is R. This injective
map is an isomorphism if V is finite-dimensional. For w ∈ W fixed, the map
V ∋ v 7→ ⟨f(v), w⟩ is a linear form on V, so there is at most one element x ∈ V̄
such that ⟨f(v), w⟩ = ⟨v, x⟩ for all v ∈ V ; if such an element exists, which is
the case if V is finite-dimensional, then we set f ∗(w) = x. Assume that f ∗(w)
is defined for all w ∈ W . Now consider w + w′ for w,w′ ∈ W . We find that
f ∗(w + w′) and f ∗(w) + f ∗(w′) both satisfy the relation, so by uniqueness, f ∗ is
additive. Similary, considering λw for w ∈ W and λ ∈ R or C, we see that f ∗(λw)
and λf ∗(w) must agree. Hence f ∗ is actually a linear map. □

Alternative proof. Let F be the field over which V andW are inner prod-
uct spaces. Let ϕ : V × V̄ → F and ψ : W × W̄ → F be the bilinear forms
that correspond to the inner products on V and W , respectively. Then we have
⟨f(v), w⟩ = ⟨v, f ∗(w)⟩ for all v ∈ V and all w ∈ W if and only if we have
ϕR ◦ f ∗ = f⊤ ◦ ψR, that is, the diagram

(6) W ∗ f⊤ // V ∗

W̄
f∗
//

ψR

OO

V̄

ϕR

OO
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commutes. Note that ϕR is injective, so there is at most one such map f ∗. Also
because of injectivity, and the fact that the composition f⊤ ◦ψR is linear, the map
f ∗ is linear if it exists. If V is finite-dimensional, then ϕR is an isomorphism, so
there is such a map, as we can take f ∗ = ϕ−1R ◦ f⊤ ◦ ψR. □

9.16. Definition. Let V and W be inner product spaces over the same field.

(1) Let f : V → W be linear. If f ∗ exists with the property given in Theo-
rem 9.15 (which is always the case when dimV < ∞), then f ∗ is called
the adjoint of f .

(2) If f : V → V has an adjoint f ∗, and f = f ∗, then f is self-adjoint.

(3) If f : V → V has an adjoint f ∗ and f ◦ f ∗ = f ∗ ◦ f , then f is normal.

(4) A linear map f : V → W is an isometry if it is an isomorphism and
⟨f(v), f(v′)⟩ = ⟨v, v′⟩ for all v, v′ ∈ V.

9.17. Remark. Some books use an alternative definition for isometry. In-
deed, Exercise 23 shows that an isomorphism of inner product spaces is an isome-
try if and only if it preserves lengths. Exercise 25 shows that we do not even need
to require the map to be linear, if we assume it preserves all distances. Exercises 27
and 28 show that it also suffices to require angles to be preserved.

9.18. Examples. If f : V → V is self-adjoint or an isometry, then f is normal.
For the second claim, note that every isometry f : V → W , also between infinite-
dimensional spaces, has an adjoint f ∗ = f−1. (In fact, the converse is true as well:
if an isomorphism f : V → W has an adjoint f ∗ = f−1, then f is an isometry. The
proof of Proposition 9.22 below includes a proof of this statement that does not
rely on finite-dimensionality.)

9.19. Remark. While the property of the adjoint given in Theorem 9.15 may
seem asymmetric, we also have

⟨w, f(v)⟩ = ⟨f(v), w⟩ = ⟨v, f ∗(w)⟩ = ⟨f ∗(w), v⟩
for all v ∈ V and all w ∈ W , which is equivalent with ϕL ◦ f ∗ = f⊤ ◦ ψL.

9.20. Example. Consider the standard inner product on F n and Fm (for
F = R or F = C). Let A ∈ Mat(m×n, F ) be a matrix and let f = fA : F

n → Fm

be the linear map given by multiplication by A. We denote the conjugate transpose
Ā⊤ by A∗. Then for every v ∈ F n and w ∈ Fm, we have

⟨f(v), w⟩ = ⟨Av,w⟩ = (Av)⊤ · w = v⊤ · A⊤ · w = v⊤ · Ā⊤w = ⟨v, A∗w⟩
(where the dot denotes matrix multiplication), so the adjoint f ∗ : Fm → F n of f
is given by multiplication by the matrix A∗.

9.21. Proposition (Properties of the Adjoint). Let V1, V2, V3 be inner
product spaces over the same field, and let f, g : V1 → V2, h : V2 → V3 be linear.
Then the foloowing statements hold.

(1) If f ∗ and g∗ exist, then (f + g)∗ and (λf)∗ exist, and we have (f + g)∗ =
f ∗ + g∗ and (λf)∗ = λ̄f ∗;

(2) If f ∗ and h∗ exist, then (h ◦ f)∗ exists, and we have (h ◦ f)∗ = f ∗ ◦ h∗;
(3) If f ∗ exists, then (f ∗)∗ exists, and we have (f ∗)∗ = f .
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Proof.

(1) For v ∈ V1 and v′ ∈ V2, we have

⟨(f + g)(v), v′⟩ = ⟨f(v), v′⟩+ ⟨g(v), v′⟩
= ⟨v, f ∗(v′)⟩+ ⟨v, g∗(v′)⟩ = ⟨v, (f ∗ + g∗)(v′)⟩

and

⟨(λf)(v), v′⟩ = ⟨λf(v), v′⟩ = λ⟨f(v), v′⟩
= λ⟨v, f ∗(v′)⟩ = ⟨v, λ̄f ∗(v′)⟩ = ⟨v, (λ̄f ∗)(v′)⟩ .

So f ∗+ g∗ and λ̄f ∗ satisfy the the conditions of the adjoints of f + g and
λf , respectively, and the claim follows from the uniqueness of the adjoint.

(2) We argue in a similar way. For v ∈ V1, v
′ ∈ V3,

⟨(h ◦ f)(v), v′⟩ = ⟨h
(
f(v)

)
, v′⟩ = ⟨f(v), h∗(v′)⟩

= ⟨v, f ∗
(
h∗(v′)

)
⟩ = ⟨v, (f ∗ ◦ h∗)(v′)⟩ .

Again, the claim follows from the uniqueness of the adjoint.
(3) For all v ∈ V1, v

′ ∈ V2, we have

⟨f ∗(v′), v⟩ = ⟨v, f ∗(v′)⟩ = ⟨f(v), v′⟩ = ⟨v′, f(v)⟩ ,

so f satisfies the condition of the adjoint of f ∗, so the claim again follows
from the uniqueness of the adjoint.

□

Now we characterize isometries.

9.22. Proposition. Let V and W be inner product spaces of the same finite
dimension over the same field. Let f : V → W be linear. Then the following are
equivalent.

(1) f is an isometry;

(2) f is an isomorphism and f−1 = f ∗;

(3) f ◦ f ∗ = idW ;

(4) f ∗ ◦ f = idV .

Proof. To show (1) ⇒ (2), we observe that for an isometry f and v ∈ V ,
w ∈ W , we have

⟨v, f ∗(w)⟩ = ⟨f(v), w⟩ = ⟨f(v), f
(
f−1(w)

)
⟩ = ⟨v, f−1(w)⟩ ,

which implies f ∗ = f−1. The implications (2) ⇒ (3) and (2) ⇒ (4) are clear.
If (4) or (3) holds, then f is injective or surjective, respectively; hence f is an
isomorphism, and we get (2). Now assume (2), and let v, v′ ∈ V . Then

⟨f(v), f(v′)⟩ = ⟨v, f ∗
(
f(v′)

)
⟩ = ⟨v, v′⟩ ,

so f is an isometry. □
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9.23. Lemma. Let V be a finite-dimensional inner product space over F with
an orthonormal basis B = (v1, . . . , vn). Consider the standard inner product on
F n. Then the isomorphism

φB : F
n → V, (λ1, . . . , λn) 7→ λ1v1 + · · ·+ λnvn

is an isometry.

Proof. We denote the standard inner product on F n by ⟨ , ⟩ as well. Note
that if v, v′ ∈ V have coordinates x = (x1, . . . , xn), x

′ = (x′1, . . . , x
′
n) ∈ F n with

respect to B (so that φB(x) = v and φB(x
′) = v′), then we have xi = ⟨v, vi⟩ and

x′i = ⟨v′, vi⟩ by Theorem 9.14, which therefore also implies

⟨v, v′⟩ = x1x′1 + · · ·+ xnx′n = ⟨x, x′⟩ .
This shows that φB is indeed an isometry. □

Now we relate the notions of adjoint etc. to matrices representing the linear maps
with respect to orthonormal bases.

9.24. Proposition. Let V and W be two inner product spaces over the same
field, let B = (v1, . . . , vn) and C = (w1, . . . , wm) be orthonormal bases of V andW ,
respectively, and let f : V → W be linear. If f is represented by the matrix A
relative to the given bases, then the adjoint map f ∗ is represented by the conjugate
transpose matrix A∗ = Ā⊤ with respect to the same bases, that is

[f ∗]CB = ([f ]BC)
∗.

Note that when we have real inner product spaces, then A∗ = A⊤ is simply the
transpose.

Proof. Let F = R or C be the field of scalars. Let φB : F
n → V and

φC : F
m → W be the usual maps associated to the bases B and C, respectively. By

Lemma 9.23, these two maps are isometries, so we have φ∗B = φ−1B and φ∗C = φ−1C .
By definition, the map φ−1C ◦ f ◦ φB : F n → Fm is given by multiplication by the
matrix A = [f ]BC . By Example 9.20, multiplication by the conjugate transpose A∗

of A gives the adjoint of this map, which equals(
φ−1C ◦ f ◦ φB

)∗
= φ∗B ◦ f ∗ ◦ (φ−1C )∗ = φ−1B ◦ f ∗ ◦ φC .

By definition, this map is also given by multiplication by [f ∗]CB, so we conclude
[f ∗]CB = A∗ = ([f ]BC)

∗. In other words, the matrix Ā⊤ = A∗ represents f ∗. □

Alternative proof. To distinguish between the linear map f ∗ : W → V
and the same map between the associated complex conjugate spaces, we write
f ∗′ : W̄ → V̄ for the latter. Set A′ = [f ∗′]CB. Note that this means f ∗′ ◦ φC =
φB ◦ fA′ , where φB : F

n → V̄ and φC : F
m → W̄ are the usual maps associated

to the bases B for V̄ and C for W̄ , respectively; this means that in terms of the
scalar multiplication on V we have φB

(
(λ1, . . . , λn)

)
= λ̄1v1 + · · · + λ̄nvn, and

similarly for φC . Let B∗ and C∗ be the bases of V ∗ and W ∗ dual to B and C,
respectively. Let ϕ : V × V̄ → F and ψ : W × W̄ → F denote the bilinear forms
associated to the inner products on V and W , respectively. Since ϕR : V̄ → V ∗

and ψR : W̄ → W ∗ send orthonormal bases to their duals (exercise 9.5), we have
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φB∗ = ϕR ◦ φB and φC∗ = ψR ◦ φC . Then the commutative diagram (6) extends
to the following commutative diagram.

W ∗ f⊤ // V ∗

W̄
f∗′

//

ψR

OO

V̄

ϕR

OO

Fm

φC∗

::

fA′
//

φC

OO

F n

φB

OO
φB∗

dd

We conclude A′ = [f⊤]C
∗

B∗ , so from Proposition 6.15 we find A′ = A⊤. From

Remark 9.4 we then conclude [f ∗]CB = [f ∗′]CB = A′ = A⊤ = A∗. □

Warning. If the given bases are not orthonormal, then the statement is wrong
in general.

9.25. Corollary. Let V and W be two inner product spaces over the same
field, let B = (v1, . . . , vn) and C = (w1, . . . , wm) be orthonormal bases of V andW ,
respectively, and let f : V → W be linear. Set A = [f ]BC . We have the following.

(1) The map f is an isometry if and only if A∗ = A−1.

(2) Suppose V = W and B = C. Then f is self-adjoint if and only if A∗ = A.

(3) Suppose V = W and B = C. Then f is normal if and only if A∗A = AA∗.

Proof. Exercise. □

9.26. Definition. A matrix A ∈ Mat(n,R) is

(1) symmetric if A⊤ = A;

(2) normal if AA⊤ = A⊤A;

(3) orthogonal if AA⊤ = In.

A matrix A ∈ Mat(n,C) is

(1) Hermitian if A∗ = A;

(2) normal if AA∗ = A∗A;

(3) unitary if AA∗ = In.

These properties correspond to the properties “self-adjoint”, “normal”, “isometry”
of the linear map given by A on the standard inner product space Rn or Cn.
Correspondingly, isometries of real inner product spaces are also called orthogonal
maps, and isometries of complex inner product spaces are also called unitary
maps.

9.27. Example. Lemma 9.23 was used to prove Proposition 9.24, and we can
recover Lemma 9.23 from Proposition 9.24. Indeed, suppose V is an n-dimensional
inner product space over F with F = R or F = C, and let B = (v1, . . . , vn) be an
orthonormal basis. Let E denote the standard (orthonormal) basis for F n. Let
φB : F

n → V be the map that sends (λ1, . . . , λn) to
∑

i λivi. Then the associated
matrix A = [φB]

E
B is the identity, which is unitary, so φB is an isometry.
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9.28. Example. Suppose V is an n-dimensional inner product space over F
with F = R or F = C, and let B and B′ be two orthonormal bases for V . Then
the base change matrix P = [idV ]

B′
B is unitary, because the identity map is an

isometry.

9.29. Theorem. Let f : V → W be a linear map of finite-dimensional inner
product spaces. Then we have

im(f ∗) =
(
ker(f)

)⊥
and ker(f ∗) =

(
im(f)

)⊥
.

Proof. Let F be the field over which V and W are inner product spaces. Let
ϕ : V ×V̄ → F and ψ : W×W̄ → F be the bilinear forms that correspond to the in-
ner products on V and W , respectively. Because V and W are finite-dimensional,
the maps ϕR and ψR in the commutative diagram (6) are isomorphisms. Hence,
they restrict to isomorphisms im f ∗ → im f⊤ and ker f ∗ → ker f⊤, respectively.
By Remark 8.21, they also restrict to isomorphisms (ker f)⊥ → (ker f)◦ and
(im f)⊥ → (im f)◦, respectively. Hence, the claimed identities follow after ap-
plying ϕ−1R and ψ−1R to the identities of Theorem 6.29, respectively. □

Alternative proof. We first show the inclusion im(f ∗) ⊂
(
ker(f)

)⊥
. So

let z ∈ im(f ∗), say z = f ∗(y). Let x ∈ ker(f), then

⟨x, z⟩ = ⟨x, f ∗(y)⟩ = ⟨f(x), y⟩ = ⟨0, y⟩ = 0 ,

so z ∈
(
ker(f)

)⊥
. This inclusion implies

(7) dim im f ∗ ≤ dim(ker f)⊥ = dimV − dimker f = dim im f.

The analogous inequality for f ∗ instead of f is

dim im(f ∗)∗ ≤ dim im f ∗.

From the equality (f ∗)∗ = f (see Proposition 9.21) we conclude

dim im f ≤ dim im f ∗.

Combining this inequality with (7) shows that all inequalities are equalities, so

im(f ∗) =
(
ker(f)

)⊥
. Applying this to f ∗ instead of f yields im(f) =

(
ker(f ∗)

)⊥
,

which is equivalent to the second identity claimed in the theorem. □

Exercises.

(1) Let V be the vector space of continuous complex-valued functions defined

on the interval [0, 1], with the inner product ⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx. Show

that the set {x 7→ e2πikx : k ∈ Z} ⊂ V is orthonormal. Is it a basis for V ?
(2) Give an orthonormal basis for the 2-dimensional complex subspace V3 of

the standard inner product space C3 given by the equation x1−ix2+ix3 =
0.

(3) For the real vector space V of polynomial functions [−1, 1] → R with
inner product given by

⟨f, g⟩ =
1∫

−1

f(x)g(x)dx,

apply the Gram-Schmidt procedure to the elements 1, x, x2, x3.
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(4) For the real vector space V of continuous functions [−π, π] → R with
inner product given by

⟨f, g⟩ = 1

π

π∫
−π

f(x)g(x)dx

show that the functions

1/
√
2, sinx, cosx, sin 2x, cos 2x, . . .

form an orthonormal set. [Note: for any function f the inner products
with this list of functions is the sequence of Fourier coefficients of f .]

(5) Let F be R or C, and let V be a finite-dimensional inner product space
over F . Let ϕ : V × V̄ → F be the bilinear form corresponding to the
inner product, and let ϕL : V → V̄ ∗ and ϕR : V̄ → V ∗ be the usual induced
linear maps. Show that ϕL and ϕR send every orthonormal basis to its
dual basis.

(6) Let A be an orthogonal n × n matrix with entries in R. Show that
detA = ±1. If A is an orthogonal 2 × 2 matrix with entries in R and

detA = 1, show that A is a rotation matrix

(
cos θ − sin θ
sin θ cos θ

)
for

some θ ∈ R.
(7) For which values of α ∈ C is the matrix

(
α 1

2
1
2

α

)
unitary?

(8) Show that the matrix of a normal transformation of a 2-dimensional real
inner product space with respect to an orthonormal basis has one of the
forms (

α β
−β α

)
or

(
α β
β δ

)
.

(9) Let V be the vector space of infinitely differentiable functions f : R → C
satisfying f(x + 2) = f(x) for all x ∈ R. Consider the inner product on

V given by ⟨p, q⟩ =
∫ 1

−1 p(x)q(x)dx. Show that the operator D : p 7→ p′′

is self-adjoint.
(10) TRUE or FALSE? Give a proof or counterexample.

(a) For any two real symmetric n×n matrices, the product is symmetric.
(b) For any two real normal n× n matrices, the product is normal.
(c) For any two real orthogonal n×nmatrices, the product is orthogonal.

(11) Let n be a positive integer. Show that there exists an orthogonal anti-
symmetric n× n-matrix with real coefficients if and only if n is even.

(12) Let V ⊂ R3 be a plane through the origin. Let π : R3 → R3 be the
projection onto V .
(a) Show that R3 has an orthonormal basis B of eigenvectors for π.
(b) Show that for such a basis B, the associated matrix [π]BB is diagonal.
(c) Show that the matrix [π]EE, where E is the standard basis for R3, is

symmetric.
(13) Consider Rn with the standard inner product, and let V ⊂ Rn be a

subspace. Let A be the n × n-matrix of orthogonal projection on V .
Show that A is symmetric.

(14) Give an alternative proof of Proposition 9.21 that follows the ideas of the
alternative proof of Theorem 9.15. (Hint: For (3), use Remark 9.19, the
identity ϕL = ϕ⊤R ◦ αV and its equivalent for W , and Proposition 6.17.)
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(15) Let V be an inner product space and U ⊂ V a finite-dimensional subspace.
Let the inclusion map be denoted by ι : U ↪→ V . Show that we have
ker ι∗ = U⊥.

(16) Suppose

U
f−→ V

g−→ W

is an exact sequence of linear maps between finite-dimensional inner prod-
uct spaces. Show that there is an induced exact sequence

W
g∗−→ V

f∗−→ U .

(17) Check for all finite-dimensional inner product spaces in the results and
exercises of this chapter whether the assumption of finite-dimensionality
can be left out (possibly by replacing it by the assumption that certain
adjoint maps exist). If so, give a proof of the stronger statement. If not,
give a counterexample.

(18) Let V be a real inner product space, and f : V → V an endomorphism.
Define the map

ϕ : V × V → R, (x, y) 7→ ⟨f(x), y⟩.
(a) Show that ϕ is a bilinear map.
(b) Show that if V is finite-dimensional, then every bilinear map is of

this form.
(c) Show that ϕ is symmetric if and only if f is self-adjoint.

(19) Let V be a complex inner product space, and f : V → V an endomor-
phism. Define the map

ϕ : V × V → C, (x, y) 7→ ⟨f(x), y⟩.
(a) Show that ϕ is a sesquilinear map.
(b) Show that if V is finite-dimensional, then every sesquilinear map is

of this form.
(c) Show that ϕ is a Hermitian form if and only if f is self-adjoint.

(20) Let V1, V2,W1, and W2 be vector spaces, and let ϕ : V1 × V2 → F and
ψ : W1 ×W2 → F be two nondegenerate bilinear forms.
(a) Show that for every linear map f : V1 → W1 there is a unique map

f † : W2 → V2 such that for all x ∈ V1 and all y ∈ W2 we have

ϕ(x, f †(y)) = ψ(f(x), y).

(b) Show that we have

im f † = (ker f)⊥ and ker f † = (im f)⊥.

(21) Show that an endomorphism f of an inner product space V is normal if
and only if f has an adjoint f ∗ and for all v, v′ ∈ V we have

⟨f(v), f(v′)⟩ = ⟨f ∗(v), f ∗(v′)⟩.
(22) Let f1 : V → W1 and f2 : V → W2 be two linear maps of inner product

spaces over the same field. Show that the following two conditions are
equivalent.
(i) For all v ∈ V we have ∥f1(v)∥ = ∥f2(v)∥.
(ii) For all v, v′ ∈ V we have ⟨f1(v), f1(v′)⟩ = ⟨f2(v), f2(v′)⟩.

(23) Let f : V → W be a linear map of inner product spaces over the same
field.
(a) Show that f is an isometry if and only if f is an isomorphism and

for all v ∈ V we have ∥f(v)∥ = ∥v∥.
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(b) Suppose V and W have the same finite dimension. Show that f is
an isometry if and only if for all v ∈ V we have ∥f(v)∥ = ∥v∥.

(24) Let f1 : V → W1 and f2 : V → W2 be two linear maps of inner product
spaces over the same field. Suppose that the two equivalent conditions of
Exercise 22 hold.
(a) Show that f1 and f2 have the same kernel.
(b) Show that there exists a unique isometry g : im f1 → im f2 such that

f2 = g ◦ f1.
(25) Let f1 : V → W1 and f2 : V → W2 be any two maps of real inner product

spaces that satisfy f1(0) = 0 and f2(0) = 0. Show that the following two
conditions are equivalent.
(i) For all v, v′ ∈ V we have ∥f1(v)− f1(v

′)∥ = ∥f2(v)− f2(v
′)∥.

(ii) For all v, v′ ∈ V we have ⟨f1(v), f1(v′)⟩ = ⟨f2(v), f2(v′)⟩.
(26) Let f : V → W be any map of real inner product spaces of the same finite

dimension that satisfies f(0) = 0. Show that f is an isometry if and only
if for all v, v′ ∈ V we have ∥f(v)− f(v′)∥ = ∥v − v′∥.

(27) The Cauchy-Schwarz inequality allows us to define the angle between any
two nonzero vectors x and y in the same real inner product space as the
unique real number α ∈ [0, π] for which we have

cosα =
⟨x, y⟩

∥x∥ · ∥y∥
.

We denote this angle by ∠(x, y). Suppose that V and W are real inner
product spaces, and f : V → W is an isomorphism that preserves angles
at 0, that is, for all x, y ∈ V we have

∠
(
f(x), f(y)

)
= ∠(x, y).

Show that f is the composition of an isometry with the multiplication by
a scalar.

(28) Suppose that V and W are real inner product spaces of dimension at
least 2, and f : V → W is a bijection that preserves general angles, that
is, for all x, y, z ∈ V we have

∠
(
f(x)− f(z), f(y)− f(z)

)
= ∠(x− z, y − z).

Show that f is the composition of a translation, the multiplication by a
scalar, and an isometry.





CHAPTER 10

Orthogonal Diagonalization

In this section, we discuss the following question. Let V be an inner product space
and f : V → V an endomorphism. When is it true that f has an orthonormal
basis of eigenvectors (so can be orthogonally diagonalized or is orthodiagonalizable
— nice word!)?

After a few general lemmas, we will first consider the case of complex inner product
spaces, for which, as we will see, f has an orthonormal basis of eigenvectors if and
only if f is normal.

10.1. Lemma. Let V be a finite-dimensional inner product space and let f :
V → V be an endomorphism. If f is orthodiagonalizable, then f is normal.

Proof. If f is orthodiagonalizable, then there exists an orthonormal basis
(e1, . . . , en) of V such that f is represented by a diagonal matrix D with respect
to this basis. Now D is normal, hence so is f , by Corollary 9.25. □

The proof of the other direction is a little bit more involved. We begin with the
following partial result.

10.2. Lemma. Let V be an inner product space, and let f : V → V be
normal.

(1) For all v ∈ V we have ∥f ∗(v)∥ = ∥f(v)∥.
(2) If f(v) = λv for some v ∈ V , then f ∗(v) = λ̄v.

(3) If f(v) = λv and f(w) = µw with λ ̸= µ, then v ⊥ w (i.e., ⟨v, w⟩ = 0).

Proof. For the first statement, note that

∥f ∗(v)∥2 = ⟨f ∗(v), f ∗(v)⟩ = ⟨f
(
f ∗(v)

)
, v⟩

= ⟨f ∗
(
f(v)

)
, v⟩ = ⟨f(v), f(v)⟩ = ∥f(v)∥2 .

For the second statement, note that

⟨f ∗(v), f ∗(v)⟩ = ⟨f(v), f(v)⟩ = |λ|2⟨v, v⟩
⟨λ̄v, f ∗(v)⟩ = λ̄⟨f(v), v⟩ = λ̄⟨λv, v⟩ = |λ|2⟨v, v⟩
⟨f ∗(v), λ̄v⟩ = λ⟨v, f(v)⟩ = λ⟨v, λv⟩ = |λ|2⟨v, v⟩

⟨λ̄v, λ̄v⟩ = |λ|2⟨v, v⟩
and so

⟨f ∗(v)− λ̄v, f ∗(v)− λ̄v⟩ = ⟨f ∗(v), f ∗(v)⟩−⟨λ̄v, f ∗(v)⟩−⟨f ∗(v), λ̄v⟩+ ⟨λ̄v, λ̄v⟩ = 0 .

This implies f ∗(v)− λ̄v = 0, so f ∗(v) = λ̄v.

For the last statement, we compute

λ⟨v, w⟩ = ⟨f(v), w⟩ = ⟨v, f ∗(w)⟩ = ⟨v, µ̄w⟩ = µ⟨v, w⟩ .
Since λ ̸= µ by assumption, we must have ⟨v, w⟩ = 0. □
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10.3. Corollary. A normal endomorphism of an inner product space is or-
thodiagonalizable if and only if it is diagonalizable.

Proof. Suppose f is a normal endomorphism of an inner product space V that
is diagonalizable. Then the concatenation of any bases for the eigenspaces yields
a basis for V . Lemma 10.2 shows that if we take the bases of the eigenspaces to
be orthonormal, which we can do by applying Gram-Schmidt orthonormalization
(Theorem 9.10) to any basis, then the concatenation is orthonormal as well, so
f has an orthonormal basis of eigenvectors, and is therefore orthodiagonalizable.
The converse is obvious. □

In Lemma 10.7 we will see that any normal endomorphism of a finite-dimensional
complex inner product space is indeed diagonalizable. We first state some results
that will help us prove that lemma.

10.4. Remark. Let V be an inner product space over F , and let f : V → V
be normal. Let λ ∈ F be an element. From Lemma 10.2(2), it follows that
the eigenspace Eλ(f) is contained in the eigenspace Eλ̄(f

∗). Applying the same
argument to f ∗, and using f ∗∗ = f (see Proposition 9.21), we also find the opposite
inclusion, and we conclude Eλ(f) = Eλ̄(f

∗). In particular, for λ = 0, we obtain
ker f = ker f ∗.

10.5. Lemma. Let V be an inner product space over the field F = R or C,
let f : V → V be normal, and let p ∈ F [X] be a polynomial. Then p(f) is also
normal.

Proof. Let p(x) = amx
m + · · ·+ a0. Then by Prop. 9.21,

p(f)∗ = (amf
m + · · ·+ a1f + a0 idV )

∗ = ām(f
∗)m + · · ·+ ā1f

∗ + ā0 idV = p̄(f ∗) ,

where p̄ is the polynomial whose coefficients are the complex conjugates of those
of p. (If F = R, then p(f)∗ = p(f ∗).) Now p(f) and p(f)∗ = p̄(f ∗) commute since
f and f ∗ do, hence p(f) is normal. □

10.6. Lemma. Let V be a finite-dimensional inner product space, and let
f : V → V be normal. Then V = ker(f)⊕ im(f) is an orthogonal direct sum.

Proof. Let v ∈ ker(f) and w ∈ im(f). We have f(v) = 0, so f ∗(v) = 0 by
Lemma 10.2, and w = f(u) for some u ∈ V . Then

⟨v, w⟩ = ⟨v, f(u)⟩ = ⟨f ∗(v), u⟩ = ⟨0, u⟩ = 0 ,

so v ⊥ w. In particular, we have ker f ∩ im f = {0}, because the inner product is
positive definite. From dimker(f) + dim im(f) = dimV , we conclude

dim(ker(f) + im(f)) = dimker(f) + dim im(f)− dim(ker f ∩ im f) = dimV,

so ker(f) + im(f) = V , which finishes the proof. □

Alternative proof. Take U = im f . From Proposition 9.8, we know that
V = U ⊕ U⊥ is an orthogonal direct sum. From Theorem 9.29 and Remark 10.4,
we find U⊥ = (im f)⊥ = ker f ∗ = ker f . □
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10.7. Lemma. Let V be a finite-dimensional complex inner product space,and
let f : V → V be normal. Then f is diagonalizable.

Proof. We will show that the minimal polynomial of f does not have multiple
roots. So assume the contrary, namely that

Mf (x) = (x− α)2g(x)

for some α ∈ C and some polynomial g. We know that f − α idV is normal. Let
v ∈ V and consider w = (f − α idV )

(
g(f)(v)

)
. Obviously w ∈ im(f − α idV ),

but also (f − α idV )(w) = Mf (f)(v) = 0, so w ∈ ker(f − α idV ). By the previous
lemma, w = 0. Hence, f is already annihilated by the polynomial (x− α)g(x) of
degree smaller than Mf (x), a contradiction. □

Alternative proof. We proceed by induction on dimV . The base case
dimV = 1 (or = 0) is trivial. So assume dimV ≥ 2. Then f has at least one
eigenvector v, say with eigenvalue λ. Let U = ker(f−λ idV ) ̸= 0 be the eigenspace
and W = im(f − λ idV ). We know that V = U ⊕W is an orthogonal direct sum
by Lemma 10.6. Because f commutes with f − λ idV , we have that f(U) ⊂ U
and f(W ) ⊂ W , so f is the direct sum of its restrictions to U and W . Then
by uniqueness, f ∗ is also the direct sum of the adjoints of these restrictions, so
normality of f implies normality of its restrictions. In particular, f |W : W → W
is again a normal map. By the induction hypothesis, f |W is diagonalizable. Since
f |U = λ idU is trivially diagonalizable, f is diagonalizable. (The same proof would
also prove directly that f is orthodiagonalizable.) □

So we have now proved the following statement, which is often referred to as the
Spectral Theorem (though this may also refer to some other related theorems).

10.8. Theorem. Let V be a finite-dimensional complex inner product space,
and let f : V → V be a linear map. Then V has an orthonormal basis of eigen-
vectors for f if and only if f is normal.

Proof. Indeed, Lemma 10.1 states the “only if”-part. For the converse, as-
sume f is normal. Then f is diagonalizable by Lemma 10.7, and hence orthodi-
agonalizable by Corollary 10.3. □

This nice result leaves one question open: what is the situation for real inner
product spaces? The key to this is the following observation.

10.9. Proposition. Let V be a finite-dimensional complex inner product space,
and let f : V → V be a linear map. Then f is normal with all eigenvalues real if
and only if f is self-adjoint.

Proof. We know that a self-adjoint map is normal. So assume now that f is
normal. Then there is an ONB of eigenvectors, and with respect to this basis, f
is represented by a diagonal matrix D, so we have D∗ = D̄⊤ = D̄. Obviously, we
have that f is self-adjoint if and only if D = D∗, which reduces to D = D̄, which
happens if and only if all entries of D (i.e., the eigenvalues of f) are real. □

This implies the following.
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10.10. Theorem. Let V be a finite-dimensional real inner product space, and
let f : V → V be linear. Then V has an orthonormal basis of eigenvectors for f
if and only if f is self-adjoint.

Proof. If f has an ONB of eigenvectors, then its matrix with respect to this
basis is diagonal and so symmetric, hence f is self-adjoint.

For the converse, set n = dimV , choose any orthonormal basis B for V and
suppose that f is self-adjoint. Then the associated real matrix A = [f ]BB satisfies
A∗ = A by Corollary 9.25. Hence, the associated map fA : Cn → Cn is self-
adjoint with respect to the standard Hermitian inner product (see Example 9.6).
Therefore, the matrix A, viewed over C, is normal and has all its eigenvalues
(over C) real by Proposition 10.9. The fact that A is normal over C implies
that A is diagonalizable over C by Theorem 10.8. By Proposition 3.9 this means
that the minimal polynomial MA/C of A as a matrix over C is the product of
distinct linear factors, which has the real eigenvalues as roots, and is therefore a
polynomial with real coefficients satisfying MA/C(A) = 0. This implies that the
minimal polynomial MA/R of A as a matrix over R is a factor of MA/C, which
means that MA/R is also the product of distinct linear factors over R. (In fact,
we have MA/R = MA/C; if not, then some real factor p of MA/C of smaller degree
would satisfy p(A) = 0, and since p is also a polynomial over C, this contradicts
the minimality of MA/C among complex polynomials that vanish on A.) Applying
Proposition 3.9 again shows that A, and thus f , is also diagonalizable over R. By
Corollary 10.3 we conclude that f is also orthodiagonalizable over R. □

In terms of matrices, this reads as follows.

10.11. Theorem. Let A be a square matrix with real entries. Then A is
orthogonally similar to a diagonal matrix (i.e., there is an orthogonal matrix P
such that P−1AP is a diagonal matrix) if and only if A is symmetric. In this
case, we can choose P to be orientation-preserving, i.e., to have detP = 1 (and
not −1).

Proof. The first statement follows from the previous theorem. To see that we
can take P with detP = 1, assume that we already have an orthogonal matrix Q
such that Q−1AQ = D is diagonal, but with detQ = −1. The diagonal matrix T
with diagional entries (−1, 1, . . . , 1) is orthogonal and detT = −1, so P = QT is
also orthogonal, and detP = 1. Furthermore,

P−1AP = T−1Q−1AQT = TDT = D ,

so P has the required properties. □

10.12. Remark. For an orthogonal matrix P , we have P−1 = P⊤, so we
could have also written P⊤AP in Theorem 10.11. If we want just any matrix
P for which P⊤AP is diagonal, and we do not need P to be orthogonal, then it
is often easier to apply Theorem 8.28, especially when the eigenvalues of A are
difficult to compute.
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10.13. Remark. Note that we have two notions of diagonalisation, one for
linear maps as in Linear Algebra I, and one for symmetric bilinear forms as in
Theorem 8.28. Theorem 10.11 can be interpreted in both contexts. Indeed, sup-
pose B and B′ are two bases for a finite-dimensional vector space V over a field
F , and set P = [idV ]

B′
B . If f : V → V is an endomorphism of V , and M = [f ]BB

and M ′ = [f ]B
′

B′ are the two matrices associated to f with respect to the bases B
and B′, respectively, then we have M ′ = P−1MP , so M ′ and M are similar.
If ϕ : V × V → F is a bilinear form on V , and A is the matrix that represents ϕ
with respect to the basis B, while A′ is the matrix that represents ϕ with respect
to the basis B′, then by Proposition 8.15 we have A′ = P⊤AP , so A′ and A are
congruent.
To diagonalise the linear map f or the bilinear form ϕ, respectively, means to find
a basis B′ for which M ′ or A′, respectively, is a diagonal matrix. If we already
know an initial basis B, with the corresponding associated matrix M or A, re-
spectively, then this goal is equivalent to finding an invertible matrix P , for which
P−1MP or P⊤AP , respectively, is diagonal.
If V is a finite-dimensional real inner product space, and B and B′ are to be
orthonormal bases, then for P = [idV ]

B′
B we have P⊤ = P−1 by Example 9.28.

Therefore, Theorem 10.11, which as a consequence of Theorem 10.10 was proved
in the context of linear maps, can be reinterpreted in terms of bilinear forms: if ϕ
is a symmetric bilinear form on V (not necessarily the one giving the inner prod-
uct!), then there is an orthonormal basis B (with respect to the inner product) for
V that diagonalises ϕ, that is, such that the matrix that represents ϕ with respect
to B is diagonal. See Exercise 7.

Theorem 10.11 has a geometric interpretation. If A is a symmetric 2× 2-matrix,
then the equation

(8) v⊤Av = 1

in terms of v = (x, y) ∈ R2 defines a conic section in the plane. Our theorem
implies that there is a rotation P such that P−1AP is diagonal. This means that
in a suitably rotated coordinate system, our conic section has an equation of the
form

a x2 + b y2 = 1 ,

where a and b are the eigenvalues of A. We can use their signs to classify the
geometric shape of the conic section (ellipse, hyperbola, empty, degenerate).

The directions given by the eigenvectors of A are called the principal axes of the
conic section (or of A), and the coordinate change given by P is called the principal
axes transformation. Similar statements are true for higher-dimensional quadrics
given by equation (8) when A is a larger symmetric matrix.

10.14. Example. Let us consider the conic section given by the equation

5x2 + 4xy + 2 y2 = 1 .

The matrix is

A =

(
5 2
2 2

)
.

We have to find its eigenvalues and eigenvectors. The characteristic polynomial
is (X − 5)(X − 2) − 4 = X2 − 7X + 6 = (X − 1)(X − 6), so we have the two
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eigenvalues 1 and 6. This already tells us that we have an ellipse. To find the
eigenvectors, we have to determine the kernels of A− I and A− 6I. We get

A− I =

(
4 2
2 1

)
and A− 6I =

(
−1 2
2 −4

)
,

so the eigenvectors are multiples of (1,−2) and of (2, 1). To get an orthonormal
basis, we have to scale them appropriately; we also need to check whether we
have to change the sign of one of them in order to get an orthogonal matrix with
determinant 1. Here, we obtain

P =

(
1√
5

2√
5

− 2√
5

1√
5

)
and P−1AP =

(
1 0
0 6

)
.

To sketch the ellipse, note that the principal axes are in the directions of the
eigenvectors and that the ellipse meets the first axis (in the direction of (1,−2))
at a distance of 1 from the origin and the second axis (in the direction of (2, 1))
at a distance of 1/

√
6 from the origin.

x

y

0 1

1

1

6
1

The ellipse 5x2 + 4xy + 2 y2 = 1.
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10.15. Example. Consider the symmetric matrix

A =

 5 −2 4
−2 8 2
4 2 5

 .

We will determine an orthogonal matrix Q and a diagonal matrix D such that
A = QDQ⊤. The characteristic polynomial of A is the determinant of

tI − A =

t− 5 2 −4
2 t− 8 −2
−4 −2 t− 5

 ,

which is easily determined to be PA(t) = t(t−9)2, so we have eigenvalues 0 and 9.
The eigenspace for eigenvalue λ = 0 is the kernel kerA. From a row echelon
form for A, which we will leave out here, we find that this kernel is generated by
(2, 1,−2). Normalising gives the unit vector v1 =

1
3
(2, 1,−2), which forms a basis

for the eigenspace for λ = 0. The eigenspace for eigenvalue λ = 9 is the kernel of

A− 9I =

−4 −2 4
−2 −1 2
4 2 −4

 .

A row echelon form for this matrix is2 1 −2
0 0 0
0 0 0

 ,

from which we find that this eigenspace is generated by w1 = (1, 0, 1) and w2 =
(1,−2, 0). Within this eigenspace we apply Gram-Schmidt orthonormalisation to
find an orthonormal basis for the eigenspace. We find w1 and

w2 −
⟨w2, w1⟩
⟨w1, w1⟩

w1 = w2 − 1
2
w1 =

1
2
(1,−4,−1).

After normalising this yields v2 =
1√
2
(1, 0, 1) and v3 =

1
3
√
2
(1,−4,−1).

Our new basis becomes B = (v1, v2, v3). By Lemma 10.2, the two eigenspaces are
orthogonal to each other, so B is an orthonormal basis of eigenvectors. Hence, the
matrix Q = [id]BE is orthogonal, that is, Q−1 = Q⊤. For the diagonal matrix

D = [fA]
B
B =

0 0 0
0 9 0
0 0 9


we find

A = [fA]
E
E = [id]BE · [fA]BB · [id]EB = QDQ−1 = QDQ⊤.

The matrix Q = [id]BE has the basis vectors of B as columns, so we have

Q =

 2
3

1√
2

1
3
√
2

1
3

0 −2
3

√
2

−2
3

1√
2

− 1
3
√
2

 .
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Exercises.

(1) Suppose that A is a real symmetric 2 × 2 matrix of determinant 2 for

which

(
1
−2

)
is an eigenvector with eigenvalue −1.

(a) What is the other eigenvalue of A?
(b) What is the other eigenspace?
(c) Determine A.

(2) Consider the quadratic form q(x, y) = 11x2 − 16xy − y2.
(a) Find a real symmetric matrix A for which

q(x, y) = (x y) · A ·
(
x
y

)
.

(b) Find real numbers a, b and an orthogonal map f : R2 → R2 so that
q(f(u, v)) = au2 + bv2 for all u, v ∈ R.

(c) What values does q(x, y) assume on the unit circle x2 + y2 = 1?
(3) What values does the quadratic form q(x, y, z) = 2xy+2xz+y2−2yz+z2

assume when (x, y, z) ranges over the unit sphere x2 + y2 + z2 = 1 in R3?
(4) Suppose that A is an anti-symmetric n×n matrix over the real numbers.

(a) Show that every eigenvalue of A over the complex numbers lies in
iR.

(b) If n is odd, show that 0 is an eigenvalue of A.
(5) Let V be an inner product space and let f : V → V be an endomorphism.

Suppose that V has an orthonormal basis of eigenvectors for f . Show that
f has an adjoint and that f is normal (see Lemma 10.1).

(6) Let A be a symmetric matrix over R. Show that its signature is equal to
the number of positive eigenvalues minus the number of negative eigen-
values.

(7) Let V be a finite-dimensional real inner product space, and ϕ : V ×V → R
a symmetric bilinear form on V . Use Exercise 9.18 and Theorem 10.10 to
show that there exists an orthonormal basis B for V that diagonalises ϕ,
that is, such that the matrix that represents ϕ with respect to B is diag-
onal.

(8) Does Lemma 10.6 remain true if we leave out the hypothesis that V is
finite-dimensional?



CHAPTER 11

External Direct Sums

Earlier in this course, we have discussed direct sums of linear subspaces of a vector
space. In this section, we discuss a way to contruct a vector space out of a given
family of vector spaces in such a way that the given spaces can be identified with
linear subspaces of the new space, which becomes their direct sum.

11.1. Definition. Let F be a field, and let (Vi)i∈I be a family of F -vector
spaces. The (external) direct sum of the spaces Vi is the vector space

V =
⊕
i∈I

Vi =
{
(vi) ∈

∏
i∈I

Vi : vi = 0 for all but finitely many i ∈ I
}
.

Addition and scalar multiplication in V are defined component-wise.

If I is finite, say I = {1, 2, . . . , n}, then we also write

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn ;

as a set, it is just the cartesian product V1 × · · · × Vn.

11.2. Proposition. Let (Vi)i∈I be a family of F -vector spaces, and

V =
⊕
i∈I

Vi

their direct sum.

(1) There are injective linear maps ιj : Vj → V given by

ιj(vj) = (0, . . . , 0, vj, 0, . . . ) with vj in the jth position

such that with Ṽj = ιj(Vj), we have V =
⊕

j∈I Ṽj as a direct sum of
subspaces.

(2) If Bj is a basis for Vj, then B =
⋃
j∈I ιj(Bj) is a basis for V.

(3) If W is another F -vector space, and ϕj : Vj → W are linear maps, then
there is a unique linear map ϕ : V → W such that ϕj = ϕ ◦ ιj for all
j ∈ I.

Proof.

(1) This is clear from the definitions, compare 2.2.

(2) This is again clear from 2.2.

(3) A linear map is uniquely determined by its values on a basis. Let B be a
basis as in (2). The only way to get ϕj = ϕ◦ιj is to define ϕ(ιj(b)) = ϕj(b)
for all b ∈ Bj; this gives a unique linear map ϕ : V → W .

□

Statement (3) above is called the universal property of the direct sum. It is essen-
tially the only thing we have to know about

⊕
i∈I Vi; the explicit construction is

not really relevant (except to show that such an object exists).
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CHAPTER 12

The Tensor Product

As direct sums allow us to “add” vector spaces in a way (which corresponds to
“adding” their bases by taking the disjoint union), the tensor product allows us to
“multiply” vector spaces (“multiplying” their bases by taking a cartesian product).
The main purpose of the tensor product is to “linearize” multilinear maps.

You may have heard of “tensors”. They are used in physics (there is, for example,
the “stress tensor” or the “moment of inertia tensor”) and also in differential
geometry (the “curvature tensor” or the “metric tensor”). Basically a tensor is
an element of a tensor product (of vector spaces), like a vector is an element of
a vector space. You have seen special cases of tensors already. To start with, a
scalar (element of the base field F ) or a vector or a linear form are trivial examples
of tensors. More interesting examples are given by linear maps, endomorphisms,
bilinear forms and multilinear maps in general.

The vector space of m×n matrices over F can be identified in a natural way with
the tensor product (F n)∗⊗Fm. This identification corresponds to the interpreta-
tion of matrices as linear maps from F n to Fm. The vector space ofm×n matrices
over F can also identified in a (different) natural way with (Fm)∗ ⊗ (F n)∗; this
corresponds to the interpretation of matrices as bilinear forms on Fm × F n.

In these examples, we see that (for example), the set of all bilinear forms has the
structure of a vector space. The tensor product generalizes this. Given two vector
spaces V1 and V2, it produces a new vector space V1 ⊗ V2 such that we have a
natural identification

Bil(V1 × V2,W ) ∼= Hom(V1 ⊗ V2,W )

for all vector spaces W . Here Bil(V1 × V2,W ) denotes the vector space of bilinear
maps from V1 × V2 to W . The following definition states the property we want
more precisely.

12.1. Definition. Let V1 and V2 be two vector spaces. A tensor product of
V1 and V2 is a vector space V , together with a bilinear map ϕ : V1 × V2 → V ,
satisfying the following “universal property”:

For every vector space W and bilinear map ψ : V1 × V2 → W , there is a unique
linear map f : V → W such that ψ = f ◦ ϕ.

V1 × V2
ϕ

//

ψ $$

V

f~~

W

In other words, the canonical linear map

Hom(V,W ) −→ Bil(V1 × V2,W ) , f 7−→ f ◦ ϕ

is an isomorphism.
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It is easy to see that there can be at most one tensor product in a very specific
sense.

12.2. Lemma. Any two tensor products (V, ϕ), (V ′, ϕ′) are uniquely isomor-
phic in the following sense: There is a unique isomorphism ι : V → V ′ such that
ϕ′ = ι ◦ ϕ.

V

ι

��

V1 × V2

ϕ
::

ϕ′ ##
V ′

Proof. Since ϕ′ : V1×V2 → V ′ is a bilinear map, there is a unique linear map
ι : V → V ′ making the diagram above commute. For the same reason, there is a
unique linear map ι′ : V ′ → V such that ϕ = ι′ ◦ ϕ′. Now ι′ ◦ ι : V → V is a linear
map satisfying (ι′ ◦ ι) ◦ ϕ = ϕ, and idV is another such map. But by the universal
property, there is a unique such map, hence ι′ ◦ ι = idV . In the same way, we see
that ι ◦ ι′ = idV ′ , therefore ι is an isomorphism. □

Because of this uniqueness, it is allowable to simply speak of “the” tensor product
of V1 and V2 (provided it exists! — but see below). The tensor product is denoted
V1 ⊗ V2, and the bilinear map ϕ is written (v1, v2) 7→ v1 ⊗ v2.

It remains to show existence of the tensor product.

12.3. Proposition. Let V1 and V2 be two vector spaces; choose bases B1 of V1
and B2 of V2. Let V be the vector space with basis B = B1 × B2, and define a
bilinear map ϕ : V1 × V2 → V via ϕ(b1, b2) = (b1, b2) ∈ B for b1 ∈ B1, b2 ∈ B2.
Then (V, ϕ) is a tensor product of V1 and V2.

Proof. Let ψ : V1 × V2 → W be a bilinear map. We have to show that there
is a unique linear map f : V → W such that ψ = f ◦ ϕ. Now if this relation is to
be satisfied, we need to have f((b1, b2)) = f(ϕ(b1, b2)) = ψ(b1, b2). This fixes the
values of f on the basis B, hence there can be at most one such linear map. It
remains to show that the linear map thus defined satisfies f(ϕ(v1, v2)) = ψ(v1, v2)
for all v1 ∈ V1, v2 ∈ V2. But this is clear since ψ and f ◦ ϕ are two bilinear maps
that agree on pairs of basis elements. □

12.4. Remark. This existence proof does not use that the bases are finite
and so also works for infinite-dimensional vector spaces (given the fact that every
vector space has a basis).

There is also a different construction that does not require the choice of bases. The
price one has to pay is that one first needs to construct a gigantically huge space V
(with basis V1×V2), which one then divides by another huge space (incorporating
all relations needed to make the map V1 × V2 → V bilinear) to end up with the
relatively small space V1 ⊗ V2. This is a kind of “brute force” approach, but it
works.

Note that by the uniqueness lemma above, we always get “the same” tensor prod-
uct, no matter which bases we choose.
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12.5. Elements of V1⊗V2. What do the elements of V1⊗V2 look like? Some
of them are values of the bilinear map ϕ : V1 × V2 → V1 ⊗ V2, so are of the form
v1 ⊗ v2. But these are not all! However, elements of this form span V1 ⊗ V2, and
since

λ(v1 ⊗ v2) = (λv1)⊗ v2 = v1 ⊗ (λv2)

(this comes from the bilinearity of ϕ), every element of V1 ⊗ V2 can be written as
a (finite) sum of elements of the form v1 ⊗ v2.

The following result gives a more precise formulation that is sometimes useful.

12.6. Lemma. Let V and W be two vector spaces, and let w1, . . . , wn be a
basis for W. Then every element of V ⊗W can be written uniquely in the form

n∑
i=1

vi ⊗ wi = v1 ⊗ w1 + · · ·+ vn ⊗ wn

with v1, . . . , vn ∈ V.

Proof. Let x ∈ V ⊗W ; then by the discussion above, we can write

x = y1 ⊗ z1 + · · ·+ ym ⊗ zm

for some y1, . . . , ym ∈ V and z1, . . . , zm ∈ W. Since w1, . . . , wn is a basis for W, we
can write

zj = αj1w1 + · · ·+ αjnwn

with scalars αjk. Using the bilinearity of the map (y, z) 7→ y ⊗ z, we find that

x = y1 ⊗ (α11w1 + · · ·+ α1nwn) + · · ·+ ym ⊗ (αm1w1 + · · ·+ αmnwn)

= (α11y1 + · · ·+ αm1ym)⊗ w1 + · · ·+ (α1ny1 + · · ·+ αmnym)⊗ wn ,

which is of the required form.

For uniqueness, it suffices to show that

v1 ⊗ w1 + · · ·+ vn ⊗ wn = 0 =⇒ v1 = · · · = vn = 0 .

Assume that vj ̸= 0. There is a bilinear form ψ on V ×W such that ψ(vj, wj) = 1
and ψ(v, wi) = 0 for all v ∈ V and i ̸= j. By the universal property of the tensor
product, there is a linear form f on V ⊗W such that f(v⊗w) = ψ(v, w). Applying
f to both sides of the equation, we find that

0 = f(0) = f(v1 ⊗ w1 + · · ·+ vn ⊗ wn) = ψ(v1, w1) + · · ·+ ψ(vn, wn) = 1 ,

a contradiction. □

In this context, one can think of V ⊗W as being “the vector space W with scalars
replaced by elements of V .” This point of view will be useful when we want to
enlarge the base field, e.g., in order to turn a real vector space into a complex
vector space of the same dimension.
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12.7. Basic Properties of the Tensor Product. Recall the axioms satis-
fied by a commutative “semiring” like the natural numbers:

a+ (b+ c) = (a+ b) + c

a+ b = b+ a

a+ 0 = a

a · (b · c) = (a · b) · c
a · b = b · a
a · 1 = a

a · (b+ c) = a · b+ a · c

(The name “semi”ring refers to the fact that we do not require the existence of
additive inverses.)

All of these properties have their analogues for vector spaces, replacing addition
by direct sum, zero by the zero space, multiplication by tensor product, one by
the one-dimensional space F , and equality by natural isomorphism:

U ⊕ (V ⊕W ) ∼= (U ⊕ V )⊕W

U ⊕ V ∼= V ⊕ U

U ⊕ 0 ∼= U

U ⊗ (V ⊗W ) ∼= (U ⊗ V )⊗W

U ⊗ V ∼= V ⊗ U

U ⊗ F ∼= U

U ⊗ (V ⊕W ) ∼= U ⊗ V ⊕ U ⊗W

There is a kind of “commutative diagram”:

(Finite Sets,∐,×,∼=)
B 7→ #B

//

B 7→ FB
++

(N,+, ·,=)

(Finite-dim. Vector Spaces,⊕,⊗,∼=)

dim

44

Let us prove some of the properties listed above.

Proof. We show that U ⊗ V ∼= V ⊗ U . We have to exhibit an isomorphism,
or equivalently, linear maps going both ways that are inverses of each other. By
the universal property, a linear map from U ⊗ V into any other vector space W
is “the same” as a bilinear map from U × V into W . So we get a linear map
f : U⊗V → V ⊗U from the bilinear map U×V → V ⊗U that sends (u, v) to v⊗u.
So we have f(u⊗ v) = v ⊗ u. Similarly, there is a linear map g : V ⊗ U → U ⊗ V
that satisfies g(v ⊗ u) = u ⊗ v. Since f and g are visibly inverses of each other,
they are isomorphisms. □

Before we go on to the next statement, let us make a note of the principle we have
used.

12.8. Note. To give a linear map f : U ⊗ V → W, it is enough to specify
f(u ⊗ v) for u ∈ U , v ∈ V . The map U × V → W , (u, v) 7→ f(u ⊗ v) must be
bilinear.
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Proof. We now show that U⊗(V ⊗W ) ∼= (U⊗V )⊗W . First fix u ∈ U . Then
by the principle above, there is a linear map fu : V ⊗W → (U⊗V )⊗W such that
fu(v⊗w) = (u⊗v)⊗w. Now the map U×(V ⊗W ) → (U⊗V )⊗W that sends (u, x)
to fu(x) is bilinear (check!), so we get a linear map f : U⊗(V ⊗W ) → (U⊗V )⊗W
such that f(u⊗ (v ⊗ w)) = (u⊗ v)⊗ w. Similarly, there is a linear map g in the
other direction such that g((u⊗ v)⊗w) = u⊗ (v⊗w). Since f and g are inverses
of each other (this needs only be checked on elements of the form u⊗ (v ⊗ w) or
(u⊗ v)⊗ w, since these span the spaces), they are isomorphisms. □

We leave the remaining two statements involving tensor products for the exercises.

Now let us look into the interplay of tensor products with linear maps.

12.9. Definition. Let f : V → W and f ′ : V ′ → W ′ be linear maps. Then
V × V ′ → W ⊗W ′, (v, v′) 7→ f(v) ⊗ f ′(v′) is bilinear and therefore corresponds
to a linear map V ⊗ V ′ → W ⊗W ′, which we denote by f ⊗ f ′. I.e., we have

(f ⊗ f ′)(v ⊗ v′) = f(v)⊗ f ′(v′) .

12.10. Lemma. idV ⊗ idW = idV⊗W .

Proof. Obvious (check equality on elements v ⊗ w). □

12.11. Lemma. Let U
f−→ V

g−→ W and U ′
f ′−→ V ′

g′−→ W ′ be linear maps.
Then

(g ⊗ g′) ◦ (f ⊗ f ′) = (g ◦ f)⊗ (g′ ◦ f ′) .

Proof. Easy — check equality on u⊗ u′. □

12.12. Lemma. Hom(U,Hom(V,W )) ∼= Hom(U ⊗ V,W ).

Proof. Let f ∈ Hom(U,Hom(V,W )) and define f̃(u ⊗ v) =
(
f(u)

)
(v) (note

that f(u) ∈ Hom(V,W ) is a linear map from V to W ). Since
(
f(u)

)
(v) is bilinear

in u and v, this defines a linear map f̃ ∈ Hom(U ⊗ V,W ). Conversely, given
φ ∈ Hom(U ⊗ V,W ), define φ̂(u) ∈ Hom(V,W ) by

(
φ̂(u)

)
(v) = φ(u ⊗ v). Then

φ̂ is a linear map from U to Hom(V,W ), and the two linear(!) maps f 7→ f̃ and
φ 7→ φ̂ are inverses of each other. □

In the special case W = F , the statement of the lemma reads

Hom(U, V ∗) ∼= Hom(U ⊗ V, F ) = (U ⊗ V )∗ .

The following result is important, as it allows us to replace Hom spaces by tensor
products (at least when the vector spaces involved are finite-dimensional).
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12.13. Proposition. Let V and W be two vector spaces. There is a natural
linear map

ϕ : V ∗ ⊗W −→ Hom(V,W ) , l ⊗ w 7−→
(
v 7→ l(v)w

)
,

which is an isomorphism when V or W is finite-dimensional.

Proof. We will give the proof here for the case that W is finite-dimensional,
and leave the case “V finite-dimensional” for the exercises.

First we should check that ϕ is a well-defined linear map. By the general principle
on maps from tensor products, we only need to check that (l, w) 7→

(
v 7→ l(v)w

)
is bilinear. Linearity in w is clear; linearity in l follows from the definition of the
vector space structure on V ∗:

(α1l1 + α2l2, w) 7−→
(
v 7→ (α1l1 + α2l2)(v)w = α1l1(v)w + α2l2(v)w

)
To show that ϕ is bijective when W is finite-dimensional, we choose a basis
w1, . . . , wn of W . Let w∗1, . . . , w

∗
n be the basis for W ∗ dual to w1, . . . , wn. De-

fine a map

ϕ′ : Hom(V,W ) −→ V ∗ ⊗W , f 7−→
n∑
i=1

(w∗i ◦ f)⊗ wi .

It is easy to see that ϕ′ is linear. Let us check that ϕ and ϕ′ are inverses. Recall
that for all w ∈ W , we have

w =
n∑
i=1

w∗i (w)wi .

Now,

ϕ′
(
ϕ(l ⊗ w)

)
=

n∑
i=1

(
w∗i ◦ (v 7→ l(v)w)

)
⊗ wi

=
n∑
i=1

(v 7→ l(v)w∗i (w))⊗ wi =
n∑
i=1

w∗i (w)l ⊗ wi

= l ⊗
n∑
i=1

w∗i (w)wi = l ⊗ w .

On the other hand,

ϕ
(
ϕ′(f)

)
= ϕ

( n∑
i=1

(w∗i ◦ f)⊗ wi

)
=

n∑
i=1

(
v 7→ w∗i

(
f(v)

)
wi

)
=
(
v 7→

n∑
i=1

w∗i (f(v))wi

)
=
(
v 7→ f(v)

)
= f .

□

Now assume that V = W is finite-dimensional. Then by the above,

Hom(V, V ) ∼= V ∗ ⊗ V

in a natural way. But Hom(V, V ) contains a special element, namely idV . What
is the element of V ∗ ⊗ V that corresponds to it?
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12.14. Remark. Let v1, . . . , vn be a basis for V, and let v∗1, . . . , v
∗
n be the basis

for V ∗ dual to it. Then, with ϕ the canonical map from above, we have

ϕ
( n∑
i=1

v∗i ⊗ vi

)
= idV .

Proof. Apply ϕ′ as defined above to idV . □

On the other hand, there is a natural bilinear form on V ∗×V , given by evaluation:
(l, v) 7→ l(v). This gives the following.

12.15. Lemma. Let V be a finite-dimensional vector space. There is a linear
form T : V ∗ ⊗ V → F given by T (l ⊗ v) = l(v). It makes the following diagram
commutative.

V ∗ ⊗ V
ϕ

//

T
##

Hom(V, V )

Tr
yy

F

Proof. That T is well-defined is clear by the usual principle. (The vector
space structure on V ∗ is defined in order to make evaluation bilinear!) We have to
check that the diagram commutes. Fix a basis v1, . . . , vn, with dual basis v∗1, . . . , v

∗
n,

and let f ∈ Hom(V, V ). Then ϕ−1(f) =
∑

i(v
∗
i ◦ f) ⊗ vi, hence T (ϕ

−1(f)) =∑
i v
∗
i (f(vi)). The terms in the sum are exactly the diagonal entries of the matrix A

representing f with respect to v1, . . . , vn, so T (ϕ
−1(f)) = Tr(A) = Tr(f). □

The preceding operation is called “contraction”. More generally, it leads to linear
maps

U1 ⊗ · · · ⊗ Um ⊗ V ∗ ⊗ V ⊗W1 ⊗ · · · ⊗Wn −→ U1 ⊗ · · · ⊗ Um ⊗W1 · · · ⊗Wn .

This in turn is used to define “inner multiplication”

(U1 ⊗ · · · ⊗ Um ⊗ V ∗)× (V ⊗W1 ⊗ · · · ⊗Wn) −→ U1 ⊗ · · · ⊗ Um ⊗W1 · · · ⊗Wn

(by first going to the tensor product). The roles of V and V ∗ can also be reversed.
This is opposed to “outer multiplication”, which is just the canonical bilinear map

(U1 ⊗ · · · ⊗ Um)× (W1 ⊗ · · · ⊗Wn) −→ U1 ⊗ · · · ⊗ Um ⊗W1 · · · ⊗Wn .

An important example of inner multiplication is composition of linear maps.

12.16. Lemma. Let U, V,W be vector spaces. Then the following diagram
commutes.

(l⊗v,l′⊗w)
_

��

(U∗ ⊗ V )× (V ∗ ⊗W )

��

ϕ×ϕ
// Hom(U, V )× Hom(V,W )

��

(f,g)
_

��
l′(v) l⊗w U∗ ⊗W

ϕ
// Hom(U,W ) g◦f

Proof. We have

ϕ(l′ ⊗ w) ◦ ϕ(l ⊗ v) =
(
v′ 7→ l′(v′)w

)
◦
(
u 7→ l(u)v

)
=
(
u 7→ l′

(
l(u)v

)
w = l′(v)l(u)w

)
= ϕ

(
l′(v)l ⊗ w

)
.

□
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12.17. Remark. Identifying Hom(Fm, F n) with the space Mat(n×m,F ) of
n×m-matrices over F , we see that matrix multiplication is a special case of inner
multiplication of tensors.

12.18. Remark. Another example of inner multiplication is given by evalu-
ation of linear maps: the following diagram commutes.

(l ⊗ w, v)
_

��

(V ∗ ⊗W )× V
ϕ×idV//

��

Hom(V,W )× V

��

(f, v)
_

��

l(v)w W W f(v)

Complexification of Vector Spaces. Now let us turn to another use of the
tensor product. There are situations when one has a real vector space, which
one would like to turn into a complex vector space with “the same” basis. For
example, suppose that VR is a real vector space and WC is a complex vector space
(writing the field as a subscript to make it clear what scalars we are considering),
thenW can also be considered as a real vector space (just by restricting the scalar
multiplication to R ⊂ C). We write WR for this space. Note that dimRWR =
2dimCWC — if b1, . . . , bn is a C-basis for W , then b1, ib1, . . . , bn, ibn is an R-basis.
Now we can consider an R-linear map f : VR → WR. Can we construct a C-vector
space ṼC out of V in such a way that f extends to a C-linear map f̃ : ṼC → WC?
(Of course, for this to make sense, VR has to sit in ṼR as a subspace.)

It turns out that we can use the tensor product to do this.

12.19. Lemma and Definition. Let V be a real vector space. The real vector
space Ṽ = C⊗R V can be given the structure of a complex vector space by defining
scalar multiplication as follows.

λ(α⊗ v) = (λα)⊗ v

V is embedded into Ṽ as a real subspace via ι : v 7→ 1⊗ v.

This C-vector space Ṽ is called the complexification of V .

Proof. We first have to check that the equation above leads to a well-defined
R-bilinear map C× Ṽ → Ṽ . But this map is just

C× (C⊗R V ) −→ C⊗R (C⊗R V ) ∼= (C⊗R C)⊗R V
m⊗idV−→ C⊗R V ,

where m : C⊗RC → C is induced from multiplication on C (which is certainly an
R-bilinear map). Since the map is in particular linear in the second argument, we
also have the “distributive laws”

λ(x+ y) = λx+ λy , (λ+ µ)x = λx+ µx

for λ, µ ∈ C, x, y ∈ Ṽ . The “associative law”

λ(µx) = (λµ)x

(for λ, µ ∈ C, x ∈ Ṽ ) then needs only to be checked for x = α ⊗ v, in which case
we have

λ(µ(α⊗ v)) = λ((µα)⊗ v) = (λµα)⊗ v = (λµ)(α⊗ v) .

The last statement is clear. □
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If we apply the representation of elements in a tensor product given in Lemma 12.6
to Ṽ , we obtain the following.

Suppose V has a basis v1, . . . , vn. Then every element of Ṽ can be written uniquely
in the form

α1 ⊗ v1 + · · ·+ αn ⊗ vn for some α1, . . . , αn ∈ C.

In this sense, we can consider Ṽ to have “the same” basis as V, but we allow
complex coordinates instead of real ones.

On the other hand, we can consider the basis 1, i of C as a real vector space, then
we see that every element of Ṽ can be written uniquely as

1⊗ v + i⊗ v′ = ι(v) + i · ι(v′) for some v, v′ ∈ V .

In this sense, elements of Ṽ have a real and an imaginary part, which live in V
(identifying V with its image under ι in Ṽ ).

12.20. Proposition. Let V be a real vector space and W a complex vector
space. Then for every R-linear map f : VR → WR, there is a unique C-linear map
f̃ : ṼC → WC such that f̃ ◦ ι = f (where ι : VR → ṼR is the map defined above).

Ṽ

f̃

��

V

ι

>>

f   

W

Proof. The map C×V → W , (α, v) 7→ αf(v) is R-bilinear. By the universal
property of the tensor product Ṽ = C ⊗R V , there is a unique R-linear map
f̃ : Ṽ → W such that f̃(α⊗ v) = αf(v). Then we have

f̃(ι(v)) = f̃(1⊗ v) = f(v) .

We have to check that f̃ is in fact C-linear. It is certainly additive (being R-linear),
and for λ ∈ C, α⊗ v ∈ Ṽ ,

f̃(λ(α⊗ v)) = f̃((λα)⊗ v) = λαf(v) = λf̃(α⊗ v) .

Since any C-linear map f̃ having the required property must be R-linear and
satisfy

f̃(α⊗ v) = f̃(α(1⊗ v)) = αf̃(1⊗ v) = αf(v) ,

and since there is only one such map, f̃ is uniquely determined. □

12.21. Remark. The proposition can be stated in the form that

HomR(V,W )
∼=−→ HomC(Ṽ ,W ) , f 7−→ f̃ ,

is an isomorphism. (The inverse is F 7→ F ◦ ι.)

We also get that R-linear maps between R-vector spaces give rise to C-linear maps
between their complexifications.
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12.22. Lemma. Let f : V → W be an R-linear map between two R-vector
spaces. Then idC ⊗f : Ṽ → W̃ is C-linear, extends f , and is the only such map.

Proof. Consider the following diagram.

V
f
//

ιV
��

F

  

W

ιW
��

Ṽ
F̃

// W̃

Here, F = ιW ◦ f is an R-linear map from V into the C-vector space W̃ , hence
there is a unique C-linear map F̃ : Ṽ → W̃ such that the diagram is commutative.
We only have to verify that F̃ = idC⊗f . But
(idC ⊗f)(α⊗ v) = α⊗ f(v) = α(1⊗ f(v)) = α(ιW ◦ f)(v) = αF (v) = F̃ (α⊗ v) .

□



CHAPTER 13

Symmetric and Alternating Products

Note. The material in this section is not required for the final exam.

Now we want to generalize the tensor product construction (in a sense) in order
to obtain similar results for symmetric and skew-symmetric (or alternating) bi-
and multilinear maps.

13.1. Reminder. Let V and W be vector spaces. A bilinear map f : V ×
V → W is called symmetric if f(v, v′) = f(v′, v) for all v, v′ ∈ V . f is called
alternating if f(v, v) = 0 for all v ∈ V ; this implies that f is skew-symmetric, i.e.,
f(v, v′) = −f(v′, v) for all v, v′ ∈ V . The converse is true if the field of scalars is
not of characteristic 2.

Let us generalize these notions to multilinear maps.

13.2. Definition. Let V and W be vector spaces, and let f : V n → W be a
multilinear map.

(1) f is called symmetric if

f(vσ(1), vσ(2), . . . , vσ(n)) = f(v1, v2, . . . , vn)

for all v1, . . . , vn ∈ V and all σ ∈ Sn.

The symmetric multilinear maps form a linear subspace of the space of
all multilinear maps V n → W , denoted Sym(V n,W ).

(2) f is called alternating if

f(v1, v2, . . . , vn) = 0

for all v1, . . . , vn ∈ V such that vi = vj for some 1 ≤ i < j ≤ n.

The alternating multilinear maps form a linear subspace of the space of
all multilinear maps V n → W , denoted Alt(V n,W ).

13.3. Remark. Since transpositions generate the symmetric group Sn, we
have the following.

(1) f is symmetric if and only if it is a symmetric bilinear map in all pairs of
variables, the other variables being fixed.

(2) f is alternating if and only if it is an alternating bilinear map in all pairs
of variables, the other variables being fixed.

(3) Assume that the field of scalars has characteristic ̸= 2. Then f is alter-
nating if and only if

f(vσ(1), vσ(2), . . . , vσ(n)) = ε(σ)f(v1, v2, . . . , vn)

for all v1, . . . , vn ∈ V and all σ ∈ Sn, where ε(σ) is the sign of the
permutation σ.

113
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13.4. Example. We know from earlier that the determinant can be inter-
preted as an alternating multilinear map V n → F , where V is an n-dimensional
vector space — consider the n vectors in V as the n columns in a matrix. More-
over, we had seen that up to scaling, the determinant is the only such map. This
means that

Alt(V n, F ) = F det .

13.5. We have seen that we can express multilinear maps as elements of suit-
able tensor products: Assuming V and W to be finite-dimensional, a multilinear
map f : V n → W lives in

Hom(V ⊗n,W ) ∼= (V ∗)⊗n ⊗W .

Fixing a basis v1, . . . , vm of V and its dual basis v∗1, . . . , v
∗
n, any element of this

tensor product can be written uniquely in the form

f =
m∑

i1,...,in=1

v∗i1 ⊗ · · · ⊗ v∗in ⊗ wi1,...,in

with suitable wi1...in ∈ W . How can we read off whether f is symmetric or alter-
nating?

13.6. Definition. Let x ∈ V ⊗n.

(1) x is called symmetric if sσ(x) = x for all σ ∈ Sn, where sσ : V ⊗n → V ⊗n

is the automorphism given by

sσ(v1 ⊗ v2 ⊗ · · · ⊗ vn) = vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n) .

We will write Sym(V ⊗n) for the subspace of symmetric tensors.

(2) x is called skew-symmetric if sσ(x) = ε(σ)x for all σ ∈ Sn.
We will write Alt(V ⊗n) for the subspace of skew-symmetric tensors.

13.7. Proposition. Let f : V n → W be a multilinear map, identified with its
image in (V ∗)⊗n ⊗W . The following statements are equivalent.

(1) f is a symmetric multilinear map.

(2) f ∈ (V ∗)⊗n ⊗W lies in the subspace Sym((V ∗)⊗n)⊗W .

(3) Fixing a basis as above in 13.5, in the representation of f as given there,
we have

wiσ(1),...,iσ(n)
= wi1,...,in

for all σ ∈ Sn.

Note that in the case W = F and n = 2, the equivalence of (1) and (3) is just the
well-known fact that symmetric matrices encode symmetric bilinear forms.

Proof. Looking at (3), we have that wi1,...,in = f(vi1 , . . . , vin). So symmetry
of f (statement (1)) certainly implies (3). Assuming (3), we see that f is a linear
combination of terms of the form(∑

σ∈Sn

vdiσ(1) ⊗ · · · ⊗ vdiσ(n)

)
⊗ w

(with w = wi1,...,in), all of which are in the indicated subspace Sym((V ∗)⊗n)⊗W
of (V ∗)⊗n ⊗ W , proving (2). Finally, assuming (2), we can assume f = x ⊗ w
with x ∈ Sym((V ∗)⊗n) and w ∈ W . For y ∈ V ⊗n and z ∈ (V ∗)⊗n ∼= (V ⊗n)∗,
we have (sσ(z))(sσ(y)) = z(y). Since sσ(x) = x, we get x(sσ(y)) = x(y) for all
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σ ∈ Sn, which implies that f(sσ(y)) = x(sσ(y)) ⊗ w = x(y) ⊗ w = f(y). So f is
symmetric. □

13.8. Proposition. Let f : V n → W be a multilinear map, identified with its
image in (V ∗)⊗n ⊗W . The following statements are equivalent.

(1) f is an alternating multilinear map.

(2) f ∈ (V ∗)⊗n ⊗W lies in the subspace Alt((V ∗)⊗n)⊗W .

(3) Fixing a basis as above in 13.5, in the representation of f as given there,
we have

wiσ(1),...,iσ(n)
= ε(σ)wi1,...,in

for all σ ∈ Sn.

The proof is similar to the preceding one.

The equivalence of (2) and (3) in the propositions above, in the special caseW = F
and replacing V ∗ by V , gives the following. (We assume that F is of characteristic
zero, i.e., that Q ⊂ F .)

13.9. Proposition. Let V be anm-dimensional vector space with basis v1, . . . , vm.

(1) The elements ∑
σ∈Sn

viσ(1)
⊗ · · · ⊗ viσ(n)

for 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ m form a basis for Sym(V ⊗n). In particular,

dimSym(V ⊗n) =

(
m+ n− 1

n

)
.

(2) The elements ∑
σ∈Sn

ε(σ)viσ(1)
⊗ · · · ⊗ viσ(n)

for 1 ≤ i1 < i2 < · · · < in ≤ m form a basis for Alt(V ⊗n). In particular,

dimAlt(V ⊗n) =

(
m

n

)
.

Proof. It is clear that the given elements span the spaces. They are linearly
independent since no two of them involve the same basis elements of V ⊗n. (In the
alternating case, note that the element given above vanishes if two of the ij are
equal.) □

The upshot of this is that (taking W = F for simplicity) we have identified

Sym(V n, F ) = Sym((V ∗)⊗n) ⊂ (V ∗)⊗n = (V ⊗n)∗

and
Alt(V n, F ) = Alt((V ∗)⊗n) ⊂ (V ∗)⊗n = (V ⊗n)∗

as subspaces of (V ⊗n)∗. But what we would like to have are spaces Symn(V ) and
Altn(V ) such that we get identifications

Sym(V n, F ) = Hom(Symn(V ), F ) = (Symn(V ))∗

and
Alt(V n, F ) = Hom(Altn(V ), F ) = (Altn(V ))∗ .
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Now there is a general principle that says that subspaces are “dual” to quotient
spaces: If W is a subspace of V , then W ∗ is a quotient space of V ∗ in a natural
way, and ifW is a quotient of V , thenW ∗ is a subspace of V ∗ in a natural way. So
in order to translate the subspace Sym(V n, F ) (or Alt(V n, F )) of the dual space
of V ⊗n into the dual space of something, we should look for a suitable quotient
of V ⊗n!

13.10. Definition. Let V be a vector space, n > 0 an integer.

(1) Let W ⊂ V ⊗n be the subspace spanned by all elements of the form

v1 ⊗ v2 ⊗ · · · ⊗ vn − vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n)

for v1, v2, . . . , vn ∈ V and σ ∈ Sn. Then the quotient space

Symn(V ) = Sn(V ) = V ⊗n/W

is called the nth symmetric tensor power of V . The image of v1 ⊗ v2 ⊗
· · · ⊗ vn in Sn(V ) is denoted v1 · v2 · · · vn.

(2) Let W ⊂ V ⊗n be the subspace spanned by all elements of the form

v1 ⊗ v2 ⊗ · · · ⊗ vn

for v1, v2, . . . , vn ∈ V such that vi = vj for some 1 ≤ i < j ≤ n. Then the
quotient space

Altn(V ) =
∧n(V ) = V ⊗n/W

is called the nth alternating tensor power of V . The image of v1 ⊗ v2 ⊗
· · · ⊗ vn in

∧n(V ) is denoted v1 ∧ v2 ∧ · · · ∧ vn.

13.11. Theorem.

(1) The map

φ : V n −→ Sn(V ) , (v1, v2, . . . , vn) 7−→ v1 · v2 · · · vn
is multilinear and symmetric. For every multilinear and symmetric map
f : V n → U , there is a unique linear map g : Sn(V ) → U such that
f = g ◦ φ.

(2) The map

ψ : V n −→
∧n(V ) , (v1, v2, . . . , vn) 7−→ v1 ∧ v2 ∧ · · · ∧ vn

is multilinear and alternating. For every multilinear and alternating map
f : V n → U , there is a unique linear map g :

∧n(V ) → U such that
f = g ◦ ψ.

These statements tell us that the spaces we have defined do what we want: We
get identifications

Sym(V n, U) = Hom(Sn(V ), U) and Alt(V n, U) = Hom(
∧n(V ), U) .

Proof. We prove the first part; the proof of the second part is analogous.
First, it is clear that φ is multilinear: it is the composition of the multilinear map
(v1, . . . , vn) 7→ v1 ⊗ · · · ⊗ vn and the linear projection map from V ⊗n to Sn(V ).
We have to check that φ is symmetric. But

φ(vσ(1), . . . , vσ(n))− φ(v1, . . . , vn) = vσ(1) · · · vσ(n) − v1 · · · vn = 0 ,
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since it is the image in Sn(V ) of vσ(1) ⊗ · · · ⊗ vσ(n) − v1 ⊗ · · · ⊗ vn ∈ W . Now let
f : V n → U be multilinear and symmetric. Then there is a unique linear map
f ′ : V ⊗n → U corresponding to f , and by symmetry of f , we have

f ′(vσ(1) ⊗ · · · ⊗ vσ(n) − v1 ⊗ · · · ⊗ vn) = 0 .

So f ′ vanishes on all the elements of a spanning set of W . Hence it vanishes on W
and therefore induces a unique linear map g : Sn(V ) = V ⊗n/W → U .

V n

f
""

//

φ

))

V ⊗n

f ′

��

// // Sn(V )

g
zz

U

□

The two spaces Sym(V ⊗n) and Sn(V ) (resp., Alt(V ⊗n) and
∧n(V )) are closely

related. We assume that F is of characteristic zero.

13.12. Proposition.

(1) The maps Sym(V ⊗n) ⊂ V ⊗n → Sn(V ) and

Sn(V ) −→ Sym(V ⊗n) , v1 · v2 · · · vn 7−→ 1

n!

∑
σ∈Sn

vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n)

are inverse isomorphisms. In particular, if b1, . . . , bm is a basis for V ,
then the elements

bi1 · bi2 · · · bin with 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ m

form a basis for Sn(V ), and dimSn(V ) =
(
m+n−1

n

)
.

(2) The maps Alt(V ⊗n) ⊂ V ⊗n →
∧n(V ) and∧n(V ) −→ Alt(V ⊗n) , v1∧v2∧· · ·∧vn 7−→ 1

n!

∑
σ∈Sn

sign(σ)vσ(1)⊗vσ(2)⊗· · ·⊗vσ(n)

are inverse isomorphisms. In particular, if b1, . . . , bm is a basis for V ,
then the elements

bi1 ∧ bi2 ∧ · · · ∧ bin with 1 ≤ i1 < i2 < · · · < in ≤ m

form a basis for
∧n(V ), and dim

∧n(V ) =
(
m
n

)
.

Proof. It is easy to check that the specified maps are well-defined linear maps
and inverses of each other, so they are isomorphisms. The other statements then
follow from the description in Prop. 13.9. □

Note that if dimV = n, then we have∧n(V ) = F (v1 ∧ · · · ∧ vn)

for any basis v1, . . . , vn of V .
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13.13. Corollary. Let v1, . . . , vn ∈ V . Then v1, . . . , vn are linearly indepen-
dent if and only if v1 ∧ · · · ∧ vn ̸= 0.

Proof. If v1, . . . , vn are linearly dependent, then we can express one of them,
say vn, as a linear combination of the others:

vn = λ1v1 + · · ·+ λn−1vn−1 .

Then

v1 ∧ · · · ∧ vn−1 ∧ vn = v1 ∧ · · · ∧ vn−1 ∧ (λ1v1 + · · ·+ λn−1vn−1)

= λ1(v1 ∧ · · · ∧ vn−1 ∧ v1) + · · ·+ λn−1(v1 ∧ · · · ∧ vn−1 ∧ vn−1)
= 0 + · · ·+ 0 = 0 .

On the other hand, when v1, . . . , vn are linearly independent, they form part of
a basis v1, . . . , vn, . . . , vm, and by Prop. 13.12, v1 ∧ · · · ∧ vn is a basis element of∧n(V ), hence nonzero. □

13.14. Lemma and Definition. Let f : V → W be linear. Then f induces
linear maps Sn(f) : Sn(V ) → Sn(W ) and

∧n(f) :
∧n(V ) →

∧n(W ) satisfying

Sn(f)(v1 · · · vn) = f(v1) · · · f(vn) ,
∧n(f)(v1 ∧ · · · ∧ vn) = f(v1) ∧ · · · ∧ f(vn) .

Proof. The map V n → Sn(W ), (v1, . . . , vn) 7→ f(v1) · · · f(vn), is a symmetric
multilinear map and therefore determines a unique linear map Sn(f) : Sn(V ) →
Sn(W ) with the given property. Similarly for

∧n(f). □

13.15. Proposition. Let f : V → V be a linear map, with V an n-dimensional
vector space. Then

∧n(f) :
∧n(V ) →

∧n(V ) is multiplication by det(f).

Proof. Since
∧n(V ) is a one-dimensional vector space,

∧n(f) must be multi-
plication by a scalar. We pick a basis v1, . . . , vn of V and represent f by a matrix A
with respect to this basis. The scalar in question is the element δ ∈ F such that

f(v1) ∧ f(v2) ∧ · · · ∧ f(vn) = δ (v1 ∧ v2 ∧ · · · ∧ vn) .
The vectors f(v1), . . . , f(vn) correspond to the columns of the matrix A, and δ is
an alternating multilinear form on them. Hence δ must be det(A), up to a scalar
factor. Taking f to be idV , we see that the scalar factor is 1. □

13.16. Corollary. Let V be a finite-dimensional vector space, f, g : V → V
two endomorphisms. Then det(g ◦ f) = det(g) det(f).

Proof. Let n = dimV.We have
∧n(g ◦f) =

∧n g ◦
∧n f , and the map on the

left is multiplication by det(g ◦ f), whereas the map on the right is multiplication
by det(g) det(f). □

We see that, similarly to the trace Hom(V, V ) ∼= V ∗ ⊗ V → F , our constructions
give us a natural (coordinate-free) definition of the determinant of an endomor-
phism.
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