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CHAPTER 1

Review of Eigenvalues, Eigenvectors and Characteristic
Polynomial

We will heavily use most of what was discussed in Linear Algebra I, in particular
the following.

(1) Vector spaces

(2) Subspaces and sums of subspaces

(3) Complementary subspaces

(4) Linear maps, as well as their associated kernels and ranks

(5) Bases of vector spaces (all vector spaces have a basis by Zorn’s Lemma)
(6) Dimension

(7) The isomorphism ¢p: F" — V associated to a basis B for a vector
space V' of dimension n over a field F'.

8) Matrices, and elementary operations on them

9) Matrices associated to linear maps

0) Determinants

1) Cramer’s rule

2) Dimension formula for sums of vector spaces

3) Dimension formula for linear maps

4) Eigenvalues, eigenvectors, and eigenspaces of endomorphisms

5) Diagonalizability of endomorphisms

We finished Linear Algebra I discussing eigenvalues and eigenvectors of endomor-
phisms and square matrices, and the question when they are diagonalizable. For
your convenience, we repeat here the most relevant definitions and results.

Let F' be any field. Let V' be a finite-dimensional F-vector space, dim V' = n, and
let f:V — V be an endomorphism. Then for A € F', the \-eigenspace of f was
defined to be

Ex(f)={veV: f(v)= }=ker(f —Aidy).

The scalar A is an eigenvalue of f if E\(f) # {0}, i.e., if there is 0 # v € V such
that f(v) = Av. Such a vector v is called an eigenvector of f for the eigenvalue .

The eigenvalues are exactly the roots (in F') of the characteristic polynomial of f,

Pi(z) = det(x idy —f),
which is a monic polynomial of degree n with coefficients in F'.
The geometric multiplicity of A as an eigenvalue of f is defined to be the dimension

of the M-eigenspace, whereas the algebraic multiplicity of A as an eigenvalue of f
is defined to be its multiplicity as a root of the characteristic polynomial.

The endomorphism f is said to be diagonalizable if there exists a basis for V
consisting of eigenvectors of f. The matrix representing f relative to this basis is
then a diagonal matrix, with the various eigenvalues appearing on the diagonal.
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41. REVIEW OF EIGENVALUES, EIGENVECTORS AND CHARACTERISTIC POLYNOMIAL

Since n x n matrices can be identified with endomorphisms F™ — F™, all notions
and results makes sense for square matrices, too. A matrix A € Mat(n, F') is
diagonalizable if and only if it is similar to a diagonal matrix, i.e., if there is an
invertible matrix P € Mat(n, F') such that P! AP is diagonal.

It is an important fact that the geometric multiplicity of an eigenvalue cannot
exceed its algebraic multiplicity. An endomorphism or square matrix is diagonal-
izable if and only if the sum of the geometric multiplicities of all eigenvalues equals
the dimension of the space. This in turn is equivalent to the two conditions (a)
the characteristic polynomial is a product of linear factors, and (b) for each eigen-
value, algebraic and geometric multiplicities agree. For example, both conditions
are satisfied if Py is the product of n distinct monic linear factors.

Exercises.
2 -1 4
(1) Are the vectors | =1 |, | 1 |, and | —1 | linearly independent?
—2 1 4)
2 —1 4
(2) Are the vectors [ =1 |, | 1 |, and | —1 | linearly independent?
—2 1 5)
1 —1
(3) For which x € R are the vectors [z |, | 0 | and 1 linearly depen-
0 1
dent?

(4) Compute det(M) for

-3 -1 0 —2
0 —2 0 0
M= 1 0 -1 1
1 1 0 0
(5) Give the kernel and the image of the map R®> — R? given by = + Az
with
1 -1 1
A= 2 —1 4

2 1
3 3
-1 0 -3 -1 1
(6) For any square matrix M show that rk(M?) < rk(M).
(7) Compute the characteristic polynomial, the complex eigenvalues and the

i ) 0 : :
complex eigenspaces of the matrix ( 1 0 ) viewed as a matrix over C.

(8) Find the eigenvalues and eigenspaces of the matrix A = ( _E _18 )

Is A diagonalizable?

(9) Same question for A = ( _?I 1 )

(10) Show that A = ( 01

Ll ) is not diagonalizable.

(11) Consider the map f: R?* — R? given by z — Az where A = ( _‘;’ (1) )

Show that R? has a basis consisting of eigenvectors of f, and give the
matrix of f with respect to this basis. For any positive integer n, give a
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formula for the matrix representation of f", first with respect to the basis
of eigenvectors, and then with respect to the standard basis.

(12) Suppose that M is a diagonalizable matrix. Show that M? + M is diag-
onalizable.

(13) Is every 3 x 3 matrix whose characteristic polynomial is X3 — X diagonal-
izable? Is every 3 x 3 matrix whose characteristic polynomial is X3 — X?
diagonalizable?

(14) Let the map f: R® — R? be the reflection in the plane x + 2y + z = 0.
What are the eigenvalues and eigenspaces of f?

(15) What is the characteristic polynomial of the rotation map R® — R3 which
rotates space around the line through the origin and the point (1,2, 3))
by 180 degrees? Same question if we rotate by 90 degrees?






CHAPTER 2

Direct Sums of Subspaces

The proof of the Jordan Normal Form Theorem, which is one of our goals, uses the
idea to split the vector space V into subspaces on which the endomorphism can
be more easily described. In order to make this precise, we introduce the notion
of direct sum of linear subspaces of V.

2.1. Definition. Suppose I is an index set and U; C V (for i € I) are linear
subspaces of a vector space V satisfying

(1) uin| > U] ={0}

ie\{j}
for all j € I. Then we write @,., U; for the subspace > .., U; of V', and we call
this sum the (internal) direct sum of the subspaces U;. Whenever we use this
notation, the hypothesis is implied. If T = {1,2,...,n}, then we also write
UioUy®---dU,.

2.2. Lemma. Let V be a vector space, and U; C V' (for i € I) linear sub-
spaces. Then the following statements are equivalent.

(1) Every v € V' can be written uniquely as v ="y _,_,u; with u; € U; for all
1 € I, and only finitely many u; # 0.

(2) Xoie U=V, and for all j € I, we have U; N7,y Ui = {0}

(3) If we have any basis B; of U; for each i € I, then these bases B; are
pairwise disjoint, and the union |J,c; B; forms a basis for V.

(4) There exists a basis B; of U; for each i € I such that these bases B; are
pairwise disjoint, and the union | J,c; B; forms a basis for V.

By statement (2) of this lemma, if these conditions are satisfied, then V' is the

direct sum of the subspaces Uj, that is, we have V' = @, ., U;.

PROOF. “(1) = (2)”: Since every v € V can be written as a sum of elements

of the U;, we have V = ., U;. Now assume that v € U; N Z#j U;. This gives
two representations of v as v = u; = ). 2j u;. Since there is only one way of

writing v as a sum of u;’s, this is only possible when v = 0.

“(2) = (3)”: Since the elements of any basis are nonzero, and B; is contained in U;
for all 4, it follows from U; N 37, (;y Ui = {0} that B; N B; = 0 for all i # j. Let
B = Uiel B;. Since B; generates U; and ), U; =V, we find that B generates V.
To show that B is linearly independent, consider a linear combination

D> Aisb=0.

i€l beb;
7



8 2. DIRECT SUMS OF SUBSPACES

For any fixed j € I, we can write this as

UjBUj: Z/\j’bb:_zz/\i’bbezlji'

beB; i#j bEB; i+
By (2), this implies that u; = 0. Since B; is a basis for Uj, this is only possible

when \;, = 0 for all b € B;. Since j € [ was arbitrary, this shows that all
coefficients vanish.

“(3) = (4)”: This follows by choosing any basis B; for U; (see Remark [2.3)).

“(4) = (1)”: Take a basis B; for U; for each i € I as in (4). Write v € V as a
linear combination of the basis elements in (J;, B;. Since B; is a basis for U;, we
may write the part of the linear combination coming from B; as u;, which yields
v =) u; with u; € U;. To see that the u; are unique, we note that the u; can
be written as linear combinations of elements in B;; the sum v = ). ; is then a
linear combination of elements in | J, B;, which has to be the same as the original
linear combination, because |J; B; is a basis for V. It follows that indeed all the
u; are uniquely determined. U

2.3. Remark. The proof of the implication (3) = (4) implicitly assumes the
existence of a basis B; for each U;. The existence of a basis B; for U; is clear
when U; is finite-dimensional, but for infinite-dimensional vector spaces this is
more subtle. Using Zorn’s Lemma, which is equivalent to the Axiom of Choice
of Set Theory, one can prove that all vector spaces do indeed have a basis. See
Appendix E of Linear Algebra I, 2020 edition (or later). We will use this more
often.

2.4. Remark. If U; and U, are linear subspaces of the vector space V, then
statement V' = U, @ U, is equivalent to U; and Us being complementary subspaces.

2.5. Lemma. Suppose V is a vector space with subspaces U and U’ such that
V=UaU'. IfUy,...,U, are subspaces of U withU = U,®---®U, and U], ..., U.
are subspaces of U with U' = U] & --- @ U., then we have

V=U,® --oUaU o - oU.
PRrROOF. This follows most easily from part (1) of Lemma [2.2] d

The converse of this lemma is trivial in the sense that if we have
V:Ul@"'@Ur@U{@"'@Ué,

then apparently the r + s subspaces Uy, ..., U,, U], ..., U, satisfy the hypothesis
(1), which implies that also the r subspaces Uy, ..., U, satisfy this hypothesis, as
well as the subspaces Uy, ...,U.; then also the two subspaces U =U; & --- & U,
and U' = U] @ ... ® U, together satisfy the hypothesis and we have V =U @ U".

In other words, we may write
e -aoU)eUe --aU)y=Ua--aU.0U & - &U,

in the sense that if all the implied conditions of the form are satisfied for one
side of the equality, then the same holds for the other side, and the (direct) sums
are then equal. In particular, we have U1 & (Uy @ --- @ U,) =U; & --- B U,.

The following lemma states that if two subspaces intersect each other trivially,
then one can be extended to a complementary space of the other. Its proof also
suggests how we can do the extension explicitly.
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2.6. Lemma. Let U and U’ be subspaces of a finite-dimensional vector space
V' satisfying U N U" = {0}. Then there exists a subspace W C V with U C W
that is a complementary subspace of U in V.

PROOF. Let (uq,...,u,) be a basis for U and (vy,...,vs) a basis for U’. Then
by Lemma [2.2] we have a basis (u1,...,u,,v1,...,v5) for U+ U = U @ U'. By
the Basis Extension Theorem of Linear Algebra 1, we may extend this to a basis

(Ui, .oy Upy V1, .oy Usy W, ..., wy) for V. We now let W be the subspace generated
by v1,...,vs, w1, ..., wy. Then (vy,...,vs,w1,...,w;) is a basis for W and clearly
W contains U’. By Lemma we conclude that U and W are complementary
spaces. O

Next, we discuss the relation between endomorphisms of V' and endomorphisms
between the U;.

2.7. Lemma and Definition. Let V' be a vector space with linear subspaces
Ui (i € I) such that V = @,.,;U;. For each i € I, let f; : Uy — U; be an
endomorphism. Then there is a unique endomorphism f : V. — V such that
flu, = fi forallv e I.

We call f the direct sum of the f; and write f = €,, fi-

PROOF. Let v € V. Then we have v = ). u; as above, therefore the only way
to define f is by f(v) = >, fi(u;). This proves uniqueness. Since the u; in the
representation of v above are unique, f is a well-defined map, and it is clear that
f is linear, so f is an endomorphism of V. O

2.8. Remark. If in the situation of Definition 2.7 V' is finite-dimensional and
we choose a basis B of V' that is the concatenation of bases B; of the U;, then
the matrix representing f relative to B will be a block diagonal matrix, where
the diagonal blocks are the matrices representing the f; relative to the bases B; of
the U;. In this finite-dimensional case the number of indices ¢ € I for which Uj; is
nonzero is finite, and it follows that the characteristic polynomial Py equals

Py =1]P;.
icl
In particular, we have det f = [[,., det f;, and Tr f = > ., Tr f; for the determi-
nant and the trace.

2.9. Remark. An endomorphism f: V — V is diagonalizable if and only if
the vector space V' is the direct sum of the eigenspaces of f.

2.10. Lemma. Let V' be a vector space with linear subspaces U; (i € 1) such
that V.= @, Ui. Let f: V — V be an endomorphism. Then there are endo-

morphisms f;: Ug — U; for i € I such that f = @,; fi if and only if each U; is
invariant under f (or f-invariant), i.e., f(U;) C U;.

PrOOF. If f =P, fi, then f; = f[u,, hence f(U;) = flv,(Ui) = fi(U;) C Uy,
Conversely, suppose that f(U;) C U;. Then we can define f; : U; — U; to be
the restriction of f to U;; it is then clear that f; is an endomorphism of U; and
that f equals @, f;, as the two coincide on all the subspaces U;, which together
generate V. U
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2.11. Example. Consider the linear map f: R® — R3? that sends (z,y, 2)
to (y,z,z). This describes rotation over 27 /3 around the line U; = L(a) with
a = (1,1,1). The line U; is point-wise fixed by f, so it is f-invariant. The
orthogonal complement U, = a' is an f-invariant plane, so we have R? = U; ® U,
and f = f1 @ fo with f; = f|v,. The vector v; = a gives a basis for the line U;.
The vectors vy = (1,—1,0) and vz = (—1,0, 1) form a basis (v, v3) for the plane
U,. Putting these two bases together, we obtain a basis B = (vy,v9,v3) for R® and
by the Remark[2.8] the associated matrix [f]2 is a block diagonal matrix. Indeed,

from f(v1) = vy and f(vy) = v3 and f(v3) = —vy — v3 we find
1 0 O
= (0 0 -1
01 —1

Recall that if V' is a vector space over a field F'and f: V' — V is an endomorphism,
then we write

fr=fofo--of.
More generally, if p = Z?:o a;x' € F|x] is a polynomial, then we define p(f) =
Z?:o a;f*. Note that for two polynomials p,q € F[z], we have (p - q)(f) =
p(f) o q(f). We now come to a relation between splittings of f as a direct
sum and polynomials that vanish on f, that is, polynomials p with p(f) = 0

(where 0 denotes the zero endomorphism). We will see later that this includes the
characteristic and the minimal polynomial of f (see Theorem and Lemma.

We call two polynomials py(x) and po(x) coprime if there are polynomials aq(z)
and as(x) such that ai(z)p;(x) + az(x)pa(x) = 1.

2.12. Lemma. Let V be a vector space and f : V — V' an endomorphism.
Let p(z) = p1(x)p2(z) be a polynomial such that p(f) = 0 and such that pi(z) and
po(x) are coprime. Let U; = ker(pi(f)), fori=1,2. ThenV = U; & U,y and the
U; are f-invariant. In particular, f = fi® fa, where f; = f|u,. Moreover, we have

PROOF. Set K; = im(p2(f)) and K, = im(p:(f)). We first show that K; C Uj
for i =1,2. Let v € K1 = im(p2(f)), so v = (p2(f))(w) for some u € V. Then
() ®) = () ((22(D) () = (1) 0 P2 D) () = (p() (w) =0,

so K1 = im(p2(f)) C ker(pi(f)) = Ui. The statement for ¢ = 2 follows by
Symmetry.

Now we show that U3 N U, = {0}. So let v € Uy NUs. Then (pi(f))(v) =
(p2(f))(v) = 0. Let a;(z), az(x) be such that a;(z)p;(z) + as(z)p2(x) = 1. Using

idy = 1(f) = (ar(@)p1(z) + az(2)pa(x)) (f) = ar(f) o pr(f) + aa(f) o p2(f)

we see that
v = (@) (@) ) + (@) (=) @) = (@())O) + (a2())(0) = 0.

Next, we show that K; + Ky = V. Using the same relation above, and the fact
that p;(f) and a;(f) commute, we find for v € V arbitrary that

o= () ((@(N)®) + pN) ((@x(£) ) € m(pa(£)) +im(pa()) -
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These statements together imply that K; = U; for i = 1,2, and V = U; @ Us.
Indeed, let v € U;. We can write v = vy + v9 with v; € K;. Then U; 5 v — v, =
vy € Uy, but Uy NU; = {0}, so v =v; € K.

Finally, we have to show that U; and U, are f-invariant. So let (e.g.) v € Uj.
Since f commutes with p;(f), we have

(D) (1) = () 0 ) = (Fom(£) @) = F((1(N) ) = £©) =0,

(since v € Uy = ker(pi(f))), hence f(v) € U as well. O

2.13. Example. Consider the linear map f: R3> — R3 from Example .
Because f3 = id, we find that the polynomial p = 2® — 1 vanishes on f, that is, we
have p(f) = 0. We can factor p as p = p1ps with py =2 — 1 and py = 22 + z + 1.
The polynomials p; and p, are coprime, as we have

l=—3(x+2)-p1+3 D2

it also follows from Lemma [2.15 We recover U; and U from Example 2.17] as
follows. The linear map p1(f) = f—id sends (z,y, 2) to (y —x,z —y,x — 2), so we
find ker (p1(f)) = L((1,1,1)) = Uy. The linear map po(f) = fo f + f +id sends
(z,y,2) to (x+y+z,24+y+ 2,2+ y+ 2), so we find ker (p2(f)) = Us.

2.14. Proposition. Let V' be a vector space and f : 'V — V an endomor-
phism. Let p(x) = pi(x)pa2(x) - pe(z) be a polynomial such that p(f) = 0 and
such that the factors p;(x) are coprime in pairs. Let U; = ker(pi(f)). Then
V=U®®&- - ®U and the U; are f-invariant. In particular, f = f1® - D fi,
where f; = f

U -

PRrROOF. We proceed by induction on k. The case k = 1 is trivial. So let k > 2,
and denote q(z) = pa(z) -+ - pr(x). Then I claim that p;(z) and ¢(x) are coprime.
To see this, note that by assumption, we can write, for i = 2,... k,

a;(x)p1(x) + bi(x)pi(z) = 1.

Multiplying these equations, we obtain

A(@)pr(z) + ba() - - - by()g(x) = 15

note that all the terms except by(x) - - - bx(x)q(x) that we get when expanding the
product of the left hand sides contains a factor p;(z).

We can then apply Lemma to p(z) = p1(x)q(z) and find that V = U; & U’
and f = f1 @ f" with U; = ker pl(f)), fi = fluy, and U' = ker(q(f)), f = flo
In particular, ¢(f’) = 0. By induction, we then know that U’ = Uy & - - - & Uy, with
U; = ker(p;(f')) and f' = fo®--- & fi, where f; = f'|y,, for j = 2,..., k. Finally,
ker(pj(f/)) = ker(pj(f)) (since the latter is contained in U’) and f; = f'|v;, = f|v;,
so that we obtain the desired conclusion from Lemma 2.5 Il

The following little lemma about polynomials is convenient if we want to apply
Lemma 2,12
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2.15. Lemma. If p(z) is a polynomial (over F') and X\ € F' such that p(\) #
0, then (x — \)™ and p(x) are coprime for all m > 0.

PROOF. For m = 0, this is trivial. Next, we consider m = 1. Let

p(x)
g(z) = =5 — 1;
=0
this is a polynomial such that ¢(\) = 0. Therefore, we can write g(z) = (x—\)r(x)
with some polynomial r(x). This gives us

—r(z)(x — \) + Ljo(m) =1.

p(A)
Now for general m > 1, taking the mth power on both sides, we obtain an equation
(=r(2))"(x = N + a(z)p(z) = 1.
O

Exercises.

(1) Let ¢: R3> — R? be a rotation around the line through the origin and
the point (1,1, —1) by 120 degrees. Decompose R? as a direct sum of two
subspaces that are each invariant under ¢.

(2) Consider the vector space V = R3 with the linear map ¢: V — V given
by the matrix

-1 01
-2 -1 1
-3 -1 2

Decompose R? as a direct sum of two non-trivial subspaces that are each
invariant under ¢. [Theorem (Cayley-Hamilton) states that for a
square matrix A with characteristic polynomial P4, we have P4(A) = 0.
You can verify and then use this for this specific matrix.|

(3) Same question for

0o 1 1
5 —4 =3
-6 6 5

(4) Consider the vector space V = R* with the linear map ¢: V — V that
permutes the standard basis vectors in a cycle of length 4. Decompose
R* into a direct sum of 3 subspaces that are all invariant under ¢.

(5) An endomorphism f of a vector space V is said to be a projection if
f? = f. Suppose f is such a projection.

(a) Show that the image of f is equal to the kernel of f —idy, i.e., we
have im f = E; with E) = ker(f —idy). Note that if F; is nonzero,
then 1 is an eigenvalue for f and F; is the corresponding eigenspace.

(b) Show that V' is the direct sum of the kernel Ey of f and the space E;.

(c) Show that f = fo @ f1 where fy is the zero-map on Fy and f; is the
identity map on FEj.

(6) An endomorphism f of a vector space V is said to be a reflection if f?
is the identity on V. Suppose f is a reflection of a vector space V over
a field of characteristic not equal to 2. Show that V' is the direct sum of
two subspaces U and W for which f = idy &(—idw).



CHAPTER 3

The Cayley-Hamilton Theorem and the Minimal
Polynomial

Let A € Mat(n, F'). We know that Mat(n, F') is an F-vector space of dimension n?.
Therefore, the elements I, A, A2, ..., A" cannot be linearly independent (because
their number exceeds the dimension). If we define p(A) in the obvious way for p
a polynomial with coefficients in F' (as we already did in the previous chapter),
then we can deduce that there is a (non-zero) polynomial p of degree at most n?
such that p(A) = 0 (0 here is the zero matrix). In fact, much more is true.

Consider a diagonal matrix D = diag(A1, A2, ..., An). (This notation is supposed
to mean that \; is the (j, j) entry of D; the off-diagonal entries are zero, of course.)
Its characteristic polynomial is

Pp(z)=(x = M)(x—=Xa) -+ (z — \p).

Since the diagonal entries are roots of Pp, we also have Pp(D) = 0. More generally,
consider a diagonalizable matrix A. Then there is an invertible matrix () such

that D = Q' AQ is diagonal. Since (Exercise!) p(Q™1AQ) = Q'p(A)Q for p a
polynomial, we find

0=Pp(D)=Q 'Pp(A)Q =Q 'Py(A)Q == P4(A)=0.
(Recall that Py = Pp — similar matrices have the same characteristic polynomial.)

The following theorem states that this is true for all square matrices (or endomor-
phisms of finite-dimensional vector spaces).

3.1. Theorem (Cayley-Hamilton). Let A € Mat(n, F'). Then P4(A) = 0.

PROOF. Here is a simple, but wrong “proof”. By definition, P4(z) = det(xl—

A), so, plugging in A for z, we have P4(A) = det(Al—A) = det(A—A) = det(0) =
0. (Exercise: find the mistake!)
For the correct proof, we need to consider matrices whose entries are polynomials.
Since polynomials satisfy the field axioms except for the existence of inverses, we
can perform all operations that do not require divisions. This includes addition,
multiplication and determinants; in particular, we can use the adjugate matrix.

Let B = 21— A, then det(B) = P4(z). Let B be the adjugate matrix; then we still
have BB = det(B)I. The entries of B come from determinants of (n—1) x (n—1)
submatrices of B, therefore they are polynomials of degree at most n — 1. We can
then write B

B = xnlen,l + .fL'niQBn,Q + -+ Z'Bl + BO y
and we have the equality (of matrices with polynomial entries)
(2" "B 142" 2By o+ -+ By)(xl — A) = Py(2)] = (2" + by 12" 1+ + o)1,
where we have set Py(z) = 2" +b,_12" ' + - -+ by. Expanding the left hand side
and comparing coefficients of like powers of x, we find the relations

Bn—l = ], Bn_g - Bn_lA - bn_ll, ey BO - BlA == bll, —B()A = b(][ .
13
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We multiply these from the right by A", A"~ ... A, I, respectively, and add:
anlAn - An
an2An_1 - anlAn = bnflAn_l

ByA — B1A* = DhA

— ByA = byl
0 = Pu(A)

3.2. Remarks.

(1) The reason why we cannot simply plug in A for = in the identity

B (zl — A) = Py(x)I
is that whereas = (as a scalar) commutes with the matrices occurring as
coefficients of powers of x, it is not a priori clear that A does so, too.

(2) Another idea of proof (and maybe easier to grasp) is to say that a ‘generic’
matrix is diagonalizable (if we assume F' to be algebraically closed. .. ),
hence the statement holds for ‘most’ matrices. Since it is just a bunch of
polynomial relations between the matrix entries, it then must hold for all
matrices. This can indeed be turned into a proof, but unfortunately, this
requires rather advanced tools from algebra.

(3) Of course, the statement of the theorem remains true for endomorphisms.
Let f: V — V be an endomorphism of the finite-dimensional F-vector
space V, then P;(f) = 0 (which is the zero endomorphism in this case).
For evaluating the polynomial at f, we have to interpret f™ as the n-fold
composition fo fo---o f, and fO=idy.

Our next goal is to define the minimal polynomial of a matrix or endomorphism,
as the monic polynomial of smallest degree that has the matrix or endomorphism
as a “root”. However, we need to know a few more facts about polynomials in
order to see that this definition makes sense.

3.3. Lemma (Polynomial Division). Let f and g be polynomials with co-
efficients in F', with g monic. Then there are unique polynomials q and r with
coefficients in F' such that r =0 or deg(r) < deg(g) and such that

f=ag+r.

Proor. We first prove existence, by induction on the degree of f. If f =0
or deg(f) < deg(g), then we take ¢ = 0 and r = f. So we now assume that
m = deg(f) > deg(g) = n, f = ana™ +--- +ao. Let [ = f — ana™ "y,
then (since g = 2" + ...) deg(f’) < deg(f). By the induction hypothesis, there
are ¢’ and r such that deg(r) < deg(g) or r = 0 and such that f' = ¢'g + r.
Then f = (¢ + apa™ ™)g + r. (This proof leads to the well-known algorithm for
polynomial long division.)

As to uniqueness, suppose we have f = qg +r = ¢'g + ', with r and ' both of
degree less than deg(g) or zero. Then

(g—q)g=1r"—r.
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If ¢ # ¢/, then the degree of the left hand side is at least deg(g), but the degree of
the right hand side is smaller, hence this is not possible. So ¢ = ¢/, and therefore
r =1’ too. O

Taking g = x — «, this provides a different proof for case k = 1 of Example 8.4 of
Linear Algebra I, 2015 edition (or later).

3.4. Lemma and Definition. Let A € Mat(n, F'). Among all monic polyno-
mials p with coefficients in F satisfying p(A) = 0, there is a unique polynomial M 4
of minimal degree. If p is any polynomial with coefficients in F' satisfying p(A) = 0,
then p is divisible by My (as a polynomial).

This polynomial M, is called the minimal (or minimum) polynomial of A. Sim-
ilarly, we define the minimal polynomial M of an endomorphism f of a finite-
dimensional vector space.

PROOF. It is clear that monic polynomials p with coefficients in F satisfying
p(A) = 0 exist (by the Cayley-Hamilton Theorem [3.1} we can take p = Pa4). So
there will be such a polynomial of minimal degree. Now assume p and p’ were
two such monic polynomials of (the same) minimal degree with p(A) = p/(A) = 0.
Then we would have (p —p')(A) = p(A) —p'(A) = 0. If p # p/, then we can divide
p — p' by its leading coefficient, leading to a monic polynomial ¢ of smaller degree
than p and p’ with ¢(A) = 0, contradicting the minimality of the degree.

Now let p be any polynomial such that p(4) = 0. By Lemma , there are
polynomials ¢ and r, with deg(r) < deg(M,) or r = 0, such that p = gMa + .
Plugging in A, we find that

0 =p(A) = g(A)Ma(A) +7(A) = ¢(A) - 0+ r(A) = r(A).

If r # 0, then deg(r) < deg(My), but the degree of My is the minimal possible
degree for a polynomial that vanishes on A, so we have a contradiction. Therefore
r =0 and hence p = gM3y. O

3.5. Remark. In any basic class on ring theory, one learns that the set of
polynomials as discussed in the lemma forms an ideal in the polynomial ring F'[z]
of all polynomials with coefficients in F', and that this ring is a principal ideal
domain, which means that every ideal consists of the multiples of some fixed
polynomial. The proof is exactly the same as for the lemma.

3.6. Warning. A priori, the minimal polynomial M, of a matrix A depends
on the field F' we consider it over. For example, if A is a real matrix, then its
minimal polynomial has minimal degree among all real polynomials p € R[z| with
p(A) = 0; if we consider the same matrix A as a complex matrix, then one might
wonder if there are complez polynomials p € C[z]| with smaller degree. Exercise
shows that this is not the case, at least not for the fields R and C as in this example.
With some more algebra, one can show that in fact the minimal polynomial of A
is independent of the field F' in general, which is why it is not reflected in the
notation M4.

By Lemma the minimal polynomial divides the characteristic polynomial. As
a simple example, consider the identity matrix [,,. Its characteristic polynomial is
(x — 1)™, whereas its minimal polynomial is x — 1. In some sense, this is typical,
as the following result shows.
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3.7. Proposition. Let A € Mat(n,F) and A\ € F. If X\ is a root of the
characteristic polynomial of A, then it is also a root of the minimal polynomial
of A. In other words, both polynomials have the same linear factors.

PROOF. If P4(A) = 0, then A is an eigenvalue of A, so there is 0 # v € F"
such that Av = M. Setting My (z) = apa™ + - -+ + ap, we find

0=Ms(A) =) ajAlv=> aXv=Ms\v.
j=0 3=0

(Note that the terms in this chain of equalities are vectors.) Since v # 0, this
implies M4 () = 0.

By Lemma [3.4] we know that each root of M, is a root of P4, and we have just
shown the converse. So both polynomials have the same linear factors. Il

3.8. Remark. If F' is algebraically closed (i.e., every non-zero polynomial is
a product of linear factors), this shows that P4 is a multiple of My, and M¥% is
a multiple of P4 when k is large enough. In fact, the latter statement is true for
general fields I (and can be interpreted as saying that both polynomials have the
same irreducible factors). For the proof, one replaces F' by a larger field F” such
that both polynomials split into linear factors over F’. That this can always be
done is shown in Introductory Algebra. See Exercise [12] for the case F' = R.

One nice property of the minimal polynomial is that it provides another criterion
for diagonalizability.

3.9. Proposition. Let A € Mat(n, F'). Then A is diagonalizable if and only
iof its minimal polynomial M is a product of distinct monic linear factors.

PRrOOF. First assume that A is diagonalizable. It is easy to see that similar
matrices have the same minimal polynomial (Exercise|3]), so we can as well assume
that A is already diagonal. But for a diagonal matrix, the minimal polynomial
is just the product of factors z — A, where A runs through the distinct diagonal
entries. (It is the monic polynomial of smallest degree that has all diagonal entries
as roots.)

Conversely, assume that My(z) = (z — A1) -
distinct. The polynomials ¢; = x — A; (with 1
by Proposition the eigenspaces

satisfy F" = U; @ - -+ @ U,,. It then follows from Remark [2.9) that A is diagonal-
isable. O

(= Ap) with Ay, N, € F
< i < 'm) are pairwise coprime, so

3.10. Example. Consider the matrix

1
A=10
0

O = =
—_ = =

Is it diagonalizable?

Its characteristic polynomial is clearly Pa(x) = (z—1)3, so its minimal polynomial
must be (z—1)™ for some m < 3. Since A—1 # 0, we find m > 1 (in fact, m = 3),
hence A is not diagonalizable.
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On the other hand, the matrix (for F' = R, say)

1 2 3
B=10 4 5
006

has Mp(z) = Pg(z) = (x — 1)(x — 4)(z — 6); therefore, B is diagonalizable.

Exercise: what happens for fields F' of small characteristic?

3.11. Remark. Let f: V — V be an endomorphism of a finite-dimensional
vector space V with basis B. Then f is diagonalizable if and only if the matrix
A = [f]B is. Furthermore, the characteristic and minimal polynomial of f are
the same as those of the matrix A. Therefore, Lemma [3.4] and Propositions
and also hold for f instead of A. (See also part of Remark [3.2])

3.12. Corollary. Let f: V — V be a diagonalizable endomorphism of a
finite-dimensional vector space V. Let U C V be an f-invariant subspace. Then
the restriction f|y is also diagonalizable.

ProOF. By Proposition , the minimal polynomial My of f is the product
of distinct linear factors. The endomorphism M;(f|y) is the restriction to U of
M(f) = 0, so the minimal polynomial of f|; divides My by Lemma , and is
therefore also the product of distinct linear factors. Proposition then implies
that f|y is diagonalizable. O

Exercises.

(1) What is the remainder when one divides the polynomial 2%+ z by 2% +1?
(2) Give the minimal polynomial and the characteristic polynomial of the

matrices
2 -3 3 0 -1 3
3 —4 3 |, 1 -2 3
3 =3 2 3 =3 2

(3) Let A, P € Mat(n, F') be square matrices, with P invertible. Show that
the matrices A and PAP~! have the same minimal polynomial.

(4) Suppose that a 2 x 2 matrix A has two distinct eigenvalues A and p. Show
that the image of the matrix A — A[ is the eigenspace with eigenvalue p.

00 =3
(5) Is the matrix { 1 0 0 | diagonalizable over R? And over C?
01 O

(6) If f: R® — R3 is the projection on a plane through the origin, what
is the minimum polynomial of f? What is the minimum polynomial of
reflection in a plane through the origin?

(7) Compute the characteristic polynomial of the matrix

1 -9 4
A= 1 -4 1
1 -7 3

Compute A3 (use Cayley-Hamilton!)

(8) Let V be the 4 dimensional vector space of polynomial functions R — R of
degree at most 3. Let T': V' — V be the map that sends a polynomial p to
its derivative T'(p) = p’. Show that T is a linear map. Is T diagonalizable?
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(9) For each a € R, determine the characteristic and minimal polynomials of

l—-a « 0
As=| 2—a a—-1 «
0 0 -1
For which values of « is A, diagonalizable?

(10) Let M be a square matrix, satisfying M? = M, with entries in a field F.
What can you say about the eigenvalues of M? Show that M is diago-
nalizable if the characteristic of F' is not equal to 2.

(11) Let A be a real square matrix. Show that its minimal polynomial as a
real matrix is the same as its minimal polynomial as a complex matrix.

(12) Let A be a real square matrix. Suppose that f € R[] is a quadratic poly-
nomial without real roots that divides the characteristic polynomial P4
of A. Show that f also divides the minimal polynomial M, of A.



CHAPTER 4

The Structure of Nilpotent Endomorphisms

4.1. Definition. A matrix A € Mat(n, F') is said to be nilpotent, if A™ =
for some m > 1. Similarly, if V' is a finite-dimensional vector space and f : V — V
is an endomorphism, then f is said to be nilpotent if for some m > 1 we have

fr=fofoof=0.
S

m times

It follows that the minimal polynomial of A or f is of the form 2™, where m is
the smallest number that has the property required in the definition.

4.2. Proposition. A nilpotent matriz or endomorphism of a finite-dimensional
vector space is diagonalizable if and only if it is zero.

PROOF. The minimal polynomial is ™. Proposition then implies that
the matrix or endomorphism is diagonalizable if and only if m = 1. But then
the minimal polynomial is x, which means that the matrix or endomorphism is
Z€ro. U

Theorem tells us more about the structure of nilpotent endomorphisms. It is
the main ingredient to proving the existence of the Jordan Normal Form.

4.3. Theorem. Let V' be an F'-vector space, dimV =mn, and let f :V — V
be a nilpotent endomorphism. Then V has a basis (vi,vs, . ..,v,) such that f(v;)
is either zero or vjy,.

We first state some lemmas that will be useful for the proof of Theorem [4.3]

4.4. Lemma. Let V' be a vector space and f:V — V an endomorphism.
Suppose m > 0 is an integer such that f™ = 0. If for each j € {1,2,...,m} we
have a complementary subspace X; of ker fi=1 inside ker f7, then we have

PROOF. Note that we have ker f™ = V and ker f© = {0}. For all j €
{1,...,m}, we have ker f7 =ker fi~! & X;, so we find

V=ker f"=ker f" 1@ X,, = (ker f" 2D X 1) © Xpn =
=ker f" 2B X1 ®@Xp=-=ker f°e X106 X,® ... X,, =

19
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4.5. Lemma. Let f: V — W be a linear map of vector spaces, and X C V
and Y C W subspaces such that X N f~Y(Y) = {0}. Then f restricts to an
injective map X — W, and we have f(X)NY = {0}.

PROOF. The kernel of the restriction f = f |x: X — W satisfies
ker f = X Nker f € X N f7HY) = {0},

so f is injective. Given an element f(z) € f(X)NY with € X, we have
r e XN fY(Y) = {0}, and hence f(z) = 0, which proves the last part of the
statement. U

4.6. Lemma. LetV be a vector space and f: V — V an endomorphism. Let
j > 1 be an integer. If X is a complementary space of ker f7 inside ker fi+1, then
f restricts to an injective map X < ker f4 and we have f(X)Nker f7=1 = {0}.

PROOF. Note that for every i > 0, we have f~!(ker f*) = ker f*™!. For i = j,
this implies that f restricts to a linear map f’: ker f/*! — ker f/. For i = j — 1
and Y = ker f771 it implies f~}(Y) = ker f7, so we get

XnfHY)c XnfHy)={0}.

Hence, the statement follows directly from Lemma 4.5, applied to f’, X, and Y.
O

4.7. Remark. In terms of quotient spaces, Lemma[4.5 can be phrased by say-
ing that f induces an injective map V/f~1(Y) — W/Y, which follows from one of
the isomorphism theorems (analogous to those from group theory), applied to the
linear map V' — W/Y with kernel f~1(Y"). Similarly, Lemma can be phrased
by saying that f induces an injective map ker f/!/ker f/ < ker f7/ker fi=1,

4.8. Remark. Lemmas[2.6l and [4.6] together show that, under the conditions
of Lemma , we can extend f(X) to a complementary space X’ of ker f7~!
inside ker f/. Then f restricts to an injective map X <« X', and we can apply
Lemma to X’ (if j > 1). If moreover, m > 0 is an integer such that f™ = 0,
then this allows us to recursively define a sequence X,,, ..., Xo, X; of subspaces
as in Lemma [4.4] with the extra property that f restricts to an injective map
X; = Xj_; for 1 < 7 < m. This is the main idea for the proof of Theorem ,
which also keeps track of bases for the subspaces.

PROOF OF THEOREM [4.3l. Let m be a positive integer such that f™ = 0. In

each of m steps, numbered j = m,m—1,...,2,1, we will construct an integer ¢;
and vectors wjy, ..., w;; € ker f7 such that the elements
(2) (fk_j (wkz))jgkgm

1<i<ty,
form a basis for a complementary space X; of ker f/~! inside ker f7. For j = m,
we take any basis (W1, . . ., W, ) for a complementary subspace X, of ker f™1
inside ker f™ = V. Assume 1 < j < m and suppose that we have already
constructed integers and vectors as above in all steps m,m — 1,...,5 + 1. Then
the elements
(3) (9D (wia)) j 1<k <m

1<I<ty
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form a basis for a complementary space X, of ker f/ inside ker f/*!. The map f
restricts to an injective map X1 — ker f/ by Lemma This implies that the
images
(4) (f* (wn)) j1<hzm
1<I<ty,

of the elements in (3) form a basis for the subspace f(X;41) C ker f7 (for linear
independence, see Lemma 7.13 of Linear Algebra I, 2015 edition (or later)), which
satisfies f(X;+1) N ker f77t = {0}, again by Lemma 1.6l By Lemma [2.6| we can
extend the basis (4) for f(X;41) to a basis for a complementary subspace X;
of ker f7~! inside ker f7: we denote the added basis vectors by wji,wja, ..., wj;.
Adding these elements to gives , with the new elements corresponding to
k=j.
By Lemma 4.4 we have V = X, ® Xo @ ... ® X,,, so the bases 2)) for the X are
disjoint and thelr union forms a basis for V (see Lemma [2.2) ertlng 1= k -7,
this union consists of the elements
(5) (fi(wkl»lgkgm .

1<i<ty,

0<i<k
Note that for any indices 1 < k < m and 1 < [ < t;, we have wy; € ker f*, so
F(f*Y(ww)) = 0. Hence, if we order the elements of (] lexicographically by their
index triples (k,[,7), then we obtain a basis as mentioned in the theorem. U

4.9. Remark. If (vy,...,v,) is a basis as in Theorem then the matrix
A = (a;;) representing f with respect to (v,, ..., vs,v1), has all entries zero except
ajj+1 = 1if f(vn—j) = vpp1—j. Therefore A is a block diagonal matriz

B | 0
Ao 0 | By
00| |By

where for each 7 there is an integer m > 1 such that the i-th block B; is the m xm
block

010 --- 0
Ooo01--- 0
B(m)=1: 1+ -~
o000 --- 1
000 - 0

with all zeroes except for ones just above the diagonal. Note that we reversed
the order of the basis elements! Also note that B(m)™ = 0, and for each integer
1 <'s < m, the matrix B(m)® is the m x m matrix with all zeroes, except for ones
on the diagonal that is s positions above the main diagonal.

4.10. Corollary. FEvery nilpotent matrix is similar to a matrix of the form
Just described.

PROOF. This is clear from our discussion. O
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4.11. Corollary. A matriz A € Mat(n, F') is nilpotent if and only if its char-
acteristic polynomial is Py(x) = a".

PROOF. If P4(z) = 2", then A" = 0 by the Cayley-Hamilton Theorem ,
hence A is nilpotent. Conversely, if A is nilpotent, then it is similar to a matrix
of the form above, which visibly has characteristic polynomial z". O

4.12. Remark. The statement of Corollary would also follow from the
fact that P4 (x) divides some power of M4(x) = 2™, see Remark 3.8 However, we
have proved this only in the case that Ps(x) splits into linear factors (which we
know is true, but only after the fact).

4.13. Example. Consider

3 4 -7
A=1|1 2 —3| € Mat(3,R).
2 3 -5
We find
-1 -1 2
A2 =1 -1 -1 2
-1 -1 2

and A% = 0, so A is nilpotent. Let us find a basis as given in Theorem .
The first step in the process comes down to finding a complementary subspace of
ker(A?) = L((Q, 0,17, (1,1, O)T) within ker A% = R3. We can take (1,0,0)", for
example, as the basis for a complement. This will be w3; in the notation of the
proof of Theorem We then have Aws; = (3,1,2) " and A%w3, = (—=1,—1,-1)T,
and these three already form a basis B = (A%w3;, Awsy, w3;). With

-1 3 1
Q=I[dE=-110
-1 20

we obtain

SO
o = O

0
Q7AQ = [id] - [falp - [i]E = [fal} = 8

The following proposition tells us how many blocks of each size to expect.

4.14. Proposition. Let f: V' — V be a nilpotent endomorphism of a finite-
dimensional vector space V. Let B = (v,,...,v1) be a basis for V such that its
reverse is a basis as in Theorem . Let A = [f]5 be the associated matrix. For
every integer j > 0 we set 7; = dimker f7, and for every integer j > 1 we set
sj =1;—rj_1 and t; = s; — sj41. Then for every integer j > 1 there are exactly ¢;
blocks of the form B(j) of size j x j along the diagonal of A.

PRrROOF. The matrix A is described in Remark [£.9] Let mq,ma,...,my > 0 be
integers such that the blocks along the diagonal of A are B(m,),..., B(my). For
each integer j > 0, the matrix A’ is a block matrix with blocks B(m4)7, ..., B(my)’
along the diagonal. Therefore, the matrix A7 is in row echelon form, and for every 1,
the first min(m;, j) columns corresponding to the i-th block B(m;)’ do not contain
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a pivot, while the other columns do contain pivots. Hence, the kernel of A’ has
dimension

k
rj = Z min(m;, j)
i=1
and we find

(min(m;, j) — min(m;, j — 1)).

k
S;=Tj —Tj—1=

(2

As for integers a,b the value min(a,b) — min(a,b — 1) equals 0 for a < b and it
equals 1 otherwise, we conclude that s; equals the number of blocks of size at
least j. Therefore, the number of blocks of size exactly j is s; — sj41 = ;. U

4.15. Remark. The ¢ from the proof of Theorem are the same as the
t, from the proof of Proposition [£.14] Indeed, for fixed integers 1 < k < m and
1 <1 < tg, with t, as in the proof of Theorem , the k elements fi(wy) with
0<i<kin form a basis for a subspace that corresponds to a block of size
k x k, so there are t; such blocks. Moreover, with rj and s as in Proposition [4.14]
the proof of Theorem [4.3] shows

dim X, = dim ker fk — dimker f*t =1, — rp_; = sp.
This also implies for ¢ as defined in the proof of Theorem [4.3| that we have
tk = dlka — dim f(Xk—i-l) = dlka — dika+1 = Sk — Sk+1-

While this seems to give another proof of Proposition this argument a priori
only holds for bases that are obtained as in the proof of Theorem [4.3] Tt is however
not hard to show that every basis as mentioned in Theorem {4.3| can indeed be
obtained through the construction in the proof of Theorem [£.3] so it does yield a
second proof.

4.16. Example. In Example [4.13] we have tkA = 2 and rkA? = 1 and
A3 =0, so we get the following table.

J1751 S5 tj
010
1({1]11]0
2121110
313111
413(0/0
51310

We conclude, as we have seen in the example above, that there is an invertible
matrix @ such that Q' AQ consists of one block B(3).

4.17. Corollary. Let A, A’ € Mat(n, F') be two nilpotent matrices. Then A

and A" are similar if and only if for each integer 1 < j < n we have dimker A7 =
dim ker A7,

PROOF. For every integer j > 0, and every square matrix M, set r;(M) =
dim ker M7. For j > 1, also set s;(M) = r;(M) —r;_1(M) and t;(M) = s;(M) —
sjy1(M). Of course, if A and A’ are similar, then r;(A) = r;(A") for each j.
Conversely, suppose that for each integer 1 < j < n we have r;(A) = r;(4’). By
Cayley-Hamilton, we have A" = A™ = 0, so for j > n we have r;(A4) = r;(4’) as
well, as both equal n. For j = 0 both equal 0, so we have r;(A) = r;(A4’) for all
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j > 0. This implies that for all j > 1 we have s;(A) = s;(A’) and t;(A) = t;(A"),
so by Proposition both A and A’ are similar to a block diagonal matrix with
t;(A) = t;(A’) blocks of the form B(j) along the diagonal for every j > 1. Any
two such matrices are similar to each other; in fact they can be obtained from
each other by a permutation of the basis. By transitivity of similarity, also A and
A’ are similar. O

4.18. Example. Consider the real matrix

-5 10 -8 4 1
-4 8 —-10 8 2
A=|-3 6 —-12 12 3
-2 4 -8 4 10
-1 2 -4 2 5

and the linear map f = f4: R® — R associated to it. We compute

00 0 —18 36 00000
000 —36 72 00000
A*=10 0 0 —54 108 and A*=|0 0 0 0 0],
000 —36 72 00000
000 —18 36 00000

so for m = 3 we have A™ = (0. The kernel ker A is generated by
r=(-3,0,321 and 2 =(2,1,0,0,0).

(We urge the reader to verify this, either by bringing A into row echelon form
by elementary row operations, or by verifying that A has rank 3, concluding
that ker A has dimension 2, and checking that x and 2’ are linearly independent
elements contained in ker A.) The kernel ker A? is generated by

er = (1,0,0,0,0), e =(0,1,0,0,0), e5=(0,0,1,0,0), and y=(0,0,0,2,1).

Clearly, we have ker A> = R®. In terms of Proposition [4.14] with r; = dimker A7,
we find rp = 0 and vy = 2 and ro = 4 and r,, = 5 for n > 3; this yields s; = 2 and
sy =2 and s3 = 1 and s, = 0. Finally, we obtain t; = 0 and t, = 1 and t3 = 1,
so we already find that the standard nilpotent form consists of one block of size 2
and one block of size 3.

To find an appropriate basis, we start with step j = m = 3 (as in the proof of
Theorem by picking a complementary space X3 of ker A? inside ker A3 = R,
Since dimker A*> — dimker A2 = 5 — 4 = 1, it suffices to pick any element of
R® that is not contained in ker A%2. We choose ws; = e5 = (0,0,0,0,1), which
gives Awz; = (1,2,3,10,5) and A%w3 = 36(1,2,3,2,1) and A3ws = 0. We
take X3 = (ws;). In the next step (j = 2), we extend f(X3) C ker A% to a
complementary space X, of ker A inside ker A2. In order to do this, we follow the
proof of Lemma [2.6} take a basis for ker A and for f(X3) and put the elements
of these two bases as columns in a matrix; we also take generators for ker A? and
add these as columns to the matrix. We obtain

-3 2|11 000
0 1}2]0100
3 07130010
2 0]10{0 0 0 2
1 0510 001
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A row echelon form for this matrix is

1050 0 0 1
0120 1 0 O
0 0120 0 -1 3 |,
0001 -2 1 O
0000 O O O

which has pivots in the first three columns as expected. Of the last four columns,
only the first contains a pivot, so in order to extend f(X3) to a complementary
space X, as mentioned, it suffices to add the first generator for ker A2, so we take
wy; = (1,0,0,0,0), which gives Awy; = —(5,4,3,2,1). The last step (j = 1),
namely finding a complementary space X; for ker A = {0} inside ker A that
contains f(X5), turns out to be trivial. Indeed, f(X5) is generated by A%ws; and
Awsy, so dim f(Xs) = 2 = dimker A, so we have X; = f(X5) and we do not need
to extend.

Hence, we obtain a basis B = (A%ws;, Awsy, w31, Awsr, we;) (note the order of the
elements). If we denote the standard basis for R® by E, the basis transformation
matrix

36 1 0 -5 1
72 2 0 —4 0
P=[dZ=]108 3 0 =3 0
72 10 0 -2 0
36 5 1 —1 0

satisfies

P'AP = [falf =

OO o oo
SO o O
OO O~ O
SO O OO
O = O OO

4.19. Example. From small examples one does not always get a good idea
of the general case, so we now do a bigger example. If the reader wishes to verify
the calculations, we recommend using a computer.

Let M be the 11 x 11 real matrix

14 15 0 § —40 32 -2 =72 -8 0 -20
-29 -34 -7 —-16 55 —-64 14 137 16 0 31
6 10 2 4 =18 16 -2 =33 -5 0 —-10
-3 -2 2 -1 =10 0 -2 3 0 1 -6
-6 -7 0 -4 24 -15 -1 34 4 0 12
M=1 14 7T -4 6 =28 24 5 =56 —4 0 —12
-3 -4 -1 -2 9 -8 2 17 2 0 5
10 7T =2 5 =26 20 2 —46 -4 0 —12
—67 —77 —-14 -38 130 —148 30 319 36 1 72
-53 =54 -2 =28 102 —-108 10 241 26 1 52
1215 2 § —42 30 -1 —-66 -8 0 —22

One checks that M* = 0, so M is nilpotent.
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Moreover, one checks that M, M?, and M? have rank 7,4, and 1, respectively.
This gives the following table.

J17Ti 85|t
0 0
114141
2071310
3110 3|2
4111111
5(1110 1|0
611110

We conclude that there is an invertible matrix @) such that Q 'MQ is a block
matrix consisting of one block B(1), two blocks B(3), and one block B(4) along
its diagonal.

To find such a matrix @, we will construct a basis (v1,vs, . .., v11) as in Theorem [£.3]
following the proof of that theorem. We note that M™ = 0 for m = 4, so we start
with j = m = 4. We want to pick a basis for a complementary space X, of ker M3
inside ker M* = R!!; given that we have dimker M? = 10, we find dim X, = 1, so
it suffices to find one vector wy; € R that is not contained in ker M3. The 3-rd,
7-th, and 10-th column of M? are the only zero columns, so the standard basis
vector e; is not contained in ker M3 for i € {3,7,10}. Because the fourth column
of M? contains relatively small numbers, we choose wy; = e4. This gives

0 8 4 1
0 —16 -7 —2
0 4 3 0
1 —1 0 —2
0 —4 —2 0
Wy = 0 s MUJ41 = 6 s M2w41 = 0 s M3w41 = 2
0 -2 -1 0
0 D 1 1
0 —38 —15 )
0 —28 —11 —6
0 8 4 0

These vectors correspond to a block of the form B(4). To check consistency, one
could verify that indeed the last vector is contained in the kernel of M.

We continue with 7 = 3. We want to pick a basis for some complementary space
X3 of ker M? inside ker M3 that contains M*~Jw,; = Muw,; (this is indeed the
only vector of the four that we already found that is contained in ker M3 but not
in ker M?). We do this following the proof of Lemma . One computes that the
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kernel ker M? is generated by the columns of the matrix

1 0 0O 0 0 0 0
0 1 0O 0 0 0 O
0 0 10 0 0 O
0 0 0o 1 0 0 O
0 0 0o 0 1 0 O
Ky = 0 0 0O 0 0 1 0
2 3 0o 0 0 0 4
4 5 -1 0 -1 0 7
-32 —-41 9 1 9 4 -61
-7 =7 1 1 1 0 —-11
-1 -1 0 0 -2 0 -1

Moreover, the kernel ker M3 is generated by the columns of the matrix

1000 0 00 0O 0 O
0100 0 00 O 0 O
o010 0 00 0 0 O
o001 0 00 0 0 O
o000 1 00 0 0 O
Ks=|1000O0 O 10 0 0 O
o000 0 01 0 0 O
o000 0 0O0 1 0 O
cooo01 0 00 1 2 0
0000 0 00 0 0 1
1100 -220 -5 -120

Lemma tells us that in order to extend Mwy; to a basis for a complementary
space of ker M? inside ker M?, we take the columns of K5 together with one column
Muwy,, and extend this to a basis for ker M? by adding some of the columns of
K3. We do this by taking the extended matrix

(KQ|M'U}41‘K3)

and using elementary row operations to bring this into (reduced) row echelon form.
This yields

1 000O0O0OO0O00O0-18 7 =18 -4 24 -15 2 -7
0100O0O0O00/03 36 -12 36 8 =50 28 —4 12
oo100O0O0002 -7 4 -8 0 10 -12 0 -4
0001O0O0O0(0]0 2 3 1 3 2 =5 -2 -1 0
oooo010¢00/03 100 -2 11 4 -1 2 =2 2
6oo0o0oo0o010}j0/j03 -12 6 =12 1 15 —-18 0 —6
0oo0o000O0T1(0/00 -16 6 -16 -2 22 —-17 1 -6
000O0O0O0O0OI1|0 2 3 0 3 2 -5 -2 -1 0
000O0O0OOGO0OjOI1T 4 2 1 2 4 -4 -9 -2 -1
000O0O0OOl0O]0O 5 2 2 2 4 -5 —-10 -2 =2
000O0O0O0O0O[0O]0OO0 O 0 0 0 0 0 0 0

Since the first two columns of the right part of this matrix are the ones that
contain a pivot, we see that we may add the corresponding first two columns of
K3 to Mwy; to obtain a complementary space of ker M? inside ker M?3. The first
two columns of K3 are ws; = e + e11 and w3y = €3 + €11, so we find

X3 = L(Muwyy, ws1, wss).



28 4. THE STRUCTURE OF NILPOTENT ENDOMORPHISMS

Note as a consistency check that indeed we have dim X3-+dim ker M? = dim ker M3,
that is, 3+ 7 = 10. For 1 <[ < 2, the vectors ws;, Mws;, M?ws; span a subspace
that corresponds to a block of the form B(3).

We proceed with j = 2. We want to pick a basis for some complementary space X,
of ker M inside ker M? that contains M*Jwy = M?wsy and M>Jws; = Mws;
and M3 Jwsy = Muwss (these are indeed the only vectors of the ten that we
found so far that are contained in ker M? but not in ker M). From dim X, =
dim ker M? —dimker M = 7—4 = 3, we find that the linearly independent vectors
M?wy, and Mws, and Mwss already span X,. This corresponds to the fact that
there are no blocks of the form B(2), as we had already seen.

Finally, for j = 1, we want to pick a basis for some complementary space X;
of ker M® = kerI;; = {0} inside ker M that contains M* Jwy = M?>wy4 and
M3 Iwsg = M?ws; and M3 Jwsy = M?ws, (these are indeed the vectors among
those that we found so far that are contained in ker M but not in ker M° = {0}).
We do this by writing down an extended matrix with M3w,; and M?ws; and
M?w3y as columns on the left, and four generators for ker M on the right, say

0o 0 0
-2 4 2 2 4 0 0
0o -1 1 0O 0 1 0
-2 4 2 |4 =2 0 O
0 2 3 0 0 0 1
2 -6 =101 0 -2 =2 =2
0 0 0 0O 0 0 O
1 -3 570 -1 -1 -1
-5 11 9 4 9 1 1
-6 13 10 |-3 3 1 1
0o 4 -6|-1 -1 0 =2

Note that here we have no columns coming from a basis for ker M® = {0}. The
associated reduced row echelon form is

|
—

SO DD DD DD DODDOD OO
SO DD DD DD OO +O
SO OO O OO OUT kN
SO OO DD OO OO O
SO DD DD DODDODO NN O
SO DD DD OO

SO DO DD DO O OO
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Since the first column on the right is the only column on the right with a pivot,
we add only the first of the four chosen generators for ker M, so

wy1 =

-3
—1

We conclude that
2 2 2 3
(wn,wgl,MwsuM w31, Waz, Mwsg, M wsa, w1, Mwyy, M wyy, M w41)

is a basis as in Theorem [4.3] Putting the eleven vectors in reverse order, we obtain
the basis B. If we let E denote the standard basis, and we set

1 4 g 0 -1 -5 0 -2 -6 1 1
-2 -7 =16 0 2 -3 1 4 2 0 2
0 3 4 0 1 0 0 -1 -4 0 O
-2 0 -1 1 2 -8 0 4 -9 0 —4
O -2 -4 0 3 5 0 2 6 0 0
Q:[id]gz 2 0 6 0 —-10 -5 0 -6 2 0 0],
0O -1 -2 0 0 1 0 0 2 0 0
1 1 5 0 -5 -5 0 -3 -2 0 0
-5 —-15 =38 0 9 -5 0 11 5 0 4
-6 —11 -28 0 10 -2 0 13 -1 0O -3
0 4 8 0 -6 -71 —4 —-10 1 -1
then we find
01 000O0OO0OO0OO0OTU OO
001 0O0O0OO0OO0ODO0OT O0@O
0 001O0O0O0OO0OO0OTG 0O
0 00O0OO0OO0OOODOTU 0O
0 00O0O0OT1O0O0OTO0OTGO0ODO
Q' MQ = KI5 fulEidl2 = [l =0 0 0 0 0010000
0O 00O0OO0OO0OO0OOT OO 0O
0O 00O0OO0OO0OOODT1TUO0F@O
0O 00O0O0OOOOOT1F®o0
0O 00OO0OO0OO0OOOOTU 0O
0O 00OO0OO0OO0OOODOTU 0O

Exercises.

(1) Let A be a nilpotent n X n matrix. Show that id,, +A is invertible.

(2) Let A be a nilpotent n X n matrix. Show that A™ = 0.

(3) Let N be a 9 x 9 matrix for which N3 = 0. Suppose that N? has rank 3.
Prove that N has rank 6.

(4) Let N be a 12 x 12 matrix for which N* = 0.
(a) Show that the kernel of N? contains the image of N?.
(b) Show that the rank of NV is at most 9.
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(c) Show that the rank of N is equal to 9 if the kernel of N? is equal to
the image of N2.

(5) Let A be a square matrix over any field. Suppose that r > 0 is an integer
for which dimker A" = dimker A"*!. Show that for every integer s > r
we have ker A" = ker A®.

(6) For which z € R is the following matrix nilpotent?

20 —1
—4 -1 -3
5 2 3
(7) For each of the matrices
4 —4 12 2 0 8
1 -1 3 01 1
—1 1 -3 -1 1 -3

give a basis for R? for which the matrix sends each basis vector either to
0 or to the next basis vector in the basis.
(8) Do the same for R* and the matrix

1 1.0 O
-5 =2 2 -1
-3 0 2 -1

-5 =2 2 -1



CHAPTER 5

The Jordan Normal Form Theorem

In this section, we will formulate and prove the Jordan Normal Form Theorem,
which will tell us that any matrix whose characteristic polynomial is a product of
linear factors is similar to a matrix of a very special near-diagonal form.

Just like true diagonal forms are related to eigenspaces, the Jordan normal form
is related to so-called generalised eigenspaces.

5.1. Definition. Let V be a vector space over a field F', and f: V — V an
endomorphism. Let A € F' be an element. The generalised \-eigenspace of f is

Ex(fy={veV : (f=Xidy) (v) =0 for somel>1} = Uker(f—)\idv)l.
1>1
We leave it to the reader to check that the generalised A-eigenspace is indeed a
subspace of V' (Exercise . Clearly, it contains the \-eigenspace

E)\(f) = ker(f - )\ldv)

Moreover, if the generalised A-eigenspace E,\( f) contains a nonzero element v, then
for some integer [ > 1 we have (f — Aidy)!(v) = 0; for the smallest such integer
we set w = (f — Aidy)" "1 (v) and find w # 0 and (f — Xidy)(w) = 0, so A is an
eigenvalue of f and w is an eigenvector for the eigenvalue A. The nonzero elements
of E)\( f) are called generalised eigenvectors for the eigenvalue \.

The following theorem shows that if V' is finite-dimensional, then there exists an
integer m such that E\(f) = ker(f — Aidy)™ (cf. Exercise .

5.2. Theorem. Let V be a finite-dimensional vector space over a field F,
and let f:V — V be an endomorphism. Let p € F[z] be a polynomial with
coefficients in F satisfying p(f) = 0. Let A € F be any element, and factorise p
as p(z) = (x — N\)"q(x) with g(\) # 0. Set

U =ker(f — \idy)™ and U =kerq(f).
Then we have Ex(f) =U and V =U & U’ and f = f|u & flor. Moreover, if p is

equal to the minimal polynomial My or the characteristic polynomial Py of f, then
the characteristic polynomial of f|u is a multiple of (x — )™, and dim E\(f) > m.

PROOF. By Lemma [2.15, we know that (z — )™ and ¢ are coprime. The fact
that V =U @ U’ and f = f|y ® f|u then follows directly from Lemma m

Since q(f|U’) = 0, the minimal polynomial of f|y: divides ¢, so it does not have
A has a root. Then by Proposition , the characteristic polynomial Py , of f |l
does not have a factor x — A, so A is not an eigenvalue of f|y. We conclude
that f — Aidy restricts to an automorphism of U’, and hence so does every power
(f —Aidy)'. This implies that the rank of (f —\idy ) is at least dim U’ for every [,
and therefore

dimker(f — Aidy)! < dimV — dim U’ = dim U.
31
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For [ > m, the containment ker(f — Aidy)" D ker(f — Xidy)™ = U is therefore an
equality, which implies E)\(f) = U.

Now suppose that p is equal to M or Ps. By definition of the minimal polynomial,
we have M;(f) = 0, and by the Cayley-Hamilton Theorem [3.1] we know that
Ps(f) =0, so in both cases all the above arguments apply. Since M, divides P,
in both cases the polynomial (x — \)™ divides the characteristic polynomial P,
which by Remark we know to be equal to Py, - Py,,. We have seen that z — A
does not divide Py, so (x— )™ is a divisor of Py|,. This implies dimU > m. 0O

5.3. Remark. In fact, in the notation of Theorem , if we have p = P, then

one can prove that Pj,, = (z — \)™ and dim E\(f) = m, as we will now sketch.
As we have seen in Remark [3.8] it is a fact that the characteristic polynomial
of an endomorphism divides some power of the minimal polynomial, though we
have only proved that in the case that the characteristic polynomial splits into
linear factors (see Proposition [3.7)), and the case that F' = R (see Exercise [12] of
Chapter (3)).
Since we know that the minimal polynomial of f|;; divides (z—\)™, it would follow
from this not-in-full-generality-proven fact that the characteristic polynomial Py,
is a power of x — A. As it is a multiple of (z — \)” by Theorem and it divides
Py, we would indeed find Py, = (z—A)™ and hence Py, = q(r) and dim U = m.

The following theorem also concludes the equality dim Ej(f) = m in the restricted
case that the characteristic polynomial Py splits into linear factors, and the mul-
tiplicity of A as a root of Py is m, just as it was above.

5.4. Theorem. LetV be a finite-dimensional vector space over a field F', and
let f: V — V be an endomorphism. Let p € F[z] be a polynomial with coefficients
in F satisfying p(f) = 0 that splits into linear factors:

p(x) = (.Z‘ — )\l)ml - (ac — )\k)mk 7

where the \; € F are distinct. Then for the generalised \;-eigenspaces U; = EAZ.( f)
of f we have U; = ker(f—\; idvzmi andV =U1&---@Ug and f = flu,® - flu,-
Moreover, if p = Py, then dim Ey,(f) = m,.

PROOF. Write p(z) = pi(x) - - - pr(z) with p;(z) = (xz — \;)™. By Theorem
we have By, (f) = U; = ker pi(f) = ker(f — \;idy)™. By Lemma [2.15, we know
that the p;(z) are coprime in pairs. The facts that V' and f are direct sums as
stated then follow from Proposition . Now suppose p = P;. By the Cayley-
Hamilton Theorem we know that Py(f) = 0, so all the arguments above apply.
From Theorem |5.2 we then also find dim U; = dim E), (f) > m; for all i, so we
obtain

dimV =) “dimU; > Y m; = deg Py = dimV,

which implies that all inequalities dim U; > m; are actually equalities. U

5.5. Theorem (Jordan Normal Form). Let V' be a finite-dimensional vec-
tor space, and let f : V — V be an endomorphism whose characteristic polynomual
splits into linear factors:

Py(x) = (= A)™ - (2 = A)™,
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where the \; are distinct. Then there is a basis for V such that the matrix rep-
resenting f with respect to that basis is a block diagonal matriz with blocks of the
form

A1 0 -+~ 00

Ox1 --- 00

00 X --- 00
BAm)=1|. . . . .. | e Mat(m, F)

00 0 - Al

0O 0 0 - 0 A

where A € {\1,..., A}

Proor. We keep the notations of Theorem We know that on U;, we have
(f = Nid)™ =0, so fly, = \iidy, + gi, where g"" = 0, i.e., g; is nilpotent. By
Theorem there is a basis for U; such that g; is represented by a block diagonal
matrix B; with blocks of the form B(0,m) (such that the sum of the m’s is m;).
Therefore, f|y, is represented by B; + A\ilgimv,, which is a block diagonal matrix
composed of blocks B(\;,;m) (with the same m’s as before). The basis for V
that is the concatenation of the various bases for the U; then does what we want,

compare Remark 2.8 O

We say that a matrix is in Jordan normal form if it is a diagonal block matrix
with all blocks along the diagonal of the form B(\,m) for some A € I’ and some
integer m > 0.

5.6. Remark. Let V, f, and A,..., A\, € F be as in Theorem [5.5] Let B be
a basis as is claimed to exist, and let A = [f]5 be the matrix associated to f with
respect to B. Take any element A\ € F. For every integer j > 0 we set r;(\) =
dimker(f — Aidy)?, and for every integer j > 1 we set s;(A) = r;(\) — rj_1(N)
and t;(A) = s;(A) — sj+1(A). Then for every integer j > 1 there are exactly ¢;(\)
blocks of the form B(), j) along the diagonal of A.

Indeed, for A not a root of the characteristic polynomial P, we get r;(\) =
s;(A) =t;(A) =0 for all j, and no blocks of the form B(), j) for any j. If A =\,
for some 7, then in terms of the notation of the proof of Theorem we can apply
Proposition to the nilpotent endomorphisn g; = f|y, — Aidy,, which satisfies
g = 0. Note that for every integer j > 0 the kernel ker(f — \;idy/)? is contained
in ker(f — \;idy)™ = U; by Theorem . Hence this kernel equals ker gg , and we
find ;(\;) = dimker g/. Proposition then states that there are ¢;();) blocks
of the form B(0,7) in a diagonal block matrix for g;, and these blocks correspond
to blocks in A of the form B(\;, j).

5.7. Corollary. Let A, A" € Mat(n, F') be two square matrices such that the
characteristic polynomial of A splits into linear factors, that is,

Py(x) = (x —X)™ oo (x— Ap)™

Then A and A’ are similar if and only if for each index 1 < i < k and each integer
1 < j < m; we have dimker(A — \;I)7 = dimker(A" — \;1).

PROOF. If A and A’ are similar, then the claimed equality of dimensions holds.
For the converse, assume that for every index 1 < ¢ < k and for each integer
1 < j < m; we have dimker(A — \;I)? = dimker(A’ — A, 7). Then in particular,
this holds for j = m;. Since ker(A—\;I)™ is the generalised eigenspace associated
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to \; for A, we find that for each 7, the dimension of the generalised eigenspace
associated to \; is at least as large for A" as for A. Since the sum of the dimensions
of all generalised eigenspaces for A and for A" are both equal to n, we find that
equality holds for each 7, and furthermore, A’ has no other eigenvalues. It follows
that the characteristic polynomials of A and A" are the same. From Remark
we conclude that A and A’ are both similar to a block diagonal matrices B and B’,
respectively, where B and B’ have the same blocks along the diagonal. For details,
compare to the proof of Corollary [4.17, Then B and B’ are similar, as they can
be obtained from each other by a permutation of the basis. So by transitivity of
similarity, also A and A’ are similar. Il

Here is a less precise, but for many applications sufficient version of Theorem [5.5]

5.8. Corollary. Let V' be a finite-dimensional vector space, and let f :V —
V' be an endomorphism whose characteristic polynomial splits into linear factors,
as above. Then we can write f = d + n, with endomorphisms d and n of V, such
that d s diagonalizable, n s nilpotent, and d and n commute: don =nod.

Proor. We just take d to be the endomorphism corresponding to the ‘diagonal
part’ of the matrix given in Theorem and n to be that corresponding to the
‘nilpotent part’ (obtained by setting all diagonal entries equal to zero). Since the
two parts commute within each ‘Jordan block,” the two endomorphisms commute.

O

5.9. Example. Let us compute the Jordan Normal Form and a suitable basis
for the endomorphism f : R* — R3 given by the matrix

0 10
A=10 0 1
-4 0 3
We first compute the characteristic polynomial:
z —1 0
Pi(x) =10 = -1 |=2*(z-3)+4=2"-3"+4=(v—-2>%x+1).
4 0 x—-3

We see that it splits into linear factors, which is good. We now have to find the
generalised eigenspaces. The eigenvalue —1 has algebraic multiplicity 1, so its
generalised eigenspace has dimension 1. It is therefore equal to the eigenspace

1 10
E(fy=ker | 0 1 1|=L((1,-1,1)"),
—4 0 4
so for a basis we can choose v = (1,—1,1)". The other eigenspace is
-2 1 0
Es(fy=ker | 0 —2 1| =1L((1,2,4)7).
-4 0 1

This space has only dimension 1, so f is not diagonalizable, and we have to look
at the generalised eigenspace:

4 -4 1
ker((f —2id)?) =ker [ -4 4 —1] =L((1,1,0)",(1,0,-4)").
4 -4 1
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To construct a basis for this generalised eigenspace, we follow the proof of The-
orem [4.3] applied to the nilpotent endomorphism that is f — 2id restricted to
its generalised eigenspace. We start with a basis for a complementary space of
ker(f — 2id) inside ker(f — 2id)%. Such a complementary space has dimension
dim ker(f — 2id)? — dimker(f — 2id) =2 — 1 = 1, so we can take any element in
ker(f — 21id)? that is not contained in ker(f — 2id), say wq; = (1,1,0)". As basis
for this generalised eigenspace, we then obtain (wsy, (f — 2id)(ws;)). Reversing
the order, and adding the basis (v) for the generalised eigenspace for A = —1, we
get a basis

B = ((f—2id)(wa), war,v) = ((-1,-2,-4)7,(1,1,0)",(1,-1,1)") ,
for R3. With

11 1
P=[dg=[-21 -1
-4 0 1
we obtain
21 0
(fal2 = (A - [fa]Z - [id]8 =P*AP = [0 2 0
00 —1

As mentioned in Example [4.19, from small examples one does not always get an
idea of the general case, so at the end of this chapter, we will do some bigger
examples.

5.10. Application. One important application of the Jordan Normal Form
Theorem is to the explicit solution of systems of linear first-order differential equa-
tions with constant coefficients. Such a system can be written

Syl = A-y(),
where y is a vector-valued function and A is a matrix. One can then show (Exer-
cise) that there is a unique solution with y(0) = yo for any specified initial value yp,
and it is given by

y(t) = exp(tA) - yo
with the matrix exponential

[e.9] n

exp(tA) = — A",
n!
n=0
If A is in Jordan Normal Form, the exponential can be easily determined. In
general, A can be transformed into Jordan Normal Form, the exponential can be
evaluated for the transformed matrix, then we can transform it back — note that

exp(tP'AP) = P lexp(tA)P.

5.11. Remark. Writing an endomorphism f: V — V as f = n + d with d
diagonalizable and n nilpotent and d o n = n o d is very useful for computing
powers of f, as for every positive integer k, the relation d o n = n o d implies

Mk o
fk: _ Z (Z.)dkznz’
=0

and if n™ = 0 for some integer m, then all terms with ¢ > m vanish.
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5.12. Remark. What can we do when the characteristic polynomial does
not split into linear factors (which is possible when the field F' is not algebraically
closed)? In this case, we have to use a weaker notion than that of diagonalizability.
Define the endomorphism f : V. — V to be semi-simple if every f-invariant
subspace U C V has an f-invariant complementary subspace in V. One can show
(exercise) that if the characteristic polynomial of f splits into linear factors, then
f is semi-simple if and only if it is diagonalizable. The general version of the
Jordan Normal Form Theorem then is as follows.

Let V' be a finite-dimensional vector space, f :V — V an endomorphism. Then
f = s+ n with endomorphisms s and n of V' such that s is semi-simple, n is
nilpotent, and son =no s.

Unfortunately, we do not have the means and time to prove this result here.

However, we can state the result we get over F' = R.

5.13. Theorem (Real Jordan Normal Form). LetV be a finite-dimensional
real vector space, f :V — V an endomorphism. Then there is a basis for V such
that the matriz representing f with respect to this basis is a block diagonal matriz

with blocks of the form B(X\,;m) and of the form (with pn > 0)

A —p 10 - 0 0 0 O
L A 0 1 -~ 0 0 0 0
0 0 A —p 0 0 0 0
0 0 u A 0 0 0 0
B'\pm)=|: =+ + .. 1t | €Mat(R,2m).

0 0 0 0 A o—p 1

00 0 0 Lo A 0 1
0 0 0 0 0 0 XN —u
0 0 0 0 0 0 u A

Blocks B(X\,m) occur for eigenvalues X of f; blocks B'(\, pu,m) occur if Py(x) is
divisible by x* — 2 x + \* + p?.

Warning: the Real Jordan Normal Form in this theorem is not a Jordan Normal
Form, unless the characteristic polynomial of f splits into linear factors, in which
case only blocks of the form B(A, m) occur.

PrROOF. Here is a sketch that gives the main ideas. First choose any basis
B = (z1,...,x,) for V, so that pp: R* — V given by (A,...,\,) —= D> Nz
is an isomorphism. Identifying V' with R™ through this isomorphism reduces the
problem to the case V' = R", which is naturally contained in C", and f: R* — R"
being given by a real n X n matrix A.

Over C, the characteristic polynomial Py = P4 will split into linear factors. Some
of them will be of the form x — A with A € R, the others will be of the form
x — (A4 pi) with A\, u € R and p # 0. These latter ones occur in pairs

(x — A+ pi))(z — (N —pi)) = 2 — 20 + N\ + 2.

If v1,...,0,, € C" is a basis for the generalised eigenspace (over C) for the eigen-
value A + pi, then vq,...,7,, is a basis for the generalised eigenspace for the
eigenvalue A\ — ui, where v denotes the vector obtained from v € C" by replacing
each coordinate with its complex conjugate. If we now consider

(’Ul + ?71),i(U1 — 171), ey (Um + @m),i(vm — @m) 5
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then these vectors are in R™ and form a basis for the sum of the two generalised
eigenspaces. If (v, ..., v,,) gives rise to a Jordan block B(A+ ui, m), then we have

foi+01) = f(vi) + f(0:) = [(vi) + flws)
= (A + pi)v; + ) + (N — pi)v; + ),
= Moy 4+ 0;) + piv; — 5) + vy + v,
Fli(v; =) = if (vi) = if (0;) =i~ f(v:i) =i~ fvi)
= i(\ + pi)v; + v, — (N — pi)v; —wl_,
= Xi(v; = 0;) — pulvs + ;) + i(viy = v]y),

forv,_; =0ifi=1and v,_; = v;_; if i > 1, so the new basis gives rise to a block

of the form B'(A, 1, m). O
5.14. Theorem. LetV be a finite-dimensional vector space, f1,..., fr:V —
V' diagonalizable endomorphisms that commute in pairs. Then fi,..., fr are si-

multaneously diagonalizable, i.e., there is a basis for V' consisting of vectors that
are eigenvectors for all the f; at the same time. In particular, any linear combi-
nation of the f; is again diagonalizable.

PRrROOF. First note that if f and ¢ are commuting endomorphisms and v is a
A-eigenvector of f, then g(v) is again a A-eigenvector of f (or zero):

flg9(v)) = g(f(v)) = g(Av) = Ag(v).
We now proceed by induction on k. For £ = 1, there is nothing to prove. So assume

k> 2. We can write V = U, & - - - @ U, where the U; are the nontrivial eigenspaces
of fr. By the observation just made, we have splittings, for j =1,...,k — 1,

fi=fPe-af?  with £7 U = UL

By Corollary [3.12 the restrictions fj@: U; — U; are diagonalizable, so by the
induction hypothesis, fl(i)7 ce ,@1 are simultaneously diagonalizable on U;, for
each i. Since U; consists of eigenvectors of fi, any basis for U; that consists of
eigenvectors for all the f; with j < &, will also consist of eigenvectors for all the
f;j with j <k, that is, including j = k. To get a suitable basis for V', we take the

concatenation of the bases of the various U;. O

To finish this section, here is a uniqueness statement related to Corollary 5.8

5.15. Theorem. The diagonalizable and nilpotent parts of f in Corollary[5.§
are uniquely determined.

PROOF. Let f = d+n = d + n’, where d and n are constructed as in the
Jordan Normal Form Theorem [5.5], so with d diagonalizable and n nilpotent and
don =mnod, and where d’ is diagonalizable, n’ is nilpotent, and ' on’ =n' o d'.
Then d’ and n’ commute with f (asd'of =d' od' +d' on’ =d od' +n'od = fod,
same for n’). Now let g be any endomorphism commuting with f, and consider

v e U; =ker((f —A;id)™). Then

(f = Aid)™ (g(v)) = g((f = A;id)™ (v)) = g(0) =0,
so g(v) € Uj, i.e., U; is g-invariant. So g = g1 @ --- @ g; splits as a direct sum
of endomorphisms of the generalised eigenspaces U; of f. Since on Uj, we have
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flu, = Ajid+n|y, and g commutes with f, we find that g; commutes with n[y,
for all 7, hence g commutes with n (and also with d).

Applying this to d’ and n/, we see that d and d' commute, and that n and n’
commute. We can write

d—d =n"—n;
then the right hand side is nilpotent (for this we need that n and n’ commute!).

By Theorem [5.14] the left hand side is diagonalizable, so from Proposition [4.2] we
conclude d —d' =n’ —n =0, that is, d = d and n’ = n. O

As promised, we will now give some bigger examples of matrices that we will put
in Jordan normal form.

5.16. Example. Consider the matrix

2 3 3 3 3
0 -1 0 -1 -1
A=10 0 -1 1 O
0o 0 0 -1 1
o 0 0 0 -1

We want an invertible matrix ) and a matrix J in Jordan normal form such
that A = QJQ~!. The characteristic polynomial of A is (z — 2)(x + 1), so the
eigenvalues are 2 and —1. The dimensions of the generalised eigenspaces equal the
algebraic multiplicities, so they equal 1 and 4, respectively.

The dimension of the eigenspace associated to an eigenvalue is at least 1, so for
the eigenvalue A\ = 2 the associated eigenspace ker(A — 27) is the whole gener-
alised eigenspace, as both have dimension 1. The element e; is contained in the
eigenspace, so e; generates this subspace.

For the eigenvalue A = —1, we follow the proof of Theorem (as A+ 1 is

nilpotent on the generalised eigenspace for A = —1). We have
333 3 3 9999 9
000 -1 -1 0000 -1
A+I=| 000 1 0], (A+0)*>=]100 00 1
000 0 1 0000 O
000 0 0 0000 O
and
27 27 27 27 27
0O 0 0 0 O
(A+I*=] 0 0 0 0 0
0 0 0 0 O
0O 0 0 0 O

Because (A+1)? has rank 1 we have dim ker(A+1)? = 5—1 = 4. As the generalised
eigenspace has dimension 4, the subspace U = ker(A+ I)? is the whole generalised
eigenspace. For each n = 1,2, 3, the kernel ker(A + I)" is easy to determine, since
(A+1)" is almost in row echelon form. We find

ker(A+1)=L((-1,1,0,0,0),(-1,0,1,0,0))
ker(A + 1) = L((-1,1,0,0,0),(-1,0,1,0,0)

<_170707170))
ker(A+1)* = L((-1,1,0,0,0),(—1,0,1,0,0), (—

1,0,0,1,0), (=1,0,0,0,1)).

Y
9
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For the dimension r,(—1) = dimker(A + I)™ we have r;(—1) = 2 and ro(—1) = 3
and r3(—1) = 4. We get s1(—1) = 2 and so(—1) = 1 and s3(—1) = 1. We also get
t1(—1) = 1 and t5(—1) = 0 and ¢3(—1) = 1, so there are two Jordan blocks, one
of size 1 X 1 and one of size 3 x 3.

For the largest block, we choose a complementary subspace of ker(A + I)? inside
ker(A + I)3; this complementary space has dimension s3 = r3 — 79 = 1, so it
suffices to pick one vector: a vector in ker(A + I)% \ ker(A + I)?, so for example
ws; = (—1,0,0,0,1). The other two vectors associated to the 3 x 3 block are
(A + I)w31 = (0, —1, O, 1, O) and (A + [)211)31 = (O, —1, 1, 0, 0)

Any complementary subspace for ker(A + I) inside ker(A + I)? has dimension
So =19 — 11 = 1 as well, so (A + I)ws; already generates such a complementary
space. A complementary subspace for ker(A + I)° = {0} inside ker(A + I) is
equal to ker(A + I), which has dimension 2; we already have a vector, namely
(A+I)*ws3 = (0,—1,1,0,0), so in order to generate ker(A + I), it suffices to add
a vector from ker(A + I) that is not a multiple of (A + I)?ws;. For example, we
may choose wy; = (—1,1,0,0,0). This vector corresponds to the 1 x 1 block.

The vectors e, (A + I)?wsy, (A + Iwsy, wsp, wi; form a basis B. If we put the
vectors in this order in a matrix, then we get

1 0 0 -1 —1

0 -1 -1 0 1
Q=[d2=]10 1 0 0 o0 [,

o 0 1 0 0

o 0 0 1 0

where F is the standard basis. The associated Jordan normal form is then

2 0 0 0 0
0 -1 1 0 0
J=[fae=10 0 -1 1 0
0 0 0 -1 0
0o 0 0 0 -1

Indeed, one verifies QJQ~* = [id]B - [fa]5 - [id]5 = [fa]% = A.

5.17. Example. We consider the real matrix

-1 1 -1 1 -1 1 -1 1 -1 1

o -1 3 -3 3 -3 3 -3 3 -3

o o0 2 o0 1 -1 1 -1 1 -1

o o o 2 1 -1 1 -1 1 -1
wol0 0o 0 0 2 0 1 -1 1

o o o o0 o 2 1 -1 1 =1}

o o o o0 o o 2 0 1 -1

o o o o0 o o o0 2 1 0

o o o o o o o o0 2 1

o o o o o0 o0 o0 o0 0 2

which has characteristic polynomial (z + 1)?(x — 2)®. Therefore, we have to deal

with the two generalised eigenspaces
Uy = ker(M + I)? and Us = ker(M — 21)®

of dimensions 2 and 8, respectively. Indeed, by Theorem , we have R0 =
Uy @ U,. Let eq,...,e10 € R denote the standard basis vectors.
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We start with the larger case, namely Us. By definition of Us,, the restriction of
far—or to Us is nilpotent, as f§; ,; restricts to 0 on U,. By finding a row echelon
form for (M — 2I)" for 1 < n < 3, we find r;(2) = dimker(M — 2/) = 4 and
r9(2) = dimker(M — 21)*> = 7 and r3(2) = dimker(M — 27)> = 8. For n > 3 we
have
8 = dimker(M — 2I)* < dimker(M — 2I)" < dim U, = 8,

so we conclude ker(M — 27)3 = U, and r,,(2) = dimker(M — 2I)" = 8 for n > 3.
This yields the following table for s,(2) = 7,(2) — r,—1(2) and ¢,(2) = s,(2) —
Sn+1(2).

n | ra(2) | $n(2) | ta(2)
0| 0

1 4 4 1
2 7 3 2
3| 8 1 1
41 8 0 0
2| 8 0 0

We conclude that in any Jordan Normal Form for M, there is one Jordan block
for eigenvalue 2 of size 1, there are two of size 2, and there is one of size 3.

As mentioned before, the restriction of fy;_o; to Us is nilpotent by definition of Us.
In fact, we have (fi_2r|p,)® = 0. To find a suitable basis for U,, we follow the
proof of Theorem [4.3] applied to this nilpotent endomorphism of Us. We consider
the filtration

{0} C ker(M — 2I) C ker(M — 2I)* C ker(M — 2I)% = U,

and we will choose integers ti,ts,t3 > 0 (which should turn out to be the values
t;(2) from the table above) and elements wj, € ker(M — 2I)7 with 1 < j < 3 and
1 <1 <t; such that for each index 1 < j < 3 the sequence

(M = 20)" (w)) j<r<s

1<I<ty,
is a basis for a complementary subspace X of ker(M —27)7~! inside ker(M —2I).

We had already brought (M — 27)™ into row echelon form before and we can use
that to find explicit bases for ker(M — 2I)" for 1 <n < 3. We find

ker(M — 2I) = (1, 9, T3, T4),

ker(M —21)* = (y1, Y2, Y3, Ya, Ys, Yo, U7

ker(M — 21)? = (21, 22, 23, 24, 25, Z6, 27, 28),
with
0,1,0,0,0,0,0,0,0, 1),
0,0,1,0,0,0,0,0,0,1),
0,0,0,1,0,0,0,0,0, 1),
0,0,0,0,1,0,0,0,0,1),

0.1,0.0.0.0,0,0,1,0), 1~
2o = (
23 = (
24 = (
25 = (0,0,0,0,0,1,0,0,0, —1),
26 = (
27 = (
2z = (

0707 1707 07070707 _17())7
0,0,0,1,0,0,0,0,1,0),

ylz(
0,1,0,-1,0,0,0,0,0,0), %2 = {
y3:(
Yg = (0707070717070707_17())7
1/5:(
?JGZ(
3/7:(

x1 = (

e = (0,0,1,1,0,0,0,0,0,0),
x3 = (0,0,0,0,1,1,0,0,0,0),
x4 = (

0,0,0,0,0,1,0,0,1,0),
0,0,0,0,0,0,1,1,0,0),

0,0,0,0,0,0,1,0,—1,0),
0,0,0,0,0,0,0,1,1,0),

0,0,0,0,0,0,1,0,0,1),
070707070707 07 1707 _1)7
0,0,0,0,0,0,0,0,1,1).
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In the first step, corresponding to j = m in the notation of the proof of Theo-
rem , we want a complementary subspace X3 of ker(M —21)? inside the subspace
ker(M — 2I)3 = U,. One way to do this is to put the basis elements v, ..., y;
for ker(M — 2I)? as columns in a matrix, and add the generators zi,...,zg for
ker(M — 2I)3 as more columns to the right:

SO O OO+ OO
DO O OO OO
ORr OO OO oo
(vl el en i en e el el =)
SO DO DODO OO O
[N eNell o NeNoNo N
SR OO OO O oo

|
—_

|
—_

O OO OO OOoOOo
|
—_

SRR OOOOOoOOoOOo
— O O, OO O o oo
— 0O O OO o o oo

(el Sl el el )
SR OO~ OOOo
—_ o OO o oo OO
_H OO OO+, OO OO

S
o
e}
|
—_
|
—
|
—_
|
—

The reduced row echelon form for this matrix is

|
—_

S OO OO ==
SO Rr OO oo
SO OO OO

e}
e}

DD OO OO OO
o

OO O ODODOOoOOo oo
OO OO o oo

cocoocoococoococo~—
cocoocococoocoor~O
coocococoor~roO
coocococorocooO
coococo~ocoocoo
coOrRrocOoOoOO RO
corrocorRrOoOO
corRrrRroOoOOoOO

e}

Of the added columns to the right, only the first has a pivot. This implies that
the first of the added generators, namely z;, generates a complementary space of
ker(M — 2I)? inside ker(M — 2I)3. [Of course, we could have seen this without
any computation. From the last coordinate, we see that no z; is contained in
ker(M — 2I)?, as the last coordinate of all the y; is 0; since ker(M — 2I)? has
codimension 1 inside ker(M — 2I)% (meaning the difference of their dimensions
is 1), any element in ker(M —27)3 that is not contained in ker(M — 2I)? generates
a complementary space of ker(M — 21)? inside ker(M — 2I)3.] So, we take t3 = 1
and w3; = z; and X35 = (ws).

The second step corresponds to j = 2. We want to extend (M — 21)(X3), that is,
the image of X3 under multiplication by M — 21, to a complementary subspace X,
of ker(M — 2I) inside ker(M — 2I)2. We follow the proof of Lemma First,
note that (M — 27)(X3) has basis (M — 2I)ws; = (0,0,1,1,1,1,1,0,—1,0). We
put the basis elements z1, ..., x4 for ker(M — 2I) as columns in a matrix, we add
(M —21@)ws; as a column to the right, and we finally add the generators y;, ..., yr
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for ker(M — 21)? as columns to the far right:

O 00000 O O O O O O
1 000/ 0|1 0O O O 0 0 O
0O 10010 1 0 0 0 0 O
-1 1 00[{1(0 O 1 0 O 0 O
0O 01 0/1(0 O O 1 0 0 O
0O 01010 O O 0O 1 0 O
0O 00110 O O O O 1 O
0O 001,00 O O O O O 1
o 00 Of{—-1f1 -1 1 -1 1 -1 1
0O 00 0[O0 O O O O O O
The reduced row echelon form for this matrix is
100 0/O0O|]O 1T -1 0 0O 0 O
01 0o0(0OjO 1 0 O O -1 1
0O01o0(0OjO O O O 1 -1 1
000 1(0/0O O O O O o0 1
0O00O0O(1lO O O O O 1 -1
0O00O0O[Ofl -1 1 0 O 0 O
0O00O0O[0O[O O O 1 -1 0 0
0O00O0O[0O[O O O O O 0 o0
0O00O0[O[O O O O O 0 o0
0O00O0O[O[O O O O O 0 o0

So of the last seven columns, the first and the fourth contain a pivot. This means
that if we add y; and y4 to (M —21)ws;, then we obtain a basis for a complementary
space X of ker(M — 2I) inside ker(M — 2I)?. Hence, we set t, = 2 and wo; = ¥,
and wqy = y, and we denote the space (M — 21)wsy, way, was) by Xo.

In the step corresponding to j = 1, we extend (M — 27)(X3) to a complementary
space X; of ker(M — 2I)° inside ker(M — 2I). Since we have (M — 2I)° = I,
we find ker(M — 21)" = {0}, so X; = ker(M — 2I). Note that (M — 2I)(X>) is
generated by

(M - 2[)2w31 = (070707070707 _17 _1707 0)7
(M — 21 ws = (0,0,1,1,1,1,1,1,0,0),
(M — 21wy = (0,0,0,0, —1, 1, —1, —1,0,0).

We put these as columns in a matrix and add columns for the generators x1, ..., x4
for ker(M — 21).

0 0 00 0O0O
0 0 0|1 0O0O0
0 1 00 100
0 1 0|-1 100
0 1 -1{0 010
0 1 -1{0 010
-11 -1]0 001
-11 -1} 0 001
0 0 0]0 0O0O
0 0 00 O0O0O0
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The reduced row echelon form for this matrix is

10000 1 -1
010/01 0 O
00 1/01 -1 O
00010 0 O
00 0|00 O O
00 0|00 O O
00 0|00 O O
00 0|00 O O
00 0|00 O O
00 0|00 O O

Since only the first of the right-most four columns has a pivot, it suffices to add x;
to the elements we already had in order to get a basis for ker(M — 27). In other
words, we set t; = 1 and wy; = z1 and let X; be the subspace generated by

( (M - 2[)211)317 (M - 2[)11}21, (M - 2[)'11}22,'11}11 ) .
We now reorder the elements of the bases for X, X5, X3 to get a basis
C= ((M - 2[)211)31, (M - 2[)w31,w31, (M - 2[)@022,1022, (M - 2[)1021, Wa1, wll)

for the generalised eigenspace X; & X @ X3 = Us. Note that indeed the integers
t; coincide with the integers ¢;(2) in the table above.

We continue with the generalised eigenspace U;. By definition of Uy, the restriction
of far4r to Uy is nilpotent, as f3,,; restricts to 0 on Uy. It is easy to verify that
ker(M + I) is generated by e, while ker(M + I)? is generated by e; and e,. We
proceed exactly the same as for U,, but everything is much easier in this case.
The vector ey generates a complementary space of ker(M + I') inside ker(M + I)?,
S0 we set vg; = eg. Its image under M + [ is (M + I)vy; = e1, which, as we said,
generates ker(M + I). Together, vy; and (M + I)ve; = e form a basis D for the
generalised eigenspace Uj.

The bases C' and D together yield the basis
B = ((M—QI)QU/?JL (M—2I)w31, w31, (M—2])w22, W22, (M—2I)w21, Wa1, W11, (M+I)U21> U21)

for U, @ Uy = R'°. If we let E denote the standard basis for R!°, then the matrix
P = [id]2 has the elements of B as columns, that is,

o 0 o0 0o 0 00 0 10
o o 1 0 0 01 1 01
o 1 o0 O O 10 0 0O
o 1 0 0 o0 10 -1200
p_ o 1 0 -1 1 10 0 0O
o 1 0 -1 0 10 0 0O
-1 1 0 -1 0 1 0 0 0O
-1 0 0 -1 0 10 0 00
0o -1 0 0 -101 0 0O
o 0 -1 0 0 OO0 O 0O
We now already know that [fy/]5 = [id|E[fym]E[id]Z = P7'MP is a matrix

in Jordan Normal Form, with Jordan blocks B(2,3), B(2,2), B(2,2), B(2,1) and
B(—1,2) in this order along the diagonal (for this notation, see Theorem [5.5)).
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Indeed, a simple but tedious calculation shows

21000000 0 O
02100000 0 O
002000O0O0 0 O
00021000 0 O

1 00002000 0 O
PMP = 0000O0O2T1TCO0 0 O
0000O0O02¢0 0 O
0000O0OO0OO0OZ2 0 O
0000O0OO0OO0OO0-11
0000O0O0OO0OO0O 0O -1

Exercises.

(1)

(2)

(3)

(7)

Let V' be a vector space over a field F', and f: V — V an endomorphism,
and A € F' an element. Show that the generalised A-eigenspace EA( f) is
a subspace.

Give an example of an endomorphism f of a vector space V over a field F',
and an element A € F, such that the generalised \-eigenspace E\(f) is
not equal to ker(f — Xidy)! for any [ > 0.

Let J € Mat(n, F)) be a matrix in Jordan Normal Form. Factorise the
minimal polynomial M; of J as

My=(x—=X)"(x— X))+ (. — M)

with A; # \; for 7 # j. Show that for each 7, the multiplicity m; is equal
to the largest ¢ for which there is a block B(\;,¢) that occurs in J.
In each of the following cases, give an example of a real 4 x 4-matrix A
with the given properties, or explain why such a matrix does not exist.
Here I denotes the 4 x 4 identity matrix.

(a) A2 =0 and A has rank 1;

(b) A2 =0 and A has rank 2;

(c) A%? =0 and A has rank 3;

(d) A has rank 2, and A — [ has rank 1;

(e) A has rank 2, and A — I has rank 2;

(f) A has rank 2, and A — [ has rank 3.
Let V' be a finite-dimensional vector space over any field F'. Let f be an
endomorphism of V', and let A € F' be any scalar. Suppose r > 0 is an
integer satisfying rk(f — Midy)” = rk(f — Aidy)""*. Show that for all
s > r we have im(f — Aidy )" = im(f — Aidy)®.
For the following matrices A, B give their Jordan normal forms, and
decide if they are similar.

2 00 O 2 0 0 =2
0 2 2 0 1 2 1 0
A=1119 B=1002 2
002 2 000 2
Give the Jordan normal form of the matrix
2 2 0 -1

0 00 1
1 5 2 =2
0 -4 0 4
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(8) Give the Jordan normal form of the matrix

1 010

1 110

0010

0011

(9) Let A be the 3 x 3 matrix

1 1 2

A=10 1 3

0 01

Compute A0,
(10) Consider the matrix A = ( _1 ;l .
(a) Give the eigenvalues and eigenspaces of A.
(b) Give a diagonalizable matrix D and a nilpotent matrix N for which
D+ N=Aand DN = ND.
(c) Give a formula for A™ when n =1,2,3, ...
(11) For the matrix

A:

S O N
O~ =
— = =

give a diagonalizable matix D and a nilpotent matrix N so that A = D+ N

and ND = DN.
21 -1
(12) For A= | 0 4 —2 | compute the matrix e?.
02 0
(13) Let ¢: R® — R3 be the linear map given by ¢(x) = Ax where A is the
matrix

OO W
S W
—_— o O

We proved in class that generalised eigenspaces for ¢ are ¢-invariant.
What are these spaces in this case? Give all other ¢-invariant subspaces
of R3.

(14) Compute the characteristic polynomial of the matrix

1 -2 2 =2
1 -1 2 0
A= 0O 0 -1 2
0 0 -1 1

Does A have a Jordan normal form as 4 X 4 matrix over R? What is the
Jordan normal form of A as a 4 x 4 matrix over C?
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(15) Let n be a positive integer, and A a real n x n matrix. The table below
shows the dimension of several subspaces of R".

U dim U
ker A 3
ker A? 3
im A3 8
ker(A — 21,,) 3
ker(A —2I,)*| 6
ker(A — 2]n)3 7
ker(A — 31I,,)? 1

(a) Prove that we have ker A = ker A? = ker A3.
(b) Prove that n = 11.
(c) Prove that A has a Jordan normal form over R (this does not refer
to the real Jordan Normal Form as in Theorem [5.13).
(d) Show that the Jordan normal form for A is the determined uniquely,
up to the order of the Jordan blocks, by the information in the table.
Give a Jordan normal form for A.

(16) Suppose that for a 20 x 20 matrix A the rank of A’ for i = 0,1,...9
is given by the sequence 20,15,11,7,5,3,1,0,0,0. What sizes are the
Jordan-blocks in the Jordan normal form of A?

(17) Let V be a complex vector space of dimension at most 3, and f an en-
domorphism of V. Show that f is determined, up to similarity, by its
characteristic and minimal polynomial together.

(18) For a complex square matrix A, we define

sin(A) = Z ((_—DHAQ"H.

|
‘ 2n +1)!

You do not need to show that the sum converges. What is the sine of the

matrix < ™7 )?
0 =



CHAPTER 6

The Dual Vector Space

6.1. Definition. Let V' be an F-vector space. A linear form or linear func-
tional on V is a linear map ¢ : V — F.

The dual vector space of V' is V* = Hom(V, F'), the vector space of all linear forms
on V.

Recall how the vector space structure on V* = Hom(V, F') is defined: for ¢, ¢ € V*
and A\, i € F', we have, forv e V|

(AD + pab)(v) = Ap(v) + pab(v) .

6.2. Example. Consider the standard example V' = F™. Then the coordinate
maps
P (@1, .., x,) —

are linear forms on V.

The following result is important.

6.3. Proposition and Definition. LetV be a finite-dimensional vector space

with basis (v1,...,v,). Then V* has a unique basis (v3,...,v}) such that

1 ifi=j
This basis (v, ..., v:) of V*is called the dual basis of (v, ..., v,) or the basis dual
to (vi,...,0p).

PROOF. Since linear maps are uniquely determined by their images on a basis,
there certainly exist unique linear forms v} € V* with v} (v;) = d;;. We have to
show that they form a basis of V*. First, it is easy to see that they are linearly
independent, by applying a linear combination to the basis vectors v;:

0= ()\11)1< + -+ AnU:L)(Uj) = )\161]' + -+ )\ndn] = )‘j .
It remains to show that the v generate V*. So let ¢ € V*. Then
¢ = ¢(vi)v] + -+ d(vn)vy

since both sides take the same values on the basis vq,...,v,. O

It is important to keep in mind that the dual basis vectors depend on all of
vy, ..., U, — the notation v} is not intended to imply that v} depends only on v;!

Note that for ¢ € V* we have

n

¢ = Z P(vj)v

Jj=1
47
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and for v € V', we have

v = Z v (v)v;
i=1
(write v = Aoy + -+ - + Ay, then vf(v) = ;).

6.4. Example. Consider V' = F™, with the canonical basis F = (eq,...,e,).
Then the dual basis is P = (pi,...,p,) consisting of the coordinate maps from

Example [6.2]
6.5. Corollary. IfV is finite-dimensional, then dim V* = dim V.

Proor. Clear from Prop. [6.3 O

6.6. Remark. The statement in Corollary is actually an equivalence, if
we define dimension to be the cardinality of a basis. If V' has infinite dimension,
then the dimension of V* is “even more infinite”. This is related to the following
fact. Let B be a basis for V. Then the power set of B, i.e., the set of all subsets
of B, has larger cardinality than B. To each subset S of B, we can associate an
element 1) € V* such that ¢g(b) =1 for b € S and ¢g(b) =0 for b € B\ S. Now
there are certainly linear relations between the g, but one can show that, if B is
infinite, no subset of {¢g : S C B} whose cardinality is that of B can generate all
the yg. Therefore any basis for V* must be of strictly larger cardinality than B.

Note that again, we are implicitly assuming that every vector space has a basis
(cf. Remark [2.3). Also, we are using the fact that for any basis B = (v;);e; of V
and any collection C' = (w;);e; of elements in a vector space W, there is a linear
map ¢: V — W that sends v; to w; for each ¢ € I. Indeed, this follows from the
fact that the map ¢p: F'D) — V that sends (\;)ies to Y, \iv; is an isomorphism,
so the map ¢: V — W is oo o o' See Exercises 3.1.9, 4.4.7 of Linear Algebra I,
2018 edition, also to recall that F(O) denotes the vector space of all functions from
I — F that are zero for all but finitely many elements of .

6.7. Example. If V' = L(sin, cos) (a linear subspace of the real vector space
of real-valued functions on R), then the basis dual to sin,cos is given by the
functionals f — f(7/2), f — f(0).

6.8. Theorem. LetV be a vector space and V** = (V*)* its bidual. Then the
map ay V. — V** that sends v € V to the linear map ay (v): V* — F given by
V*3 ¢ ¢(v) is an injective homomorphism; moreover, ay is an isomorphism
when V' is finite-dimensional.

PrROOF. We sometimes denote the evaluation map ay(v): V* — F by ev,,
though this notation may also be used for any other evaluation map (cf. Exam-

ple [6.10).  Then ay(v) is a linear form on V* by the definition of the linear
structure on V* Also, ay is itself linear:
ay (Ao + XNv') (@) = p(Av + Nv') = Ad(v) + No(v)
= Aay (v)(¢) + Nay (v')(¢) = (Aay (v) + Nay (V) (¢).
In order to prove that ay is injective, it suffices to show that its kernel is trivial.
So let 0 # v € V. Using Zorn’s Lemma from Set Theory (cf. Remark and

see Appendix E of Linear Algebra I, 2020 edition, or later), we can choose a basis
for V' containing v. Then there is a linear form ¢ on V' such that ¢(v) = 1 (and
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¢(w) = 0 on all the other basis elements, say). But this means ay (v)(¢) = 1, so
ay(v) # 0 and v ¢ ker avy .

Finally, if V is finite-dimensional, then by Corollary [6.5, we have dim V** =
dimV* = dimV, so ay must be surjective as well (use dimim(ay) = dimV —
dim ker(ay ) = dim V**.) O

6.9. Corollary. LetV be a finite-dimensional vector space, and let (¢1, . .., dn)
be a basis for V*. Then there is a unique basis (vy,...,v,) of V with ¢;(v;) = d;;.

PROOF. By Prop.[6.3] there is a unique dual basis (¢}, ..., ¢}) of V** = (V*)*.
Since avy is an isomorphism, there are unique vy, . .., v, in V such that ay (v;) = o5
They form a basis for V', and

¢i(v;) = evy,(9i) = av(v;)(di) = &7 (i) = s -

In other words, (¢1, ..., ¢,) is the basis for V* dual to (vq,...,v,).

6.10. Example. Let V be the vector space of polynomials of degree less
than n; then dim V' = n. For any a € F, the evaluation map

eve:Vap—pla) el

is a linear form on V. Now pick oy, ..., a, € F distinct. Then ev,,,...,ev,, € V*
are linearly independent, hence form a basis. (This comes from the fact that the

STV S >

is the basis for V' dual to that? What we need are polynomials py, ..., p, of degree
less than n such that p;(a;) = d;;. So pi(z) has to be a multiple of [[,_;(z — ;).
We then obtain
.
pi(z) = H o
J#

these are exactly the Lagrange interpolation polynomials.

We then find that the unique polynomial of degree less than n that takes the value
B on ay, for all j, is given by

LOEDSLOEDIEY | Pt

J=1 i#j

So far, we know how to ‘dualize’ vector spaces (and bases). Now we will see how
we can also ‘dualize’ linear maps.

6.11. Definition. Let V and W be F-vector spaces, f : V — W a linear
map. Then the transpose or dual linear map of f is defined as

flaws— Ve e fT()=¢of.
A diagram clarifies perhaps what is happening here.
v-Ll.w-toF
The composition 1 o f is a linear map from V to F', and is therefore an element

of V* Tt is easy to see that fT is again linear: for 11,1, € W* and A\, \a € F, we
have

FT M1+ Atbe) = (At +Agtz) o f = Aithro f+Aote0 f = A f T (1) + Ao f T (1ha) .
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Also note that for linear maps fi, fo : V. — W and scalars A;, A2, we have

Afi +XAafo) = Mf + Xofs

and for linear maps fi : V) — Vo, fo: Vo — V3, we obtain (fyo f1)T = fl o ff —
note the reversal.

Another simple observation is that idy, = idy-.

6.12. Proposition. Let f : V — W be an isomorphism. Then f' : W* — V*
is also an isomorphism, and (f7)™t = (f~1)7.

PRrROOF. We have fo f~! =idy and f~!o f = idy. This implies that
(fH T ofT =idy- and fTo(f 1) =idy- .
The claim follows. U

We denote the standard scalar product (dot product) on F™ by (_, ). While
working with general vector spaces, it is often advisable to avoid choosing a basis,
as there usually is no natural choice. However, the vector space F™ comes with
a standard basis E = (e, ea,...,€,), and its dual (F™)* with the associated dual
basis P = (p1,...,p,) of coordinate maps (see Example [6.2). We denote the
associated map pp: F" — (F™)* by ,; it sends ¢; to the linear form p; = (e;, ),
which sends x € F" to (e;, ). We conclude that, in general, ¢, sends a € F™ to
the linear form (a,_). Indeed, ¢, and the map F"™ — (F™)* given by a — (a,_)
coincide on a basis, so they are the same.

6.13. Lemma. Let V' be a finite-dimensional F'-vector space with basis B of
dimension n, and let B* be the corresponding dual basis for the dual space V*. Let
pp: F*" -V and ppg«: F™ — V* be the usual linear maps sending the i-th standard
basis vector to the i-th vector in B and B*, respectively. Then the composition
phowp: F™ — (F™M* is @,.

PRroOF. It suffices to check that the two maps are the same on the standard
basis vectors e; € F™. Write B = (vy,...,v,) and B* = (v}, ..., v}). Then for each
index 1 < i < n, we have pp-(¢;) = v}, and therefore (p5 o pp-)(e;) = pg(vf) =
v} opp. For each index 1 < j < n we have (v o pp)(e;) = v/ (v;) = & = pi(e;),
which implies that v} o pp = p; = pn(e;). The statement follows. O

The reason for calling f' the “transpose” of f becomes clear through the following
result.

6.14. Lemma. Let m,n be nonnegative integers, and A € Mat(m x n, F') a
matriz. Let fa: F™ — F™ and fa7: F™ — F™ be the linear maps associated to
A and its transpose A", respectively. Then we have fur = @, o fi oo, and the
diagram

fa

(Fm)" —— (F")"

on] fen

Fm Fm

fAT

commautes.
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PROOF. Both statements are equivalent to the equality ¢, o far = fi © ©m,
which we now verify. For each a € F™ and x € F", we have, if we identify them
with an m x 1 and an n x 1 matrix, respectively,

(9 © S47)(@) () = (9a(AT)) (@) = (ATa,2) = (ATa) & = a A,

and

((fa o pm)(@) (@) = (f2 (L a) (@) = ((a,_) © fa) (x) = (a, Av) = a Az

These are equal for all z € F", so we conclude (¢, o fa7)(a) = (f1i © ©m)(a) for
all a € F™, which implies o, o far = f1 © Q. O

The following proposition is a generalisation of the previous lemma.

6.15. Proposition. Let V and W be finite-dimensional vector spaces, with
bases B = (vq,...,v,) and C = (w1, ..., wy,), respectively. Let B* = (v§,...,v})
and C* = (wi,...,w}) be the corresponding dual bases of V* and W, respectively.
Let f:V — W be a linear map, represented by the matrix A with respect to the
given bases of V. and W. Then the matriz representing f' with respect to the dual

bases is AT, that is

/)5 = (F1) "

PRrROOF. We have the following two commutative diagrams

.
v ow W Ly
W e el
" ——s Fm J JL——
fa far

with A = [f]Z and A’ = [fT]%.. The dual of the first diagram can be combined
with the second to obtain the following commutative diagram

i

(F™)" —— (F")"

s@ET ng

fT
#m W v #n
Yo T TLPB*
Fm "
far

where the two curved compositions are ¢, and ¢, by Lemma We conclude
from Lemma [6.14] that fa = @ o f1 0 @m = far,50 A= AT, O

Il e e

m

F) =" agw;.

i=1
We then have

(FT @) (wy) = (] 0 )(g) = wi (£(ey) = wi (3 ajwn) = ay.
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Since we always have, for ¢ € V*, that ¢ = Z?:l ¢(v;)v;, this implies that

n
T(wy) = Z aijvy .
j=1

Therefore the columns of the matrix representing f' with respect to the dual
bases are exactly the rows of A. Il

Note that for every invertible matrix P we have (P~1)T = (PT)~!; we will denote
this matrix by P~ '

6.16. Corollary. Let V be a finite-dimensional vector space, and let B =
(v1,...,0,) and C = (wy, ..., wy,) be two bases of V. Let B* = (v},...,v}) and
C* = (wy,...,w) be the corresponding dual bases. Then we have

lidy-]2: = ([idy]2) "

PRO(T)F. Using id{, = idy-, we find from Proposition that [idy«]%-
([idv]g) . The statement now follows from the fact that the matrices [idy ]
and [idy+«]B. are each other’s inverses.

C*
B*

This corollary is reflected in the matrices we use to change bases. If f: V — V
is an endomorphism and we set A = [f]5 and A’ = [f]%, then for the matrix
P = [idy]8 we have A’ = PAP~!. The matrices AT = [f"]5. and A'T = [f']%.
are then related by A'T = (PAP™Y)T = P~TATPT.

As is to be expected, we have a compatibility between f'' and the canonical
map ay.

6.17. Proposition. Let V and W be vector spaces, f :V — W a linear map.
Then the following diagram commutes.

avj jaw
fTT

\Vai W **

ProoF. We have to show that f'T oay = ayyo f. Solet v € V and ¥ € W*.
Then

F  (av(@) (@) = (av(v) o f1)(W) = av(v)(f ' ()
=ay(v)(po f) = (Yo f)
(f(v) = aw (f(v)(@).

|
<

i

6.18. Proposition. Let V and W be finite-dimensional vector spaces. Then
Hom(V,W) > f +—— f' € Hom(W*, V*)

s an isomorphism.
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PROOF. By the observations made in Definition [6.11, the map is linear. We
claim that the map

Hom(W*,V*) 3 g — a0 g' oay € Hom(V, W),

is the inverse of the given map. Because Hom(V, W) and Hom(W*, V*) have the
same finite dimension, it suffices to verify that the composition of the two maps
in only one of the two orders is the identity. Indeed, by Proposition [6.17] we have

ozwlo(fT)Toon:f.

g

The following lemma states that every linear form on a subspace U of a vector
space V' can be extended to a linear form on V. Note that if j: U — V is
an inclusion map, then j': V* — U* is the restriction map that sends ¢ € V*

to |u.

6.19. Lemma. LetV be a vector space and U C V a subspace. Let j: U — V
denote the inclusion map. Then §': V* — U* is surjective.

PROOF. Let U’ C V be a complementary space of U (using Zorn’s Lemma if
V' is infinite-dimensional), and 7: V' — U the projection onto U along U’. That
is, for v = u + ' with v € U and «' € U’, we have m(v) = u. Then we have
moj=1idy,s0j on' = (7woj)" =idy-, which implies that j is surjective. [

6.20. Proposition. Let f: U — V and g: V — W be two linear maps of
vector spaces.

(1) If we have im f C ker g, then we have img'" C ker f'.
(2) If we have im f D ker g, then we have img'™ D ker f'.
(3) If we have im f = ker g, then we have img' = ker f.

PROOF. (1) Suppose im f C ker g. Then the composition go f is the zero
map. Hence so is the dual of this composition, which is the composition
fT og" of the duals. This implies img' C ker f'.

(2) Write g as the composition g = jog with g: V —imgand j: img — W
the inclusion map. Then we have kerg = kerg. From Lemma [6.19] we
find that j ' is surjective, so from g" = §' o5 we obtain img" =img'.
Hence it suffices to prove the statement with g instead of g, so without
loss of generality, we may and will assume g is surjective.

Suppose ker g C im f. Take any ¢ € ker fT, so f'(p) = 0, that is,
for all w € U we have ¢(f(u)) = 0. For each w € W, thereisav € V
with g(v) = w, since g is surjective; for v,v" € V with g(v) = g(v') = w,
we have v — 0" € kerg C im f, so there is a u € U with f(u) = v — 1/,
and therefore p(v) = p(v—v") + (V') = p(f(u)) + (V') = p(v'). Hence,
there is a well-defined map 1: W — F with ¢(g(v)) = ¢(v) for allv € V.
To verify that 1 is linear, note that if w = g(v) and w’ = g(v’), then we
have w +w' = g(v 4+ v'), so

b(w+w') = (v +v) = p(v) + e(v) = Y(w) + P (w);
The fact that 1 respects scalar multiplication follows similarly. We con-

clude that ¢ € W* and ¢ = g" () €img', so ker fT Cimg".
(3) This follows from the previous statements.



54 6. THE DUAL VECTOR SPACE

6.21. Definition. A sequence

oDy, By,

of composable linear maps is called ezxact if for all indices 1 < i < n we have
im f; = ker f;11.

Proposition [6.20|states that if U — V' — W is an exact sequence, then the induced
sequence W* — V* — U* is exact as well. Note that a linear map f: V — W is
injective if and only if the sequence 0 — V' Lwis exact, while f is surjective if

and only if the sequence V' LW = 0 s exact.

6.22. Corollary. Let f: V — W be a linear map of vector spaces. If f is
injective, then f' is surjective. If f is surjective, then f' is injective.

Proor. If f is injective, then the sequence 0 — V' Ly W is exact. Then by

Proposition [6.20| the sequence W* g V* — 0 is exact, so f is surjective. As an
alternative proof, we could have also written f as the composition f = jo f of the
isomorphism f: V — im f induced by f, and the inclusion j: im f — W; then by
Proposition and Lemma , the map fT = f7 o7 is the composition of a
surjection and an isomorphism, and thus surjective.

If f is surjective, then the sequence V' L W = 0 is exact. Then by Proposi-

-
tion [6.20| the sequence 0 — W* Ly v is exact, so f' is injective. U

6.23. Proposition. Let f: V. — W be a linear map of finite-dimensional
vector spaces. Then we have dimim f = dimim f.

PROOF. The map f is the composition of the surjection f: V — im f induced
by f and the inclusion j: im f — W. By Corollary the dual map f' is
the composition of the surjective map g W — (im f)* and the injective map
fT: (im f)* — V*. We conclude im f" = im f and hence

dimim f7 = dimim /7 = dim(im f)* = dimim f.

g

Note that [BR2] claims (in Theorem 7.8) that we also have dim ker(f ") = dim ker(f).
However, this is false unless dim V' = dim W!

6.24. Remark. The equality of dimensions dimim(f") = dimim(f) is, by
Prop. [6.15] equivalent to the statement “row rank equals column rank” for matri-
ces.

6.25. Definition. Let A € Mat(m X n, F') be a matrix. A kernel matriz of A
is a matrix whose columns span the kernel of A.

If B is a kernel matrix of A, then we have im fg = ker f4. By Proposition [6.20]
this implies im f; = ker f3 C (F™)*. Applying ¢!, we obtain the equality
im f4r = ker fgT by Lemma This shows that AT is a kernel matrix of B'.

Next, we study how subspaces relate to dualization.
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6.26. Definition. Let V be a vector space and S C V' a subset. Then
S={peV*:¢(w)=0forallve S} CV”
is called the annihilator of S.

. . . w wr
The set S° is a linear subspace of V*, since we can write

S° = ﬂ ker (ay (v)) .

veS
Trivial examples are {0y }° = V* and V° = {0y~ }.

6.27. Remark. As we have seen before, if U is a subspace of a vector space V,
and j: U — V is the inclusion map, then j': V* — U* is the restriction map,
which sends each linear form ¢ € V* to its restriction ¢|;; we have

U° =kerj'.

6.28. Theorem. Let V be a finite-dimensional vector space, U C V a linear
subspace. Then we have

dimU +dimU° =dimV  and ay(U)=U".

PROOF. As in Remark the dual of the inclusion j: U < V is a surjective
map V* — U*, of which the kernel is U°. Hence, we have dimU° + dimU* =
dim V*, even if V' were not finite-dimensional. Because V is finite-dimensional, we
have dim V' = dim V* and dim U = dim U™, so the first equality follows. Applying
it to U°, we obtain dim U = dim U°°.

For the second equality, note that U° consists of all the linear forms on V' that
vanish on U. Hence, for every u € U, the evaluation map ev,: V* — F' sending
¢ € V* to p(u) sends all of U° to 0. This implies that the element ay (u) =
ev, € V** is contained in U°°, so we have ay (U) C U®°, even if V' were not finite-
dimensional. Because V is finite-dimensional, we have dimay (U) = dimU =
dim U°°, so the inclusion ay (U) C U®° is an equality. O

The theorem implies that we have U = U if we identify V and V** via ay .

6.29. Theorem. Let f: V — W be a linear map of vector spaces. Then we
have

(ker(f))" =im(f") and (im(f))° =ker(f").

PROOF. Let j: ker f — V be the inclusion map. Apply Proposition to
the exact sequence

ker f LV 4w

to get the exact sequence
I i’
W =— V* = (ker f)*,
which implies im fT = kerj" = (ker f)°, which proves the first equality. For the
second equality, let i: im f — W denote the inclusion map, and write f as the
composition f =io f with f: V — im f induced by f. Then fT = fT oi', and
since 1 is injective, we obtain ker fT = keriT = (im f)°. O
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6.30. Interpretation in Terms of Matrices. Let us consider the vector
spaces V = F" and W = F" and a linear map f : V — W. Then f is represented
by a matrix A, and the image of f is the column space of A, i.e., the subspace
of F™ spanned by the columns of A. We identify V* = (F™)* and W* = (F™)*
with F™ and F™ via the dual bases consisting of the coordinate maps (see the
text above Lemma [6.13). Then for z € W*, we have = € (im(f))° if and only if
2Ty = (x,y) = 0 for all columns y of A, which is the case if and only if " A = 0.
This is equivalent to ATz = 0, which says that 2 € ker(f") — remember that AT
represents f' : W* — V*,

Exercises.

(1) Define ¢;: R™ — R by ¢;(z1,...,2,) = x1+x0+---Fa; fori =1,2,...n.
Show that ® = (¢1,...,¢,) is a basis for (R")*, and compute a basis B
for R™ of which & is the dual basis.

(2) Let V' be an n-dimensional vector space, let vq,...,v, € V and let
&1,..., 0, € V*. Show that det((¢i(v;))i;) is non-zero if and only if
(v1,...,v,) is a basis for V and (¢, ..., ¢,) is a basis for V*.

(3) Let V' be the 3-dimensional vector space of polynomial functions R — R
of degree at most 2. In each of the following cases, we define ¢; € V* for
i = 0,1,2. In each case, indicate whether (¢g, @1, ¢2) is a basis for V*,
and if so, give the dual basis for V.

(a) ¢i(f) = f(3)
(b) ¢i(f) = fD(0), i.e., the ith derivative of f evaluated at 0.
(c) ¢i(f) = f(1)

(d) éi(f) = [, fla)da
(4) Let V = R[X]y be the space of polynomials of degree at most two. Take
a, 8,7 € V* to be given by

a(f) = f(0),
B(f)= [ f(x)dax,
v(f) = £(0)

for all f € V, and where f” denotes the derivative of f. Show that («a, 8, 7)
is a basis for V*.

(5) For each positive integer n show that there are constants ay, as, .. ., a, so
that

/1 Fla)etd = Z /(i)

for all polynomial functions f: R — R of degree less than n.
(6) Let A and B be matrices for which the product AB exists. Show that B is
a kernel matrix of A if and only if we have AB = 0 and rk B = dim ker A.
(7) Let Z be any set. For any set X, we call the set Z% = Map(X, Z) the
Z-dual of X; if the set Z is clear from the context (as it will be in this
exercise), we will denote this Z-dual Z¥ by X*, and we will write X **
for (X*)* .
(a) Verify that any map f: X — Y of sets induces a map f7: Y* — X*
on the associated Z-duals by sending g € Y* to the composition
gofeXX*.
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(b) Verify that for any set X there is a canonical map fx: X — X**
that sends = € X to the evaluation map ev,: X* — Z, which sends
fe X to f(x).

(¢) Show that for every set X we have 8 o fxx = idxx.

(d) Show that for every vector space V we have ay, o ay+ = idy+; if V is

finite-dimensional, then o, = ay..

(e) In the proof of Proposition m it was shown that the composition
of two maps is the identity. Use the previous part of this exercise
to show directly that the composition in the opposite order is the
identity as well.

(8) Suppose we have a long exact sequence

0O —Vi—Vo — - —V, —0

of finite-dimensional vector spaces. Show that we have
> (~1)'dimV; = 0.
i=1
[Hint: first do the case n = 3.
(9) Suppose f: U — V and g: V — W are linear maps such that

U-Sv-Sw_—o

is an exact sequence. Suppose that Fyy;: U — U and Fy: V — V are
endomorphisms such that Fyy o f = f o Fy. Show that there exists an
endomorphism Fy : W — W such that Fy o g = g o Fy. In other words,
show that there exists an endomorphism Fy of W such that the following
diagram commutes.

U f>V S W > 0
bl
AN VN > 0

(10) Suppose V is a vector space and W is a subspace. Let f: V — V be a
linear map.
(a) Assume that f(w) = w for all w € W. Show that f'(p) —p € W°
for all p € V*.
(b) Conversely, assume that f'(¢) — @ € W° for all ¢ € V*. Show that
f(w) =w for all w e W.
(11) Let f: U — V and g: V — W be two linear maps of finite-dimensional
vector spaces. Suppose that the dual sequence

9" I
ws —V*—U"
is exact. Show that the sequence
v-Lv-Lw
is exact.

(12) * Let V be a finite-dimensional vector space and let U C V and W C V*
be subspaces. We identify V' and V** via ay (so W° C V). Show that

dim(U°NW) +dimU = dim(U N W?°) + dim W .
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(13) Let ¢1,...,¢, € (R™)*. Prove that the solution set C' of the linear in-
equalities ¢ (z) > 0, ..., ¢,(x) > 0 has the following properties:
(a) a,feC = a+peC.

(b) aeC,teRsy = tacC.
(c) If ¢1,..., ¢, form a basis for (R™)*, then
C:{t1a1+...+tn0énItiERzo,\V/iE{l,...,n}},

where oy, ..., a, is the basis for R dual to ¢1,..., ¢,.



CHAPTER 7

Norms on Real Vector Spaces

The following has some relevance for Analysis.

7.1. Definition. Let V be a real vector space. A normon V isamap V — R,
usually written = — ||z||, such that

(i) |lz|| > 0 for all z € V, and ||z|| = 0 if and only if x = 0;
(ii) [|Az|| = [A|||z] for all A e R, z € V;
(iii) ||z +y|| < ||lz|| + ||ly|| for all z,y € V (triangle inequality).

7.2. Examples. If V = R", then we have the following standard examples of
norms.

(1) The maximum norm:
|(z1, . 20) |0 = max{|xy|,. .., |za|}-
(2) The Euclidean norm (see Section [9] below):

(21, an)|le = /2 + -+ 22

(3) The sum norm (or l-norm):

1)l = faa] - |l

7.3. Remark. A norm on a real vector space V induces a metric: we set

d(z,y) = ||z —yll,
then the axioms of a metric (positivity, symmetry, triangle inequality) follow from
the properties of a norm.

Recall that the usual Euclidean topology on R™ is induced by the Euclidean metric
given by d(z,y) = ||l — yl|2 for all z,y € R™. With respect to this topology, we
have the following result.

7.4. Lemma. FEvery norm on R™ is continuous (as a map from R™ to R).

ProoOF. Note that the maximum norm on R" is bounded from above by the
Euclidean norm:

max{|z;|:j € {1,...,n}} <yJal+ - +a2.

Let [|- || be a norm, and set C'= »7"_, [le;||, where ey, ..., e, is the canonical basis
for R*. Then for = (x1,...,x,) € R" we have

[zl = (21, wn)ll = [lzrer + -+ 4 znenl] < [lzren]] 4+ -+ + [|zneal
= |zalllexll + -+ [znlllenl] < max{lanl, ... [zn]} - C < zfl2- C
From the triangle inequality, we then get
Nzl = llyll| < lla =yl < C-llz —yl.-
59
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So for any € > 0, if ||z — y||» < ¢/C, then |||z]| — [jy]|| <e. O

7.5. Definition. Let V' be a real vector space, x +— ||z||; and z — ||z|2 two
norms on V' (any norms, not necessarily those of Example [7.2]). The two norms
are said to be equivalent, if there are C, Cy > 0 such that

Cl||l’||1 S ||I||2 S CQ“IHl for all x eV.

7.6. Theorem. On a finite-dimensional real vector space, all norms are equiv-
alent.

Proor. Without loss of generality, we can assume that our space is R”, and
we can assume that one of the norms is the Euclidean norm || - || defined above.
Let S € R™ be the unit sphere, i.e., S = {z € R" : ||z|2 = 1}. We know from
Analysis that S is compact (it is closed as the zero set of the continuous function
r +— 22 +--- + 22 — 1 and bounded). Let || - || be another norm on R". Then
x +— ||z|| is continuous by Lemma hence it attains a maximum Cy and a
minimum C; on S. Then Cy > C; > 0 (since 0 ¢ S). Now let 0 # = € R", and
let e = ||lz||5'2; then |le]|s = 1, so e € S. This implies that C; < |le]| < Cy, and
therefore

Cillzlls < [lllz - llell < Caflll2 -

From ||z||2 - [le]| = HHxHQeH = ||z|| we conclude C||z|]2 < ||z|| < Cyf|lz||2- So every
norm is equivalent to || - ||, which implies the claim, since equivalence of norms is
an equivalence relation. O

7.7. Examples. If V is infinite-dimensional, then the statement of the theo-
rem is no longer true. As a simple example, consider the space of finite sequences
(@n)n>0 (such that a,, = 0 for n sufficiently large). Then we can define norms || - [|1,

[ “l2, ||l @s in Examples[7.2] but they are pairwise inequivalent now — consider
the sequences s, = (1,...,1,0,0,...) with n ones, then ||s,|1 = n, ||sall2 = V1

and ||s,|leo = 1.
Here is a perhaps more natural example. Let V' be the vector space C([0,1]) of
real-valued continuous functions on the unit interval. We can define norms

1

1
|Wh=/UﬁNW7IWb= /EWVW>HHR=HWMN@%$EMH}
0 0
in a similar way as in Examples and again they are pairwise inequivalent.
Taking f(z) = 2", we have

1 1

||f”1:—7 ’|f”2:\/ﬁa

=1,
- 171

Exercises.

Let V and W be normed vector spaces over R. For a linear map f: V — W set

Ifll="sup [If(2)].
z€V, ||z||=1
(1) Consider V' = R"™ with the standard inner product and the norm || - ||5.
Suppose that f: V — V is a diagonalizable map whose eigenspaces are
orthogonal (i.e., V' has an orthogonal basis consisting of eigenvectors of
f). Show that || f|| as defined above is equal to the largest absolute value
of an eigenvalue of f.
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(2) (a) Show that B(V,W) = {f € Hom(V,W): |/ f|| < oo} is a subspace
of Hom(V, W), and that || - || is a norm on B(V, W).
(b) Show that B(V,W) = Hom(V,W) if V is finite-dimensional.
(c) Taking V' = W above, we obtain a norm on B(V,V). Show that
1f o gl < WA - llgll for all f,g € B(V, V).

(3) Consider the rotation map f: R? — R? which rotates the plane by 45
degrees. For any norm on R? the previous exercise defines a norm || f||
of f. Show that || f|| = 1 when we take the standard Euclidean norm || -||2
on R?. What is || f|| when we take the maximum norm || - || on R??

(4) Consider the vector space V' of polynomial functions [0, 1] — R with the
sup-norm: || f|| = supg<,<; |f(x)|. Consider the functional ¢ € V* defined
by ¢(f) = f'(0). Show that ¢ ¢ B(V,R). [Hint: consider the polynomials
(1—a)"forn=1,2,...]






CHAPTER 8

Bilinear Forms

We have already seen multilinear maps when we were discussing the determinant
in Linear Algebra I. Let us remind ourselves of the definition in the special case
when we have two arguments.

8.1. Definition. Let V', W and X be F-vector spaces. Amap ¢ : VW — X
is bilinear if it is linear in both arguments, i.e.

VAN € Fiod e Viye W o(dx + Nl y) = Ap(x,y) + Nop(2/,y) and
VAN € Fa € Viy,y € W oo, Ay + Ny) = Mz, y) + No(a,y)
When X = F is the field of scalars, ¢ is called a bilinear form.

If V=W and X = F, then ¢ is a bilinear form on V. It is symmetric if
o(z,y) = ¢(y,x) for all z,y € V, and alternating if ¢(x,x) = 0 for all z € V. The
latter property implies that ¢ is skew-symmetric, i.e. ¢(z,y) = —¢(y,z) for all
x,y € V. To see this, consider

0=9(x+y,x+y)=¢(x z)+ o2, y) + oy, ) + &y, y) = d(z,y) + ¢y, ) .

The converse holds if char(F') # 2, since (taking = = y)
0=¢(z,x) + d(x,x) =2¢(x, x).

We denote by Bil(V, W) the set of all bilinear forms V' x W — F, and by Bil(V)
the set of all bilinear forms on V, so Bil(V)) = Bil(V, V). These sets are F-vector
spaces in the usual way, by defining addition and scalar multiplication point-wise.

8.2. Examples. The standard ‘dot product’ on R" is a symmetric bilinear
form on R™.

The map that sends ((%),(3)) € R* x R? to |4 §| = ad — bc is an alternating
bilinear form on R2.

The map (A, B) — Tr(A" B) is a symmetric bilinear form on Mat(m x n, F').

If K :[0,1]* — R is continuous, then the following defines a bilinear form on the
space of continuous real-valued functions on [0, 1]:

(f. 9) —> / / K (2, 9)f (2)g(y) de dy.

Evaluation defines a bilinear form on V' x V*: (v, ¢) — ¢(v).
63
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8.3. Definition. A bilinear form ¢ : V x W — F induces linear maps

oV —W* v (w»—>¢(v,w)) and ¢p: W — V* w— (v»—>¢(v,w)).

Indeed, by the definition of bilinear forms, the maps w +— ¢(v,w) (for any fixed
v € V)and v — ¢(v,w) (for any fixed w € W) are linear forms contained in
W* and V*, respectively, so ¢ and ¢r are well-defined as maps. Then using the
definition of bilinearity again, we see that ¢ and ¢ are themselves linear maps.

The subspace ker(¢r,) C V' is called the left kernel of ¢; it is the set of all v € V
such that ¢(v,w) = 0 for all w € W. Similarly, the subspace ker(¢r) C W is
called the right kernel of ¢. The bilinear form ¢ is said to be nondegenerate if ¢y,
and ¢r are isomorphisms.

8.4. Remark. If ¢ : V x W — F'is a nondegenerate bilinear form, then V'
and W have the same finite dimension (Exercise, cf. Remark [6.6]).

8.5. Lemma. Let ¢ : V x W — F be a bilinear form with V. or W finite-
dimensional. Then ¢ is nondegenerate if and only if both its left and right kernel
are trivial.

ProOF. To prove this statement, first observe that the left and right kernels
are certainly trivial when ¢, and ¢ are isomorphisms. For the converse statement,
first suppose that W is finite-dimensional. Assume that the left and right kernels
are trivial. Then ¢y, is injective, and since W is finite-dimensional, we obtain
dimV < dimW* = dim W, so V is finite-dimensional as well. From ¢g being
injective, we similarly get dim W < dim V', so dim V' = dim W and ¢, and ¢y are
isomorphisms. The case that V' is finite-dimensional works analogously. U

8.6. Example. For the ‘evaluation pairing’ ev: V x V* — F. we find that
the map evy: V — V*is ay, and evg: V* — V* is the identity. So this bilinar
form ev is nondegenerate if and only if ay, is an isomorphism, which is the case if
and only if V is finite-dimensional (see Remark [6.6]).

8.7. Example. The standard scalar (dot) product ¢ on F" given by ¢ (v, w) =
(v,w) is a nondegenerate symmetric bilinear form. In fact, here ¢, equals ¢, as
defined in the paragraph above Lemma m it sends the standard basis vector e;
to the j-th coordinate map in (F™)*, so it maps a basis to a basis and is therefore
an isomorphism.

8.8. Proposition. Let V., W be F-vector spaces, and let ¢: V x W — F be a
nondegenerate bilinear form. Then for every linear form 1 € W* there is a unique
v € V such that for every w € W we have ¥(w) = ¢(v, w).

PRrOOF. The condition that for every w € W we have ¢(w) = ¢(v,w) is
equivalent with the equality ¢ = ¢(v,_), which means that ¢ = ¢ (v). The claim
now follows from the fact that ¢ : V — W* is an isomorphism. U
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8.9. Example. Let V' be the real vector space of polynomials of degree at
most 2. Then

o:VxV =R, (pgqg)r— /p(m)q(x) dx

is a bilinear form on V. It is nondegenerate since for p # 0, we have ¢(p,p) > 0.
Evaluation at zero ¢ — ¢(0) defines a linear form on V, which by Proposition
must be representable in the form ¢(0) = ¢(p, q) for some p € V. To find p, we
write p = ag + a1 + axz?, and we want to find ag, a;, as such that for all b, by, by
and ¢ = by + byx + byz? we have

bo = q(0) = ¢(ao + ar2 + aga?, by + by + bya®)
= apbo + 3(aoby + arbo) + (aghs + aiby + asbo) + L(aibs + asbi) + Lashs .
This leads to
ag—l—%al—l—%ag:l, %&0+%&1+;11&2:O, %a(ﬁ—%al—i—%ag:O
so p(r) =9 — 36z + 3022, and we get
1

q(0) = / (9 — 362 + 302°)q(z) dx

for all g € V.

8.10. Remarks.

(1) The bilinear form ¢ : V x V' — F' is symmetric if and only if ¢ = ¢r.

(2) Suppose V and W have the same finite dimension. If ¢: V. x W — F

is a bilinear form, then ¢ is nondegenerate if and only if its left kernel is
trivial (if and only if its right kernel is trivial).
Indeed, in this case, dimW* = dimV, so if ¢, is injective, it is also
surjective, hence an isomorphism. Proposition gives that ¢ is an
isomorphism as well. By Theorem [6.8] the map ayy is also an isomor-
phism, so the identity ¢r = ¢, o ay (which we leave as an exercise for
the reader) shows that ¢g is an isomorphism as well. If ¢ is injective,
then we use the identity ¢ = ¢ o ay instead.

In fact, we can say a little bit more.

8.11. Proposition. Let V and W be F-vector spaces. There is an isomor-
phism
Bvw : BI(V, W) — Hom(V,W*), ¢ +— ¢r,
with tnverse given by

fr—= ((v,w) = (f(v)(w)).

PROOF. We leave the (by now standard) proof that the given maps are linear
as an exercise. It remains to check that they are inverses of each other. Call the
second map yyw. So let ¢ : V. x W — F be a bilinear form. Then yyw(¢r)
sends (v,w) to (¢r(v))(w) = ¢(v,w), so yyw o Pvw is the identity. Conversely,
let f € Hom(V,W*), and set ¢ = yyw(f). Then for v € V, the linear form ¢ (v)
sends w to (¢ (v))(w) = ¢(v,w) = (f(v))(w), so ¢r(v) = f(v) for allv € V| hence
¢r, = f. This shows that By, o yy,w is also the identity map. U

If V=W, we write fy : Bil(V) — Hom(V, V*) for this isomorphism.
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8.12. Example. Let V now be finite-dimensional. We see that a nondegener-
ate bilinear form ¢ on V' allows us to identify V' with V* via the isomorphism ¢y,.
Conversely, if we fix a basis B = (vy,...,v,), we also obtain an isomorphism

vV — V* by sending v; to v}, where B* = (v, ..., v;) is the dual basis for V*

r n

What is the bilinear form ¢: V x V' — F' corresponding to this map? We have,
for v =320 1 Ajug, w =320 pjvj,

o) = () ) = (o3 0r)) (S e
j=1 k=1
— (i )\jv}‘> <Zi: ,ukvk> = z”: Aifig V5 (vg) = z”: NiftkOjk = i: AjlLj -

J.k=1 j,k=1
This is just the standard dot product if we identify V with F™ using the given
basis; it is a symmetric bilinear form on V.
Alternatively, we note that ¢« = 1 0 @p, so we obtain the following commutative
diagram by Lemma [6.13
V——=V*
@BT V ng

Hence, indeed, if we identify V' with F" through ¢p (and likewise V* with (F")*
through o5), then ¢: V' — V* corresponds to the map ¢, : F™ — (F™)*, which
sends a € F™ to the linear form (_,a). As we have seen in Example 8.7 this map
corresponds to the bilinear form that is the usual scalar (dot) product.

8.13. Remark. Let A be an m x n matrix over F'. Then the associated
bilinear form

F'"x F™ — F, (z,y) —y' Ax
can also be expressed using the standard dot products on F™ and F™, both denoted
by (_,_), as we have

(y,Az) =y Az = (ATy) 'z = (ATy,z).

8.14. Representation by Matrices. Let ¢ : F" x F'™ — F be a bilinear
form. Then we can represent ¢ by a matrix A = (a;;) € Mat(m x n, F'), with
entries a;; = ¢(ej, ;). In terms of column vectors x € F'™ and y € F™, we have

p(z,y) =y Az,

Similarly, if V' and W are finite-dimensional F-vector spaces, and we fix bases
B = (v1,...,v,) and C' = (wy, ..., wy,) of V and W respectively, then any bilinear
form ¢ : V x W — F'is given by a matrix relative to these bases, by identifying
V and W with F™ and F™ in the usual way, that is, through the isomorphisms
pp: F* — V and po: F™ — W. If A = (a;;) is the matrix as above, then
a;; = ¢(vj,w;). f v =m0y 4+ + 2,0, and w = Yyrwy + - - - + YWy, then

v, w) =D > aiw;yi.

i=1 j=1
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8.15. Proposition. LetV and W be finite-dimensional F-vector spaces. Pick
two bases B = (vi,...,v,) and B’ = (vi,...,v,) of V and two bases C =
(Wi, ..., wy) and C" = (wy,...,w. ) of W. Let A be the matriz representing a
bilinear form ¢: V x W — F with respect to B and C, and let A" be the matriz
representing ¢ with respect to B' and C'. Then for P = [idy]2" and Q = [idw]&
we have

A =QTAP.

PROOF. Let 2/ € F™ be the coefficients of v € V with respect to the new
basis B’. Then x = Pz’, where x represents v with respect to the old basis B.
Similary for ¢,y € F™ representing w € W with respect to the two bases B’ and
B, respectively, we have y = Q1. So

y A7 = o(v,w) =y Av =y QT AP’
Given that this holds for all ' € F™ and all 3/ € F™, this implies the claim. [

Vox w2 F >yl Az = y'T A
(eBpC) / /
(eprecr) < pm (z,y) A'=QTAP
(P.Q) 1
PP @) A= (6l w),,

In particular, if V' is an n-dimensional vector space V with basis B, and ¢ is a
bilinear form on V', then ¢ is represented with respect to B by a square matrix
A € Mat(n, F'). If we change the basis B to a basis B’, then the new matrix will
be A’ = PTAP, with P = [idy]8 € Mat(n, F) invertible. Matrices A and A’
for which there is an invertible matrix P € Mat(n, F) such that A’ = PTAP are
called congruent.

8.16. Example. Let V' be the real vector space of polynomials of degree less
than n, and consider again the symmetric bilinear form

o(p,q) = / p(z)q(z) dz.

With respect to the standard basis (1,z,...,2"!), it is represented by the “Hilbert

i _ 1 )
matrix” H, = (7;+j—1 1<i,j<n’

It follows from Proposition that the notion of rank of a bilinear form is well
defined.

8.17. Definition. Let ¢: V x W — F be a bilinear form. Then the rank of
¢ is the rank of the matrix representing ¢ with respect to some bases B and C for
V and W, respectively.

For completeness, we summarize in one commutative diagram the ways to associate
a matrix to linear maps and bilinear forms. Let V' and W be finite-dimensional
vector spaces, with bases B and C', respectively. Let C* denote the dual basis
for W*. Also set ¢ = oo« 0 o' W — W*, which sends the i-th basis vector of
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C to the i-th basis vector of C*. Recall that ¢, = ¢l o pc-: F™ — (F™)* sends
a € F™ to (a,_). Then all maps in the following diagram are isomorphisms.

Bil(V x W, F) —2=%2, Hom(V, W*)

Bil(F" x F™, F) =222, Hom(F", (F™)*) Hom(V, W)
= “
1 E
B S
8
T !
Mat(m x n, F) -~ @24 gom(Fn, Fm)

This diagram shows, for example, that if A is the matrix representing the bilinear
form ¢: V x W — F with respect to the bases B and C' of V' and W, respectively,
then A = [¢r]E. is also the matrix associated to the linear map ¢: V — W* with
respect to the bases B and C*, since the map i o ¢r, o pp is fa.

8.18. Lemma. Let ¢: V X W — F be a bilinear form, and B and C' bases of
the finite-dimensional vector spaces V' and W, respectively. Let A be the matriz
that represents ¢ with respect to B and C. Then ¢ is nondegenerate if and only if
A is invertible.

PROOF. We have just seen that A = [¢]5., so the left kernel of ¢ corresponds
to the kernel of A, which is trivial if and only if dimV = rk A. Similarly, the
right kernel of ¢ is trivial if and only if dim W = rk A. The statement therefore
follows from Lemma [8.5] and the fact that the equalities dimV = dimW = rk A
are equivalent with A being invertible. O

8.19. Lemma. Let ¢ be a bilinear form on the finite-dimensional vector space V,
represented (with respect to some basis) by the matrix A. Then
(1) ¢ is symmetric if and only if AT = A;
(2) ¢ is skew-symmetric if and only if AT + A = 0;
(3) ¢ is alternating if and only if AT + A = 0 and all diagonal entries of A
are zero.

PROOF. Let B = (vy,...,v,) be the basis for V. Since a;; = ¢(v;,v;), the
implications “=" in the first three statements are clear. On the other hand,
assume that AT = £A4. Then

eTAy = (z"Ay)T =y ATz = £yT Az,
which implies “<” in the first two statements. For the third statement, we com-
pute ¢(v,v) for v = xyv; + -+ - + TV,

qb(?], ’U) = Z Qi3T5 = Z (IZZZL‘? + Z (aij + aji)x,-xj = 0,

ij=1 i=1 1<i<j<n
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since the assumption implies that both a; and a;; + aj; vanish. Il

8.20. Definition. Let ¢: V x W — F be a bilinear form. For any subspace
U C W we set
Ut={veV:¢wu)=0forallucU}.
For any subspace U C V' we set
Ut ={weW:¢(u,w)=0foralucU}.

In both cases we call U+ the subspace orthogonal to U (with respect to ¢).

8.21. Remark. Note that for a subspace U C W, the set Ut is indeed a
subspace, as it is the kernel of the composition of ¢, : V' — W* with the restriction
map res}y : W* — U* that sends ¢p € W* to the restriction 1|y. Alternatively, U+
is in this case the left kernel of the restricted bilinear form V x U — F.
Similarly, for a subspace U C V, the subspace U~ is the kernel of the composition
of ¢pp: W — V* with the restriction map resy;: V* — U*. Alternatively, Ut is in
this case the right kernel of the restricted bilinear form U x W — F. Moreover,
as the kernel of res); is the annihilator U°, we also find U+ = ¢ (U°).

8.22. Remark. For a general bilinear form ¢ on V and a subspace U C V,
the notation U+ is ambiguous, as the left kernel of the restriction V x U — F and
the right kernel of the restriction U x V' — F' need not coincide. If ¢ is symmetric,
then they do coincide, and the space U~ is well defined.

8.23. Example. Let V' be a vector space over F', and consider the bilinear
form ev: V x V* — F of Example 8.6l Let U C V be a subspace. Then the
orthogonal subspace U1 with respect to ev consists of all f € V* that satisfy
f(u) = ev(u,f) = 0 for all w € U. This means that the subspace U+ = U° is
the annihilator of U. Note that this is a special case of Remark [8.21] as we have

evgr = idy« (see Example .

8.24. Lemma. Let ¢: V x W — F be a nondegenerate bilinear form. Let U
be a subspace of either V or W. Then we have dim U +dim U+ = dim V = dim W'
Moreover, we have (U+)* =U.

PRrROOF. From Remark [8.4] we recall that V and W are finite-dimensional, and
dimV = dimW. First suppose U C W. By Lemma the restriction map
resyy : W* — U* is surjective. So is the map ¢r: V — W*, and therefore so is
the composition V' — U*. The kernel of this composition is U+, so we obtain
dimV = dim U+ + dim U* = dim U+ + dim U. The case U C V follows similarly
by considering the composition of ¢z with the restriction map resy;, thus proving
the identity dim U + dim U+ = dim V in all cases. Applying this identity to U~
as well, we find dim(U+)* = dimU. For all w € U and all w € Ut, we have
¢(u,w) = 0, so there is an inclusion U C (U+)* of subspaces of the same finite
dimension. Hence, this inclusion is an equality. [l

We leave it to the reader to find an example of a bilinear form ¢ on a finite-
dimensional vector space V' that is degenerate and for which there is a subspace

U CV with (UL £U.

As with endomorphisms, we can also split bilinear forms into direct sums in some
cases.
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8.25. Definition. If V = U @ U’, ¢ is a bilinear form on V, ¢ and v are
bilinear forms on U and U’, respectively, and for all uy,us € U, u},u)y € U', we
have

Gur + uy, ug +uy) = P(ur, ug) + P (uy, uy)
then ¢ is the orthogonal direct sum of ¢ and 7).

Given V = U@®U’ and ¢, this is the case if and only if ¢(u,u’) = 0 and ¢(u',u) =0
for all w € U, v € U’ (and then ¥ = ¢|yxv, ¥ = é|lurxuv)-

This can be generalised to an arbitrary number of summands.

If V is finite-dimensional and we represent ¢ by a matrix with respect to a basis
that is compatible with the splitting, then the matrix will be block diagonal.

8.26. Proposition. Let ¢ be a symmetric bilinear form on'V, and let U C V
be a linear subspace such that ¢|y <y is nondegenerate. Then V =U @ UL, and ¢
splits accordingly as an orthogonal direct sum.

When the restriction of ¢ to U x U is nondegenerate, we call U+ the orthogonal
complement of U.

PROOF. We have to check a number of things. First, U N U+ = {0} since
v e UNU*L implies ¢(v,u) = 0 for all u € U, but ¢ is nondegenerate on U, so v
must be zero. Second, U + U+ = V: let v € V, then U > u > ¢(v,u) is a linear
form on U, and since ¢ is nondegenerate on U, by Proposition there must be
u’ € U such that ¢(v,u) = ¢(u',u) for all w € U. This means that ¢(v —u',u) =0
for all u € U, hence v — v/ € U+, and we see that v = v’ + (v — ') € U + U™ as
desired. So we have V = U @ U*. The last statement is clear, since by definition,
¢ is zero on U x U+, O

Theorem [8.28] gives the first and quite general classification result for symmetric
bilinear forms on finite-dimensional vector spaces: they can always be diagonal-
ized. We first state a useful lemma.

8.27. Lemma. Assume that char(F') # 2, let V' be an F-vector space and ¢ a
symmetric bilinear form on V. If ¢ # 0, then there isv € V such that ¢p(v,v) # 0.

PRrOOF. If ¢ # 0, then there are v,w € V such that ¢(v,w) # 0. Note that
we have

0 # 2¢(U, w) = ¢(U7 w) + ¢(w’ U) = ¢(U +tw, v+ ’LU) - ¢(U7 ’U) - ¢<w7 w) )

so at least one of ¢(v,v), ¢p(w,w) and ¢(v + w, v + w) must be nonzero. O

8.28. Theorem. Assume that char(F') # 2, let V be a finite-dimensional
F-vector space and ¢ a symmetric bilinear form on V. Then there is a basis
(v1,...,0,) of V such that ¢ is represented by a diagonal matriz with respect to
this bastis.

FEquivalently, every symmetric matriz A € Mat(n, F') is congruent to a diagonal
matrizx.
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PROOF. If ¢ = 0, there is nothing to prove. Otherwise, we proceed by induc-
tion on the dimension n. Since ¢ # 0, by Lemma [8.27] there is v; € V' such that
¢(v1,v1) # 0 (in particular, n > 1). Let U = L(v), then ¢ is nondegenerate on U.
By Prop. we have an orthogonal splitting V = L(v;) @ U+. By induction

(dim U+ = n — 1), UL has a basis (vy,...,v,) such that ¢|yi 1 is represented
by a diagonal matrix. But then ¢ is also represented by a diagonal matrix with
respect to the basis (v, va, ..., v,). O

8.29. Remark. The entries of the diagonal matrix are not uniquely deter-
mined. For example, we can always scale the basis elements; this will multiply the
entries by arbitrary nonzero squares in F'. But this is not the only ambiguity. For

example, we have
2 0y (1 —-1\(1 0 1 1
0 2) \1 1 0 1/)\—-1 1)°

On the other hand, the number of nonzero entries is uniquely determined, since it
is the rank of the matrix, which does not change when we multiply on the left or
right by an invertible matrix.

8.30. Example. Let us see how we can find a diagonalizing basis in practice.
Consider the bilinear form on F? (with char(F) # 2) given by the matrix

011
A=1|1 0 1
1 10

Following the proof above, we first have to find an element v; € F® such that
v] Av; # 0. Since the diagonal entries of A are zero, we cannot take one of
the standard basis vectors. However, the proof of Lemma tells us that (for
example) v; = (1,1,0)" will do. So we make a first change of basis to obtain

1 10 1 00 21 2
A=1010]JAl1 1 0]=1]101
001 0 01 210

Now we have to find a basis for the orthogonal complement L(v;)*. This can be
done by adding suitable multiples of v; to the other basis elements, in order to
make the off-diagonal entries in the first row and column of the matrix zero. Here
we have to add —1/2 times the first basis vector to the second, and add —1 times
the first basis vector to the third. This gives

1 00 1 -1 -1 2 0 0
A'=|-2 1 0|Af0o 1 O0|=(0 -3 O
-1 0 1 0 0 1 0 0 -2

We are lucky: this matrix is already diagonal. (Otherwise, we would have to
continue in the same way with the 2 x 2 matrix in the lower right.) The total
change of basis is indicated by the product of the two change-of-basis matrices
that we have used:

-3 -1 1
1 0f=1(1 1 -1
0 1 0

so the desired basis is v; = (1,1,0)7, vy = (—%, %,O)T, vy = (—1,—-1,1)".

1
P=11
0

o = O
= O O

1
0
0
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8.31. Example. Consider the bilinear form ¢ on R? given by (z,y) — y' Ax
with

010
A=11 11
011
First we switch the first two basis vectors to get a 1 in the top left. This yields
111 010
A=P'AP,=(1 0 0], with Po=[1 0 0
1 01 0 01

From the new basis (es, €1, e3), in order to get generators for e;, we subtract e,
from the other two to get (es,e1 — €2, e3 — e3). This corresponds to

1 0 0 1 -1 -1
A"=PJAP,= |0 -1 1], with P,=(0 1 0
0 —1 0 0 0 1

The middle vector e; — ey is not orthogonal to itself, as the corresponding entry
along the diagonal of A’ is nonzero, so we keep it as second vector. In order to
find generators for the orthogonal complement of the subspace spanned by e, and
e1 — e, we subtract this middle vector e; — ey from the last vector to obtain the
basis (eg, €1 — g, e3 — e1). This corresponds to

1 0 0 10 0
A" =P A'Py=10 -1 0], with Py=[(0 1 —1
0 0 1 00 1
Setting
0 1 -1
P=PPP=[1 -1 0|,
0 0 1

we find PTAP = A”. Note that indeed the basis vectors ey, e; — s, and e3 —eq, or
better said, their coefficients with respect to the standard basis, are in the columns
of P.

For algebraically closed fields like C, we get a very nice result.

8.32. Theorem (Classification of Symmetric Bilinear Forms Over C).
Let F be algebraically closed of characteristic different from 2, for example F' = C.
Then every symmetric matriz A € Mat(n, F') is congruent to a matriz

1. |10
0 )
and the rank 0 < r < n is uniquely determined.

PROOF. By Theorem [8.28 A is congruent to a diagonal matrix, and we can
assume that all zero diagonal entries come at the end. Let aj; be a non-zero
diagonal entry. Then we can scale the corresponding basis vector by 1/, /a;; (which
exists in F', since F' is algebraically closed); in the new matrix we get, this entry
is then 1.

The uniqueness statement follows from the fact that n — r is the dimension of the
(left or right) kernel of the associated bilinear form. O

If I =R, we have a similar statement. Let us first make a definition.
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8.33. Definition. Let V be a real vector space, ¢ a symmetric bilinear form
on V. Then ¢ is positive definite if

¢(v,v) >0  forallve V\ {0}

8.34. Remark. A positive definite symmetric bilinear form ¢ on a finite-
dimensional real vector space is nondegenerate: if v # 0, then ¢(v,v) > 0, so
¢(v,v) # 0. Hence v is not in the (left or right) kernel of ¢. For example, this
implies that the Hilbert matrix from Example is invertible.

8.35. Theorem (Classification of Symmetric Bilinear Forms Over R).
Every symmetric matriz A € Mat(n,R) is congruent to a unique matriz of the
form

I, 0 |0
0|—-1s|0
0, 0 |0

The number r + s is the rank of A or of the corresponding bilinear form, the
number r — s is called the signature of A or of the corresponding bilinear form.

PROOF. By Theorem [8.28] the matrix A is congruent to a diagonal matrix, so
there is a basis (v, ...,v,) for R® such that the bilinear form ¢: (z,y) — y' Ax
is represented by a diagonal matrix D with respect to that basis. We can assume
that the diagonal entries are ordered in such a way that we first have positive,
then negative and then zero entries.

If d;; is a non-zero diagonal entry of D, we scale the corresponding basis vector by
1/+/|d;;|. Then the new diagonal matrix we get has positive entries 1 and negative
entries —1, so it is of the form given in the statement.

The number r + s is the rank of D, and hence of A, so it is uniquely determined.
We claim that the number r is the maximal dimension of a subspace on which
the bilinear form ¢ is positive definite. Indeed, if we let 7' denote this maximal
dimension, then we have r < 7/, as the bilinear form ¢ is positive definite on
the subspace generated by vy, ..., v,.. Moreover, if we have a subspace U C R" on
which ¢ is positive definite, then for the subspace V' C R"™ generated by v,41, ..., v,
we have U NV = {0}, as any nonzero element x € U NV satisfies ¢(z,z) > 0 as
well as ¢(x) < 0; so we have dimU < dimR"” —dimV =n — (n —r) = r, and we
conclude " < r.

Therefore r and s only depend on the bilinear form, so they are uniquely deter-
mined. U

8.36. Example. Let V be again the real vector space of polynomials of degree
< 2. Consider the symmetric bilinear form on V' given by
1

o(p,q) = /(295 — )p(z)q(x) dz .
0
What are the rank and signature of ¢?

We first find the matrix representing ¢ with respect to the standard basis (1, z, z2).

Using [, (22 — 1)a" dz = e — T = ez Ve obtain
0 % &\ /0 1010
A=t 1 31— (10 10 9
1 3 2 10 9 8
6 20 15
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The rank of this matrix is 2 (the kernel is generated by 1022 — 10x + 1). We have
that ¢(z,z) = ¢ >0and ¢z — 1,2 —1) = =23 +0 = —¢ <0, so r and s must
both be at least 1. The only possibility is then » = s = 1, so the rank is 2 and
the signature is 0. In fact, we have ¢(x,xz — 1) = 0, so

V6z, V6(z—1), 102> —10z+1

is a basis such that the matrix representing ¢ is

1 0 0
0 -1 0
0 0 0

8.37. Theorem (Criterion for Positive Definiteness). Let A € Mat(n,R)
be symmetric. Let A; be the submatriz of A consisting of the upper left j x j block.
Then (the bilinear form given by) A is positive definite if and only if det A; > 0
foralll < j<n.

PROOF. First observe that if a matrix B represents a positive definite sym-
metric bilinear form, then det B > 0: by Theorem [8.35 there is an invertible
matrix P such that PT BP is diagonal with entries 1, —1, or 0, and the bilinear
form is positive definite if and only if all diagonal entries are 1, i.e., PTBP = I.
But this implies 1 = det(PTBP) = det B(det P)?, and since (det P)? > 0, this
implies det B > 0.

Now if A is positive definite, then all A; are positive definite, since they represent
the restriction of the bilinear form to subspaces. So det A; > 0 for all j.

Conversely, assume that det A; > 0 for all 7. We use induction on n. For n =1
(or n = 0), the statement is clear. For n > 2, we apply the induction hypothesis
to A,_1 and obtain that A,_; is positive definite. Then there is an invertible
matrix P € Mat(n — 1, R) such that

(1)1 (51) - (i) -

with some vector b € R"™! and o € R. Setting
I|—b
o= (42).

and so A is positive definite if and only if 5 > 0. But we have (note det @ = 1)
B =det(Q"BQ) = det B = det(P")det Adet P = (det P)*det A,
so B > 0, since det A = det A,, > 0, and A is positive definite. O

we get

Exercises.

(1) Let V, W, X, Y be vector spaces over a field F', and let b: V xW — X be
a bilinear map. Show that for each linear map f: X — Y the composition
f o b is bilinear.

(2) Let V,W be vector spaces over a field F'. If b: V xV — W is both
bilinear and linear, show that b is the zero map.
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(3) Give an example of two vector spaces V, W over a field F' and a bilinear
map b: V x V — W for which the image of b is not a subspace of W.
(4) Let V, W be two 2-dimensional subspaces of the standard R-vector space
R3. The restriction of the standard scalar product R? xR? — R to R3 x W
is a bilinear map b: R3 x W — R.
(a) What is the left kernel of b7 And the right kernel?
(b) Let b': V x W — R be the restriction of b to V' x W. Show that &’
is degenerate if and only if the angle between V and W is 90°.
[Recall that the angle between two (hyper-)planes is defined as the
angle between their (any) normal vectors.]
(5) Let ¢: R* x R® — R be the bilinear form given by (z,y) — y' Az with

1 2 3 4
A=12 3 4 5
34 5 6

Let f: R* — R* be the isomorphism given by
(71, 22, T3, 04) > (T1, 71 + T2, T1 + T2 + T3, 71 + T2 + T3 + Ty).
Let g: R3 — R? be the isomorphism given by
(21,22, x3) — (21, T1 + T2, T1 + T2 + X3).

Let b: R* x R® — R be the map given by b(z,y) = ¢(f(x), g(y)).
(a) Determine the kernel of ¢; and ¢g.
(b) Show that b is bilinear.
(c) Give the matrix associated to b with respect to the standard bases
for R* and R3.

(6) Let V' be a finite-dimensional vector space over F, and ev: V x V* — F
the bilinear form that sends (v, ¢) to ¢(v). Let B be a basis for V, and
B* its dual basis for V*. What is the matrix associated to ev with respect
to the bases B and B*?

(7) Let V be a vector space over R, and let b: V x V — R be a sym-
metric bilinear map. Let the “quadratic form” associated to b be the
map ¢: V — R that sends x € V to b(z,z). Show that b is uniquely
determined by gq.

(8) Let V' be a vector space over R, and let b: V' x V — R be a bilinear
map. Show that b can be uniquely written as a sum of a symmetric and
a skew-symmetric bilinear form.

(9) Consider the real matrix

1 -2 4
A=[-2 —2 =2
4 -2 1

Find an invertible matrix P such that P' AP is diagonal.
(10) Consider the real matrix

1 2 —4
B=|(2 3 -3
—4 -3 -9

(a) Show that (—6,5,1) is an eigenvector of B.

(b) Is B positive definite?

(c) Find an invertible matrix @ such that QT BQ is diagonal.
(d) What is the signature of B?
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(11) Let V be the 3-dimensional vector space of polynomials of degree at most 2
with coefficients in R. For f, g € V define the bilinear form ¢: V xV — R
by

6(f.9) = / 2 f(2)g(x)da.

(a) Is ¢ nondegenerate?
(b) Give a basis for V' for which the matrix associated to ¢ is diagonal.
(c) Show that V has a 2-dimensional subspace U for which U C U+,
(12) Let ey, ..., e, be the standard basis for V' = R", and define a symmetric
bilinear form ¢ on V by ¢(e;,e;) = 2 for all ¢,5 € {1,...,n}. Give the
signature of ¢ and a diagonalizing basis for ¢.
(13) Suppose V is a vector space over R of finite dimension n with a nonde-
generate bilinear form ¢: V x V — R, and suppose that U is a subspace
of V with U C Ut. Then show that the dimension of U is at most n/2.
(14) For x € R consider the matrix

r —1
(5
(a) What is the signature of A; and A_,?
(b) For which x is A, positive definite?

r —1 1
(c) For which zis [ —1 2 1 | positive definite?
1 11

(15) Let A be the matrix from exercise (14c). Find an invertible matrix P
such that PT AP is diagonal.
(16) Let V' be a vector space over R, let b: V x V — R be a skew-symmetric
bilinear form, and let x € V be an element that is not in the left kernel
of b.
(a) Show that there exist y € V such that b(z,y) = 1 and a linear
subspace U C V such that V' = (z,y) ® U is an orthogonal direct
sum with respect to b.
REMARK. The notation (x,y) denotes the subspace spanned by z
and y, and of course has nothing to do with an inner product.
HINT. Take U = (z,y)* = {v € V : b(z,v) = b(y,v) = 0}.
(b) Conclude that if dim V' < oo, then then there exists a basis for V'
such that the matrix representing b with respect to this basis is a
block diagonal matrix with blocks By, ..., B; of the form

(40)

and zero blocks By 1,..., By.
(17) Let V, W be vector spaces over F'. Let ¢: V x W — F be a bilinear form.
Show that there is a commutative diagram

VxVr
VxW—sF
o]

ev

which shows that if ¢ is nondegenerate, and we use ¢r to identify W
with V*, then ¢ corresponds to the evaluation pairing.



CHAPTER 9

Inner Product Spaces

In many applications, we want to measure distances and angles in a real vector
space. For this, we need an additional structure, a so-called inner product.

9.1. Definition. Let V be a real vector space. An inner product on V is a
positive definite symmetric bilinear form on V. It is usually written in the form
(x,y) — (z,y) € R. Recall the defining properties:

(1) Az + N y) = Ma,y) + {2/, y);

(2) (y,2) = (z,9);
(3) (z,z) > 0 for x # 0.

A real vector space together with an inner product on it is called a real inner
product space.

Recall that an inner product on V' induces an injective homomorphism V' — V*,
given by sending x € V to the linear form y +— (z,y); this homomorphism is
an isomorphism when V' is finite-dimensional, in which case the inner product is
nondegenerate.

Frequently, it is necessary to work with complex vector spaces. In order to have
a similar structure there, we cannot use a bilinear form: if we want to have (z, x)
to be real and positive, then we would get

(iz,iz) = i*(z, 1) = —(z,7),
which would be negative. The solution to this problem is to consider Hermit-

tan forms instead of symmetric bilinear forms. The difference is that they are
conjugate-linear in the second argument.

9.2. Definition. Let V be a complex vector space. A sesquilinear form on V/
isamap ¢ : V x V — C that is linear in the first and conjugate-linear in the
second argument (“sesqui” means 1%):

Pz + N y) = Ap(x,y) + No(2',y), oz, Ay +Ny') = Ao(z,y) + No(z,y) .

A Hermitian form on V is a sesquilinear form ¢ on V' such that ¢(y, z) = ¢(z,y)
for all x,y € V. Note that this implies ¢(z,z) € R. The Hermitian form ¢ is
positive definite if ¢p(x,x) > 0 for all z € V\ {0}. An inner product on the complex
vector space V' is a positive definite Hermitian form on V'; in this context, the form
is again usually written as (z,y) — (z,y) € C.

Warning: this means that from now on, the notation (z,y) may refer to other
pairings than the ordinary scalar (dot) product.

For an inner product on V', we have

(1) Az + N y) = Ma,y) + {2/, y);
(2) (y,z) = (z,y);

7
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(3) (z,z) > 0 for x # 0.

A complex vector space together with an inner product on it is called a complex
inner product space or Hermitian inner product space. A real or complex vector
space with an inner product on it is an wnner product space.

9.3. Definition. If V is a complex vector space, we denote by V' the complex
vector space with the same underlying set and addition as V', but with scalar
multiplication modified by taking the complex conjugate: A -v = Av, where on
the left, we have scalar multiplication on V, and on the right, we have scalar
multiplication on V. We call V the complex conjugate of V. If V is a real vector
space, then we set V = V.

9.4. Remark. Let V be a complex vector space. Note that any basis for V
is also a basis for V, so we have dimV = dim V. Note that if f: V — W is a
linear map, then it is also linear as a map from V to W. If we denote this (same)
map by f': V — W to distinguish it from f, which has a different vector space
structure on its domain and codomain, and B and C' are finite bases for V and W,

respectively, then we have [f']8 = [f]E.

We denote by V* = (V)* the dual of this complex conjugate space. If V is a
complex inner product space, then the sesquilinear form ¢: V' xV' — C corresponds
to a bilinear form V x V — C, and we again get homomorphisms

V—V* o (y= (z,y) = (z,_)

and
V—V", yr— (@@= (zy)={_y).
These maps are injective because we have (z,x) # 0 for x # 0. When V' is finite-

dimensional, this implies that they are isomorphisms, that is, the bilinear form
V x V — C is nondegenerate.

9.5. Remark. Note that the dual V* of V is not the same as V_*_, which is the
dual of V' with the modified scalar multiplication. In fact, the map V* — V* that

sends ¢ € V* to the function ¢ that sends € V to ¢(z) is a homomorphism.

9.6. Examples. We have seen some examples of real inner product spaces
already: the space R™ together with the usual scalar (dot) product is the standard
example of a finite-dimensional real inner product space. An example of a different
nature, important in analysis, is the space of continuous real-valued functions on
an interval [a, b], with the inner product

(f.g) = / F()g(x) da

For complex inner product spaces, the finite-dimensional standard example is C"
with the standard (Hermitian) inner product

(21, -y 2n), (W1, ... wy)) = 21wy + -+ + 2,0 ,
so (z,w) = z - w in terms of the usual scalar (dot) product. Note that

(z,2) = |z1> + -+ |2* > 0.
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The complex version of the function space example is the space of complex-valued
continuous functions on [a, b], with inner product

b
(f.9) = / F@)g (@) de

9.7. Definition. Let V' be an inner product space.

(1) For x € V, we set ||z|| = y/(x,2) > 0. The vector = is a unit vector if
]| = 1.
(2) We say that x,y € V are orthogonal, z L y, if (z,y) = 0.

(3) A subset S C V is orthogonal if z L y for all z,y € S such that x # y.
The set S is an orthonormal set if in addition, ||z|| =1 for all x € S.

(4) A sequence (vy,...,v;) of elements in V' is orthogonal if v; L v; for all
1 <i < j < k. The sequence is orthonormal if in addition, |lv;|| = 1 for
all 1 <7 < k.

(5) An orthonormal basis or ONB of V is a basis of V' that is orthonormal.
(6) For any set S C V, we define S* as

St={veV :vlsforallsc S}

Note that being perpendicular is symmetric, that is, we have x L y if and only if
y L x. Also note that, as mentioned before, the inner product corresponds to a
bilinear form V x V — F where F is R or C. If U C V is a subspace, then the
definition of U+ above coincides with the one given in Definition with respect
to this bilinear form (where we use that V and V are the same on the level of sets,
and we may choose to view U as a subset of either V or V). In particular, if V is
finite-dimensional, and the inner product is therefore nondegenerate, then we find
from Lemma that (U4)* = U and dim U + dim U+ = dim V.

9.8. Proposition. Let V' be a finite-dimensional inner product space, and
U C V a subspace. Then we have V = U & U+,

PROOF. As mentioned just before the proposition, we have dim U +dim U+ =
dim V. Since inner products are positive definite, we have U N U+ = {0}, so the
dimension theorem for subspaces gives

dim U + dim U+ = dim(U + U*) + dim(U N U*) = dim(U + U™).

We conclude dim(U + Ut) = dimV, so U + U+ = V. Because the intersection
UNU* is trivial, we get V =U @ U+. O

If we have V = U @ U™, so in particular when V is finite-dimensional, then we
call U+ the orthogonal complement of U. If V is a real inner product space, then
this coincides with Proposition [8.26| and the sentence below it; if V' is a complex
inner product space, then we can not apply Proposition [8.26] directly, as a complex
inner product is not a bilinear form.
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9.9. Proposition. Let V' be an inner product space.

(1) For x € V and a scalar \, we have || Ax| = |A| - ||z
(2) (Cauchy-Schwarz inequality) For x,y € V, we have

[z, )| < el - Nyl

with equality if and only if x and y are linearly dependent.
(3) (Triangle inequality) For z,y € V, we have ||z + y|| < ||z|| + ||ly||-

Note that these properties imply that ||- || is a norm on V' in the sense of Section 7]
In particular,

d(z,y) = [z = yll

defines a metric on V; we call d(z,y) the distance between z and y. If V = R"
with the standard inner product, then this is just the usual Euclidean distance.

PROOF.
(1) We have

Azl = v (Az, Az) = \/[ ANz, 2) = VA2, 2) = AV (z,2) = [Al]|z].

(2) This is clear when y = 0, so assume y # 0. Consider

(z,y)

Z=0— oy
lylI>

then (z,y) = 0 (in fact z is the projection of x on y*). We find that

0<(z,2)=(z,2) = (w,2) — % (y,z) = ||z||* - |<ﬁ?’jz|2 :

which implies the inequality. If x = Ay, we have equality by the first part

of the proposition. Conversely, if we have equality, we must have z = 0,
hence x = \y (with A = (z,y)/||y||?).

(3) We have

|z +yl? = (z+y,z+y) = (z,2) + (z,9) + (y,2) + (y,9)
= [|z]|* + 2Re(z, y) + [|ylI* < l|z]1* + 2/{z, y)| + [|y])?
< | + 2012 1yl + Iyl = (=l + [ly])? .

using the Cauchy-Schwarz inequality.

g

Next we show that given any basis for a finite-dimensional inner product space,
we can modify it in order to obtain an orthonormal basis. In particular, every
finite-dimensional inner product space has orthonormal bases.
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9.10. Theorem (Gram-Schmidt Orthonormalization Process). Let V

be an inner product space. Let xq, ...,z € V be linearly independent, and define
Y1 =21
x 7
Yo = 1o — (T2, 1)
<y1>y1>
X ) X 7
ys = T3 — (23 y1>y1<_ (z3 y2>y2
(Y1, 1) (Y2, Y2)
T, Y Ly Yk—
<y1, 3/1) (Yr—1,Yr—1)
Finally, set z; = y;/||yil| for i = 1,...,k. Then (z1,...,2) is an orthonormal
basis for L(xy, ..., xx).
PROOF. We first prove by induction on k that (yi,...,yx) is an orthogonal
basis for L(xy,...,2zx). The case k = 1 (or k = 0) is clear — x1 # 0, so it is a

basis for L(x1).

If £ > 2, we know by the induction hypothesis that yq,...,ys_1 is an orthogonal
basis for L(xy,...,z5_1). In particular, y;,...,y,_1 are nonzero, so y; is well
defined. Since yi, ..., yx—1 are pairwise orthogonal, that is, (y;,y;) = 0 for i # j,
we find for 1 < j < k — 1 that

(Uk, 45) = (e, ) — Wi yi) = (T, y5) — (o, y5) = 0.

Hence, in fact yi,...,y, are pairwise orthogonal. By construction, we have an
inclusion L(y1,...,yx) C L(z1,...,x). Asitis also clear that z;, can be expressed
in y1,...,Yx, the opposite inclusion also holds. In particular, this implies that
L(y1, ..., yx) has dimension k, so (y1, ..., yx) is linearly independent and hence an
orthogonal basis for L(z1,...,xy).

Since yi, ...,y are linearly independent, they are nonzero, so we may indeed
normalise and set z; = y;/||yi|| for ¢ = 1,... k. After normalising, we have
||zi]| = 1 and (z;, z;) = 0 for i # j. Clearly, we have L(z1,...,2x) = L(y1, ..., yx) =
L(zy,...,xg), so (21,...,2) is an orthonormal basis for L(xy,...,z). O

9.11. Corollary. Every finite-dimensional inner product space has an ONB.

ProoF. Apply Theorem to a basis for the space. O

9.12. Proposition. Let V be an inner product space.

(1) If (v1,v9,...,v%) is an orthogonal sequence of nonzero elements in'V', then
vy, ..., 0 are linearly independent.

(2) If S C V is an orthogonal set of nonzero vectors, then S is linearly
independent.

PROOF.
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(1) Let (vq,vs,...,v) be an orthogonal sequence of nonzero elements in V|
and assume we have a linear combination

k
=1

Now we take the inner product with v; for a fixed j:

k k
0= <Z)\ﬂ)i,1}j> = Z)\i@i,vj) = )\j(’Uj,Uj> .
=1 =1

Since v; # 0, we have (v;, v;) # 0, therefore we must have \; = 0. Since
this is true for every index 1 < j < k, the linear combination is trivial.

(2) By part (1), every finite subset of S is linearly independent, which makes
the set S linearly independent by definition.

g

9.13. Proposition. Suppose V' is an n-dimensional inner product space. Then
for every orthonormal sequence (e, ..., ex) of elements in V', there are elements
€1y .-+ 6n €V such that (e, ..., e,) is an ONB of V.

PRrROOF. By Proposition[9.12] the elements ey, ..., e; are linearly independent.
Extend eq,...,e, to a basis for V in some way and apply Theorem to this
basis. This will not change the first k& basis elements, since they are already
orthonormal. Il

Orthonormal bases are rather nice, as we will see.

9.14. Theorem (Bessel’s Inequality). Let V' be an inner product space,
and let (e1,...,e,) be an orthonormal sequence of elements in V. Then for all
x €V, we have the inequality

- 2
> la,en]” <z,
j=1

Let U = L(ey, ..., e,) be the subspace spanned by ey, ..., e,. Then for x € V| the
following statements are equivalent:

(1) zeU;

@) Dl enl” = llall’

(B) x =) {w.e5)es;

J=1
n

(4) forally €V, (w.y) =Y (w.¢;){e;9)-

j=1
In particular, statements to hold for all z € V when (e, ..., e,) is an ONB
of V.

When (e, ...,e,) is an ONB, then (and also ({2))) is called Parseval’s Identity.
The relation in is sometimes called the Fourier expansion of x relative to the
given ONB.
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n

PROOF. Let z =2 — ' (z,e;)e;. Then for any 1 <k <n we have

n

(z,er) = (z,ex) — Z(x, e;) - (ej, er) = (w,ex) — (v, e;) = 0.

j=1

This implies (z, z) = (2, ), so we find

n

0 < (5,2) = (2,0) = (w,2) = D _{we5) - e @) = [l2ll* = D[ en)]”

j=1
This implies the inequality and also gives the implication ([2) = , as equality in
(2) implies (z,z) = 0, so z = 0. The implication = is a simple calculation,
and = follows by taking y = =. = is trivial. Finally, to show

= , let
Tr = Z)\jej.
j=1

n

(@ ) =D Nilegsen) = M,
j=1

which gives the relation in . U

Then

Next, we want to discuss linear maps on inner product spaces.

9.15. Theorem. Let V and W be two inner product spaces over the same
field (R or C), and let f : V — W be linear. Then there is at most one map
fF: W =V such that

(f(v),w) = (v, f*(w))
forallv eV, we W. If such a map exists, then it is linear. Moreover, if V is
finite-dimensional, then such a map does exist.

PROOF. Recall that we have an injective linear map V — V* that sends
x € V to (_,z), and where we use V = V if the base field is R. This injective
map is an isomorphism if V' is finite-dimensional. For w € W fixed, the map
V > v (f(v),w) is a linear form on V, so there is at most one element z € V
such that (f(v),w) = (v,z) for all v € V; if such an element exists, which is
the case if V' is finite-dimensional, then we set f*(w) = z. Assume that f*(w)
is defined for all w € W. Now consider w + w’ for w,w’ € W. We find that
f*(w+w') and f*(w) + f*(w') both satisfy the relation, so by uniqueness, f* is
additive. Similary, considering \w for w € W and A € R or C, we see that f*(A\w)
and \f*(w) must agree. Hence f* is actually a linear map. U

ALTERNATIVE PROOF. Let F' be the field over which V' and W are inner prod-
uct spaces. Let ¢: V x V — F and ¢¥: W x W — F be the bilinear forms
that correspond to the inner products on V' and W, respectively. Then we have
(f(v),w) = (v, f*(w)) for all v € V and all w € W if and only if we have
dro f* = fT op, that is, the diagram

.
(6) wr Ly

Wl e

W——=V
f*
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commutes. Note that ¢p is injective, so there is at most one such map f*. Also
because of injectivity, and the fact that the composition f' o4 is linear, the map
f* is linear if it exists. If V' is finite-dimensional, then ¢g is an isomorphism, so
there is such a map, as we can take f* = gzﬁgl o fT onp. U

9.16. Definition. Let V and W be inner product spaces over the same field.

(1) Let f:V — W be linear. If f* exists with the property given in Theo-
rem (which is always the case when dim V' < o), then f* is called
the adjoint of f.

(2) If f:V — V has an adjoint f*, and f = f*, then f is self-adjoint.
(3) If f:V — V has an adjoint f* and fo f* = f*o f, then f is normal.

(4) A linear map f : V. — W is an isometry if it is an isomorphism and

(f(v), f(v")) = (v,0') for all v,v" € V.

9.17. Remark. Some books use an alternative definition for isometry. In-
deed, Exercise 23| shows that an isomorphism of inner product spaces is an isome-
try if and only if it preserves lengths. Exercise [25[shows that we do not even need
to require the map to be linear, if we assume it preserves all distances. Exercises
and [28| show that it also suffices to require angles to be preserved.

9.18. Examples. If f: V — V isself-adjoint or an isometry, then f is normal.
For the second claim, note that every isometry f: V' — W, also between infinite-
dimensional spaces, has an adjoint f* = f~!. (In fact, the converse is true as well:
if an isomorphism f: V — W has an adjoint f* = f~1, then f is an isometry. The
proof of Proposition below includes a proof of this statement that does not
rely on finite-dimensionality.)

9.19. Remark. While the property of the adjoint given in Theorem [9.15 may
seem asymmetric, we also have

(w, f(v)) = (f(v),w) = (v, f*(w)) = (f*(w),v)

for all v € V and all w € W, which is equivalent with ¢y o f* = fT o4;.

9.20. Example. Consider the standard inner product on F"™ and F™ (for
F=Ror F=C). Let A € Mat(m xn, F') be a matrix and let f = fa: F" — F™
be the linear map given by multiplication by A. We denote the conjugate transpose
AT by A*. Then for every v € F™ and w € F™, we have

(f),w) = (Av,w) = (Av)T - w=v - AT - w=0" - ATw = (v, A*w)

(where the dot denotes matrix multiplication), so the adjoint f*: F™ — F™ of f
is given by multiplication by the matrix A*.

9.21. Proposition (Properties of the Adjoint). Let Vi, V5, V5 be inner
product spaces over the same field, and let f,g : Vi, — Vo, h: Vo — V3 be linear.
Then the foloowing statements hold.

(1) If f* and g* exist, then (f + g)* and (\f)* exist, and we have (f + g)* =
[ +g and (Af)" = Af*;

(2) If f* and h* ezist, then (ho f)* exists, and we have (ho f)* = f*o h*;

(3) If f* ewists, then (f*)* ewxists, and we have (f*)* = f.
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PROOF.

(1) For v € Vj and v' € V4, we have
((f +9)(),0) = {f(v), V) + (g(v), V)
= (v, f7(0) + (v, 97(") = (v, (f" + g7) ("))
and
(AN W), 0") = (Af(0),0) = AM(f(v),0)
= Mo, f* (V) = (v, Af*(v)) = (v, Af) ).

So f*+ ¢* and \f* satisfy the the conditions of the adjoints of f + ¢ and
Af, respectively, and the claim follows from the uniqueness of the adjoint.
(2) We argue in a similar way. For v € V}, v € Vj,

((ho f)(v),v) = (h(f(v)),v) = (f(v),h"(v))
= (v, f* (")) = (v, (f 2 h")(v")) .

Again, the claim follows from the uniqueness of the adjoint.
(3) For all v € Vi, v’ € Vs, we have

(f*(0),v) = (v, f*(v')) = (f(v),v") = (v, f(v)),

so f satisfies the condition of the adjoint of f*, so the claim again follows
from the uniqueness of the adjoint.

0

Now we characterize isometries.

9.22. Proposition. Let V' and W be inner product spaces of the same finite
dimension over the same field. Let f :V — W be linear. Then the following are
equivalent.

(1)
(2) f is an isomorphism and f~' = f*;
(3)
(4) f

f is an isometry;

3) fofr=idw;
4 >kO ldv

ProoFr. To show = , we observe that for an isometry f and v € V,
w € W, we have

(v, f*(w)) = (f(v),w) = (f(v), F(f " (w))) = (v, f(w)),

which implies f* = f~!. The implications = and = are clear.
If or holds, then f is injective or surjective, respectively; hence f is an
isomorphism, and we get . Now assume , and let v,v" € V. Then

(f(0), f(W) = (v, [ (f(V))) = (v,0"),

so f is an isometry. O
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9.23. Lemma. LetV be a finite-dimensional inner product space over F with
an orthonormal basis B = (vy,...,v,). Consider the standard inner product on
F". Then the isomorphism

QDBZFW—>‘/'7 ()\17---7>\n)'_>)\1U1+"'+)\nvn

18 an isometry.

PROOF. We denote the standard inner product on F™ by (_,_) as well. Note
that if v,0" € V have coordinates * = (z1,...,2,), 2 = (2),...,2)) € F™ with
respect to B (so that ¢p(z) = v and pp(z’) = '), then we have x; = (v,v;) and
2}, = (v',v;) by Theorem [9.14] which therefore also implies

(0,0) = 24T} + - + @7, = (2,2)

This shows that ¢pg is indeed an isometry. U

Now we relate the notions of adjoint etc. to matrices representing the linear maps
with respect to orthonormal bases.

9.24. Proposition. Let V and W be two inner product spaces over the same
field, let B = (v1,...,v,) and C = (wy, . .., w,,) be orthonormal bases of V. and W,
respectively, and let f: V. — W be linear. If f is represented by the matriz A
relative to the given bases, then the adjoint map f* is represented by the conjugate
transpose matriz A* = AT with respect to the same bases, that is

5 = ([F12)"

Note that when we have real inner product spaces, then A* = AT is simply the
transpose.

PRrROOF. Let FF = R or C be the field of scalars. Let ¢pp: F" — V and
we: F™ — W be the usual maps associated to the bases B and C', respectively. By
Lemma m, these two maps are isometries, so we have ¢% = ' and ¢} = ;'
By definition, the map @51 o fowpg: F" — F™ is given by multiplication by the
matrix A = [f]2. By Example , multiplication by the conjugate transpose A*
of A gives the adjoint of this map, which equals

(<P610f0803)*Iw*BOf*O(SOEl)*:SOZ;lOf*O@c-

By definition, this map is also given by multiplication by [f*]§, so we conclude
(/114 = A* = ([f]2)*. In other words, the matrix AT = A* represents f*. O

ALTERNATIVE PROOF. To distinguish between the linear map f*: W — V
and the same map between the associated complex conjugate spaces, we write
f*: W — V for the latter. Set A’ = [f*'|§. Note that this means f*' o ¢ =
©p o far, where pg: F™ — V and pc: F™ — W are the usual maps associated
to the bases B for V and C for W, respectively; this means that in terms of the
scalar multiplication on V we have ng(()\l, e )\n)) = ANy + - + A\yup, and
similarly for ¢po. Let B* and C* be the bases of V* and W* dual to B and C,
respectively. Let ¢: V x V — F and ¢: W x W — F denote the bilinear forms
associated to the inner products on V and W, respectively. Since ¢p: V — V*
and 1r: W — W* send orthonormal bases to their duals (exercise 9., we have
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pp+ = ¢r o pp and Yo« = Yr o pc. Then the commutative diagram @ extends
to the following commutative diagram.

.
we Ly
¢RT T¢R
PC* W ?‘ ‘7 PpB*
@C[ [‘PB
Fm——s "
far
We conclude A" = [fT]%., so from Proposition we find A’ = A", From
Remark [9.4) we then conclude [f*]G = [f*]§ = A’ = AT = A*. a

Warning. If the given bases are not orthonormal, then the statement is wrong
in general.

9.25. Corollary. Let V and W be two inner product spaces over the same
field, let B = (vq,...,v,) and C = (w1, ..., wy,) be orthonormal bases of V and W,
respectively, and let f: V — W be linear. Set A= [f]E. We have the following.

(1) The map f is an isometry if and only if A* = A~L.
(2) Suppose V=W and B = C. Then f is self-adjoint if and only if A* = A.
(3) Suppose V=W and B = C. Then f is normal if and only if A*A = AA*.

PRroor. Exercise. O

9.26. Definition. A matrix A € Mat(n,R) is

(1) symmetric if AT = A;
(2) normal if AAT = AT A;
(3) orthogonal if AAT = 1I,,.

A matrix A € Mat(n,C) is

(1) Hermitian if A* = A;
(2) normal if AA* = A* A,
(3) unitary if AA* = 1,.

These properties correspond to the properties “self-adjoint”, “normal”, “isometry”
of the linear map given by A on the standard inner product space R" or C".
Correspondingly, isometries of real inner product spaces are also called orthogonal
maps, and isometries of complex inner product spaces are also called unitary
maps.

9.27. Example. Lemma (9.23| was used to prove Proposition [9.24] and we can
recover Lemma[9.23]from Proposition[9.24] Indeed, suppose V' is an n-dimensional
inner product space over F' with FF =R or F' = C, and let B = (vy,...,v,) be an
orthonormal basis. Let E denote the standard (orthonormal) basis for F". Let
pp: F" =V be the map that sends (Ay,..., ;) to Y. Av;. Then the associated
matrix A = [pp]E is the identity, which is unitary, so pp is an isometry.
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9.28. Example. Suppose V is an n-dimensional inner product space over F'
with ' =R or F' = C, and let B and B’ be two orthonormal bases for V. Then
the base change matrix P = [idy]% is unitary, because the identity map is an
isometry.

9.29. Theorem. Let f: V — W be a linear map of finite-dimensional inner
product spaces. Then we have

im(f*) = (ker(f))L and ker(f*) = (Hn(f))l

PROOF. Let F be the field over which V' and W are inner product spaces. Let
¢: VxV — Fand: WxW — F be the bilinear forms that correspond to the in-
ner products on V and W, respectively. Because V and W are finite-dimensional,
the maps ¢r and g in the commutative diagram @ are isomorphisms. Hence,
they restrict to isomorphisms im f* — im f' and ker f* — ker f', respectively.
By Remark [8.21] they also restrict to isomorphisms (ker f)* — (ker f)° and
(im f)* — (im f)°, respectively. Hence, the claimed identities follow after ap-
plying gbl_%l and @Zzél to the identities of Theorem , respectively. O

ALTERNATIVE PROOF. We first show the inclusion im(f*) C (ker(f))L. So
let z € im(f*), say z = f*(y). Let = € ker(f), then

(z,2) = {z, [*(y)) = (f(2),y) = (0,y) = 0,
so z € (ker(f ))L This inclusion implies
(7) dimim f* < dim(ker f)* = dimV — dimker f = dimim f.
The analogous inequality for f* instead of f is
dimim(f*)* < dimim f*.
From the equality (f*)* = f (see Proposition we conclude
dimim f < dimim f*.
Combining this inequality with shows that all inequalities are equalities, so

im(f*) = (ker(f))L. Applying this to f* instead of f yields im(f) = (ker(f*))L,
which is equivalent to the second identity claimed in the theorem. Il

Exercises.

(1) Let V be the vector space of continuous complex—valued functions defined
on the interval [0, 1], with the inner product (f, g) fo g(z) dz. Show
that the set {x +— e*™** : k € Z} C V is orthonormal. Is 1t a ba81s for V7

(2) Give an orthonormal basis for the 2-dimensional complex subspace V3 of
the standard inner product space C? given by the equation z; —izy+izg =
0.

(3) For the real vector space V' of polynomial functions [—-1,1] — R with

inner product given by
1
~ [ f@lgayts
1
2 .3

apply the Gram-Schmidt procedure to the elements 1, z, 2%, x°.
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(4) For the real vector space V' of continuous functions [—m, 7] — R with
inner product given by

(9) = [ f@glapds

show that the functions
1/\/5, sin x, cos x, sin 2z, cos 2z, . . .

form an orthonormal set. [Note: for any function f the inner products
with this list of functions is the sequence of Fourier coefficients of f.]

(5) Let F be R or C, and let V be a finite-dimensional inner product space
over F. Let ¢: V x V — F be the bilinear form corresponding to the
inner product, and let ¢: V — V* and ¢r: V — V* be the usual induced
linear maps. Show that ¢, and ¢r send every orthonormal basis to its
dual basis.

(6) Let A be an orthogonal n x n matrix with entries in R. Show that
det A = £1. If A is an orthogonal 2 x 2 matrix with entries in R and

det A = 1, show that A is a rotation matrix C989 —sinf for
sinf  cosf

some 6 € R. )

(7) For which values of o € C is the matrix ( ¢ é > unitary?

2
(8) Show that the matrix of a normal transformation of a 2-dimensional real

inner product space with respect to an orthonormal basis has one of the

forms
a f a [
(—M) . (@ 5>-

(9) Let V be the vector space of infinitely differentiable functions f: R — C
satisfying f(x + 2) = f(x) for all x € R. Consider the inner product on
V given by (p,q) = f_llp(x)mdx. Show that the operator D : p — p”
is self-adjoint.

(10) TRUE or FALSE? Give a proof or counterexample.

(a) For any two real symmetric n x n matrices, the product is symmetric.
(b) For any two real normal n X n matrices, the product is normal.
(c) For any two real orthogonal n xn matrices, the product is orthogonal.

(11) Let n be a positive integer. Show that there exists an orthogonal anti-
symmetric n X n-matrix with real coefficients if and only if n is even.

(12) Let V' C R® be a plane through the origin. Let m: R* — R® be the
projection onto V.

(a) Show that R? has an orthonormal basis B of eigenvectors for 7.

(b) Show that for such a basis B, the associated matrix [7]3 is diagonal.

(c) Show that the matrix [7]£, where F is the standard basis for R3, is
symmetric.

(13) Consider R™ with the standard inner product, and let V' C R" be a
subspace. Let A be the n x n-matrix of orthogonal projection on V.
Show that A is symmetric.

(14) Give an alternative proof of Proposition that follows the ideas of the
alternative proof of Theorem [9.15 (Hint: For (3), use Remark [9.19] the
identity ¢, = ¢5 o ay and its equivalent for W, and Proposition [6.17})
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(15) Let V be an inner product space and U C V a finite-dimensional subspace.
Let the inclusion map be denoted by ¢: U — V. Show that we have
ker* = U+,

(16) Suppose

v-Lv-Sw
is an exact sequence of linear maps between finite-dimensional inner prod-
uct spaces. Show that there is an induced exact sequence

WSy o
(17) Check for all finite-dimensional inner product spaces in the results and
exercises of this chapter whether the assumption of finite-dimensionality
can be left out (possibly by replacing it by the assumption that certain
adjoint maps exist). If so, give a proof of the stronger statement. If not,
give a counterexample.

(18) Let V be a real inner product space, and f: V' — V an endomorphism.
Define the map

o:VxV =R, (zy)— (f(x),y).

(a) Show that ¢ is a bilinear map.
(b) Show that if V' is finite-dimensional, then every bilinear map is of
this form.
(c) Show that ¢ is symmetric if and only if f is self-adjoint.
(19) Let V' be a complex inner product space, and f: V' — V an endomor-
phism. Define the map

O0:VxV—=C, (r,y)— (f(x),y).

(a) Show that ¢ is a sesquilinear map.

(b) Show that if V' is finite-dimensional, then every sesquilinear map is
of this form.

(c) Show that ¢ is a Hermitian form if and only if f is self-adjoint.

(20) Let V4, V5, Wy, and Wy be vector spaces, and let ¢: V; x Vo — F and

v Wi x Wy — F be two nondegenerate bilinear forms.

(a) Show that for every linear map f: V3 — Wj there is a unique map
fT: Wy — V4 such that for all z € V4 and all y € W, we have

oz, f1(y) = v(f(x).y).
(b) Show that we have

im f1 = (ker f)* and ker f1 = (im f)*.

(21) Show that an endomorphism f of an inner product space V' is normal if
and only if f has an adjoint f* and for all v,v" € V we have

(f(0), (")) = (f"(v), f*(v')).

(22) Let f1: V. — Wy and fy: V. — Wy be two linear maps of inner product
spaces over the same field. Show that the following two conditions are
equivalent.

(i) For all v € V' we have || f1(v)|| = || f2(v)]].
(ii) For all v,v" € V' we have (f1(v), f1(v')) = (f2(v), f2(0')).

(23) Let f: V — W be a linear map of inner product spaces over the same
field.

(a) Show that f is an isometry if and only if f is an isomorphism and
for all v € V' we have ||f(v)|| = [|v]|.
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(b) Suppose V' and W have the same finite dimension. Show that f is
an isometry if and only if for all v € V' we have ||f(v)]| = ||v]|.

(24) Let f1: V. — Wj and fo: V. — Wy be two linear maps of inner product
spaces over the same field. Suppose that the two equivalent conditions of
Exercise 22] hold.

(a) Show that f; and f, have the same kernel.
(b) Show that there exists a unique isometry ¢g: im f; — im f, such that
fa=go fi

(25) Let f1: V. — Wy and fo: V — W; be any two maps of real inner product
spaces that satisfy f1(0) = 0 and f2(0) = 0. Show that the following two
conditions are equivalent.

(i) For all v,v" € V' we have || f(v) — fi()]| = [|f2(v) = f2(")].
(ii) For all v,v" € V' we have (fi(v), fi(v")) = (f2(v), f2(V")).

(26) Let f: V — W be any map of real inner product spaces of the same finite
dimension that satisfies f(0) = 0. Show that f is an isometry if and only
if for all v,v" € V we have ||f(v) — f(V)]| = ||Jv — /||

(27) The Cauchy-Schwarz inequality allows us to define the angle between any
two nonzero vectors x and y in the same real inner product space as the
unique real number « € [0, 7] for which we have

{z,y)
- Nyl
We denote this angle by Z(z,y). Suppose that V and W are real inner
product spaces, and f: V — W is an isomorphism that preserves angles
at 0, that is, for all x,y € V' we have

Z(f(x), fy) = ZL(x,y).

Show that f is the composition of an isometry with the multiplication by
a scalar.

(28) Suppose that V' and W are real inner product spaces of dimension at
least 2, and f: V — W is a bijection that preserves general angles, that
is, for all z,y,2z € V we have

Z(f(x) = f(2), fly) = f(2)) = L(x — 2,y — 2).
Show that f is the composition of a translation, the multiplication by a
scalar, and an isometry.

cosa =






CHAPTER 10

Orthogonal Diagonalization

In this section, we discuss the following question. Let V' be an inner product space
and f : V — V an endomorphism. When is it true that f has an orthonormal
basis of eigenvectors (so can be orthogonally diagonalized or is orthodiagonalizable
— nice word!)?

After a few general lemmas, we will first consider the case of complex inner product
spaces, for which, as we will see, f has an orthonormal basis of eigenvectors if and
only if f is normal.

10.1. Lemma. Let V be a finite-dimensional inner product space and let f :
V — V be an endomorphism. If f is orthodiagonalizable, then [ is normal.

Proor. If f is orthodiagonalizable, then there exists an orthonormal basis
(é1,...,e,) of V such that f is represented by a diagonal matrix D with respect
to this basis. Now D is normal, hence so is f, by Corollary [9.25] U

The proof of the other direction is a little bit more involved. We begin with the
following partial result.

10.2. Lemma. Let V' be an inner product space, and let f : V. — V be
normal.

(1) For allv € V we have || f*(v)| = || f(v)]|-
(2) If f(v) = \v for some v € V, then f*(v) = \v.
(3) If f(v) =X and f(w) = pw with X\ # p, then v L w (i.e., (v,w) =0).

PROOF. For the first statement, note that
LF* ()P = (£ (v), f*(v)) = (f(f*(v)),v)
= (f*(f(v),v) = {f(v), f()) = [ f(W)[I*-
For the second statement, note that
(f* (), f* () = (f(v), f(0)) = [N {v,v)
(A, [*(v)) = A{f(v),v
(f*(v), Av) = Mo, f(v)
(Av, Av) = |A*{v,v)

and so
(f*(v)=Xv, f*(v) = xv) = (f*(v), f*(v)) = (Ao, f*(0)) = (f*(v), Ao} + (A, Av) = 0.
This implies f*(v) — M = 0, so f*(v) = Av.
For the last statement, we compute
Mo w) = (f(0),w) = (v, F*(w)) = (v, fiw) = pufo, w)
Since A # p by assumption, we must have (v,w) =0
93



94 10. ORTHOGONAL DIAGONALIZATION

10.3. Corollary. A normal endomorphism of an inner product space is or-
thodiagonalizable if and only if it is diagonalizable.

PROOF. Suppose f is a normal endomorphism of an inner product space V' that
is diagonalizable. Then the concatenation of any bases for the eigenspaces yields
a basis for V. Lemma shows that if we take the bases of the eigenspaces to
be orthonormal, which we can do by applying Gram-Schmidt orthonormalization
(Theorem to any basis, then the concatenation is orthonormal as well, so
f has an orthonormal basis of eigenvectors, and is therefore orthodiagonalizable.
The converse is obvious. U

In Lemma we will see that any normal endomorphism of a finite-dimensional
complex inner product space is indeed diagonalizable. We first state some results
that will help us prove that lemma.

10.4. Remark. Let V be an inner product space over F, and let f:V — V
be normal. Let A € F be an element. From Lemma [10.2)(2), it follows that
the eigenspace E,(f) is contained in the eigenspace E5(f*). Applying the same
argument to f*, and using f** = f (see Proposition, we also find the opposite
inclusion, and we conclude E)(f) = E5(f*). In particular, for A = 0, we obtain
ker f = ker f*.

10.5. Lemma. Let V be an inner product space over the field FF = R or C,
let f:V — V be normal, and let p € F[X] be a polynomial. Then p(f) is also
normal.

PROOF. Let p(z) = amx™ + -+ + ag. Then by Prop. [9.21
)" = (amf™ + -+ arf +agidy)” = an(f)" + -+ af" + aoidy = p(f7),

where p is the polynomial whose coefficients are the complex conjugates of those

of p. (If F =R, then p(f)* =p(f*).) Now p(f) and p(f)* = p(f*) commute since
f and f* do, hence p(f) is normal. O

10.6. Lemma. Let V be a finite-dimensional inner product space, and let
f:V =V be normal. Then V = ker(f) @ im(f) is an orthogonal direct sum.

PROOF. Let v € ker(f) and w € im(f). We have f(v) = 0, so f*(v) = 0 by
Lemma [10.2] and w = f(u) for some u € V. Then

(v, w) = (v, f(u)) = (f*(v),u) = (0,u) =0,

so v L w. In particular, we have ker f Nim f = {0}, because the inner product is
positive definite. From dim ker(f) + dimim(f) = dim V', we conclude

dim(ker(f) 4+ im(f)) = dimker(f) + dimim(f) — dim(ker f Nim f) = dim V,
so ker(f) +im(f) =V, which finishes the proof. d
ALTERNATIVE PROOF. Take U = im f. From Prop081tlon we know that

V = U @® U* is an orthogonal direct sum. From Theorem and Remark [10.4 -
we find U+ = (im f)* = ker f* = ker f.
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10.7. Lemma. LetV be a finite-dimensional complex inner product space,and
let f:V —V be normal. Then f is diagonalizable.

Proor. We will show that the minimal polynomial of f does not have multiple
roots. So assume the contrary, namely that

Mj(z) = (v — a)*g(x)

for some a € C and some polynomial g. We know that f — «idy is normal. Let
v € V and consider w = (f — aidy)(g(f)(v)). Obviously w € im(f — aidy),
but also (f — aidy)(w) = Ms(f)(v) =0, so w € ker(f — aidy). By the previous
lemma, w = 0. Hence, f is already annihilated by the polynomial (z — «)g(z) of
degree smaller than M¢(x), a contradiction. i

ALTERNATIVE PROOF. We proceed by induction on dimV. The base case
dimV =1 (or = 0) is trivial. So assume dimV > 2. Then f has at least one
eigenvector v, say with eigenvalue \. Let U = ker(f —Aidy) # 0 be the eigenspace
and W = im(f — Aidy). We know that V = U @ W is an orthogonal direct sum
by Lemma [10.6] Because f commutes with f — Aidy, we have that f(U) C U
and f(W) C W, so f is the direct sum of its restrictions to U and W. Then
by uniqueness, f* is also the direct sum of the adjoints of these restrictions, so
normality of f implies normality of its restrictions. In particular, fly : W — W
is again a normal map. By the induction hypothesis, f|y is diagonalizable. Since
flv = Aidy is trivially diagonalizable, f is diagonalizable. (The same proof would
also prove directly that f is orthodiagonalizable.) Il

So we have now proved the following statement, which is often referred to as the
Spectral Theorem (though this may also refer to some other related theorems).

10.8. Theorem. Let V' be a finite-dimensional complex inner product space,
and let f:V — V be a linear map. Then V has an orthonormal basis of eigen-
vectors for f if and only if f is normal.

PROOF. Indeed, Lemma [10.1] states the “only if’-part. For the converse, as-
sume f is normal. Then f is diagonalizable by Lemma [10.7, and hence orthodi-
agonalizable by Corollary O

This nice result leaves one question open: what is the situation for real inner
product spaces? The key to this is the following observation.

10.9. Proposition. LetV be a finite-dimensional complex inner product space,
and let f:V — V be a linear map. Then f is normal with all eigenvalues real if
and only if f is self-adjoint.

Proor. We know that a self-adjoint map is normal. So assume now that f is
normal. Then there is an ONB of eigenvectors, and with respect to this basis, f
is represented by a diagonal matrix D, so we have D* = DT = D. Obviously, we
have that f is self-adjoint if and only if D = D*, which reduces to D = D, which
happens if and only if all entries of D (i.e., the eigenvalues of f) are real. O

This implies the following.
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10.10. Theorem. LetV be a finite-dimensional real inner product space, and
let f:V —V be linear. Then V has an orthonormal basis of eigenvectors for f
if and only if f is self-adjoint.

Proor. If f has an ONB of eigenvectors, then its matrix with respect to this
basis is diagonal and so symmetric, hence f is self-adjoint.

For the converse, set n = dimV, choose any orthonormal basis B for V' and
suppose that f is self-adjoint. Then the associated real matrix A = [f]5 satisfies
A* = A by Corollary Hence, the associated map f4: C* — C" is self-
adjoint with respect to the standard Hermitian inner product (see Example .
Therefore, the matrix A, viewed over C, is normal and has all its eigenvalues
(over C) real by Proposition [10.9] The fact that A is normal over C implies
that A is diagonalizable over C by Theorem [10.8} By Proposition this means
that the minimal polynomial My,c of A as a matrix over C is the product of
distinct linear factors, which has the real eigenvalues as roots, and is therefore a
polynomial with real coefficients satisfying M4,c(A) = 0. This implies that the
minimal polynomial M4k of A as a matrix over R is a factor of My,c, which
means that M,/ is also the product of distinct linear factors over R. (In fact,
we have My/r = My c; if not, then some real factor p of M, c of smaller degree
would satisfy p(A) = 0, and since p is also a polynomial over C, this contradicts
the minimality of M4,c among complex polynomials that vanish on A.) Applying
Proposition [3.9| again shows that A, and thus f, is also diagonalizable over R. By
Corollary we conclude that f is also orthodiagonalizable over R. O

In terms of matrices, this reads as follows.

10.11. Theorem. Let A be a square matriz with real entries. Then A 1is
orthogonally similar to a diagonal matriz (i.e., there is an orthogonal matriz P
such that P~YAP is a diagonal matriz) if and only if A is symmetric. In this
case, we can choose P to be orientation-preserving, i.e., to have det P = 1 (and
not —1).

PROOF. The first statement follows from the previous theorem. To see that we
can take P with det P = 1, assume that we already have an orthogonal matrix )
such that Q7 'AQ = D is diagonal, but with det Q = —1. The diagonal matrix T
with diagional entries (—1,1,...,1) is orthogonal and detT = —1, so P = QT is
also orthogonal, and det P = 1. Furthermore,

PYAP=T'Q'AQT =TDT =D,

so P has the required properties. Il

10.12. Remark. For an orthogonal matrix P, we have P~! = PT, so we
could have also written PT AP in Theorem . If we want just any matrix
P for which PT AP is diagonal, and we do not need P to be orthogonal, then it
is often easier to apply Theorem [8.28| especially when the eigenvalues of A are
difficult to compute.
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10.13. Remark. Note that we have two notions of diagonalisation, one for
linear maps as in Linear Algebra I, and one for symmetric bilinear forms as in
Theorem [8.28 Theorem can be interpreted in both contexts. Indeed, sup-
pose B and B’ are two bases for a finite-dimensional vector space V' over a field
F,and set P = [idy]8". If f: V — V is an endomorphism of V, and M = [f]2
and M’ = [f]5, are the two matrices associated to f with respect to the bases B
and B’, respectively, then we have M’ = P~'MP, so M’ and M are similar.

If : V x V — F is a bilinear form on V', and A is the matrix that represents ¢
with respect to the basis B, while A’ is the matrix that represents ¢ with respect
to the basis B’, then by Proposition we have A’ = PTAP, so A’ and A are
congruent.

To diagonalise the linear map f or the bilinear form ¢, respectively, means to find
a basis B’ for which M’ or A’, respectively, is a diagonal matrix. If we already
know an initial basis B, with the corresponding associated matrix M or A, re-
spectively, then this goal is equivalent to finding an invertible matrix P, for which
P~'MP or PT AP, respectively, is diagonal.

If V is a finite-dimensional real inner product space, and B and B’ are to be
orthonormal bases, then for P = [idy]8" we have PT = P~ by Example [9.28
Therefore, Theorem [10.11] which as a consequence of Theorem [10.10] was proved
in the context of linear maps, can be reinterpreted in terms of bilinear forms: if ¢
is a symmetric bilinear form on V' (not necessarily the one giving the inner prod-
uct!), then there is an orthonormal basis B (with respect to the inner product) for
V that diagonalises ¢, that is, such that the matrix that represents ¢ with respect
to B is diagonal. See Exercise [7]

Theorem [10.11] has a geometric interpretation. If A is a symmetric 2 x 2-matrix,
then the equation

(8) v Av =1

in terms of v = (x,y) € R? defines a conic section in the plane. Our theorem
implies that there is a rotation P such that P~'AP is diagonal. This means that
in a suitably rotated coordinate system, our conic section has an equation of the
form

ar’ +by =1,

where a and b are the eigenvalues of A. We can use their signs to classify the
geometric shape of the conic section (ellipse, hyperbola, empty, degenerate).

The directions given by the eigenvectors of A are called the principal axes of the
conic section (or of A), and the coordinate change given by P is called the principal
axes transformation. Similar statements are true for higher-dimensional quadrics
given by equation when A is a larger symmetric matrix.

10.14. Example. Let us consider the conic section given by the equation

52 +4xy+2y2=1.

()

We have to find its eigenvalues and eigenvectors. The characteristic polynomial
s (X =5)(X -2 —-4=X?—-T7TX+6=(X—1)(X —6), so we have the two

The matrix is
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eigenvalues 1 and 6. This already tells us that we have an ellipse. To find the
eigenvectors, we have to determine the kernels of A — I and A — 61. We get

4 2 -1 2
A—Iz(z 1) and A—6[=(2 _4),

so the eigenvectors are multiples of (1, —2) and of (2,1). To get an orthonormal
basis, we have to scale them appropriately; we also need to check whether we
have to change the sign of one of them in order to get an orthogonal matrix with
determinant 1. Here, we obtain

12

pP= ( vs “f) and P 'AP = ((1) 8) .
V5 VB

To sketch the ellipse, note that the principal axes are in the directions of the

eigenvectors and that the ellipse meets the first axis (in the direction of (1,—2))

at a distance of 1 from the origin and the second axis (in the direction of (2, 1))
at a distance of 1/ /6 from the origin.

The ellipse 522 + 4xy + 2y* = 1.
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10.15. Example. Consider the symmetric matrix

5 =2 4
A=1-2 8 2
4 2 5

We will determine an orthogonal matrix () and a diagonal matrix D such that
A =QDQ". The characteristic polynomial of A is the determinant of

t—5 2 —4
tr—A=1| 2 t-8 -2,

which is easily determined to be P4 (t) = ¢(t —9)?, so we have eigenvalues 0 and 9.
The eigenspace for eigenvalue A\ = 0 is the kernel ker A. From a row echelon
form for A, which we will leave out here, we find that this kernel is generated by
(2,1,—2). Normalising gives the unit vector v; = %(2, 1, —2), which forms a basis
for the eigenspace for A = 0. The eigenspace for eigenvalue A = 9 is the kernel of

—4 -2 4
A-9/=1|-2 -1 2
4 2 —4
A row echelon form for this matrix is
2 1 =2
00 0|,
00 O

from which we find that this eigenspace is generated by w; = (1,0,1) and wy =
(1,—2,0). Within this eigenspace we apply Gram-Schmidt orthonormalisation to
find an orthonormal basis for the eigenspace. We find w; and

<w2a w1> 1

— =wy — swy = +(1,—4,—1).
W2 <w1,w1>w1 w2 wn 2(7 ) )

2

After normalising this yields vy = \%(1, 0,1) and v3 = ﬁ(l, —4,-1).

Our new basis becomes B = (vq, v2,v3). By Lemma [10.2] the two eigenspaces are
orthogonal to each other, so B is an orthonormal basis of eigenvectors. Hence, the
matrix Q = [id]2 is orthogonal, that is, Q~! = Q. For the diagonal matrix

D = [fal} =

o O O

0
9
0

O O O

we find
A= [falp = [id)E - [fal5 - [[d] = QDQ™" = QDQ".

The matrix @ = [id]2 has the basis vectors of B as columns, so we have

2 1 1

3. V2 3v2
Q=3+ 0 -2V2
2 1 _ 1

3 V2 3v2
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Exercises.
(1) Suppose that A is a real symmetric 2 x 2 matrix of determinant 2 for
which _12 is an eigenvector with eigenvalue —1.

(a) What is the other eigenvalue of A?
(b) What is the other eigenspace?
(c¢) Determine A.
(2) Consider the quadratic form ¢(z,y) = 11z — 16zy — y*.
(a) Find a real symmetric matrix A for which

q(w,y):(fﬂy)-A-(;j)-

(b) Find real numbers a,b and an orthogonal map f: R? — R? so that
q(f(u,v)) = au® + bv? for all u,v € R.
(c) What values does ¢(z,y) assume on the unit circle 2% + y* = 17

(3) What values does the quadratic form ¢(z,y, z) = 2zy+2x2+y* —2yz + 22
assume when (z,y, z) ranges over the unit sphere z? +y? + 22 = 1 in R3?

(4) Suppose that A is an anti-symmetric n X n matrix over the real numbers.

(a) Show that every eigenvalue of A over the complex numbers lies in
iR.
(b) If n is odd, show that 0 is an eigenvalue of A.

(5) Let V be an inner product space and let f : V' — V be an endomorphism.
Suppose that V' has an orthonormal basis of eigenvectors for f. Show that
f has an adjoint and that f is normal (see Lemma .

(6) Let A be a symmetric matrix over R. Show that its signature is equal to
the number of positive eigenvalues minus the number of negative eigen-
values.

(7) Let V be a finite-dimensional real inner product space, and ¢: VxV — R
a symmetric bilinear form on V. Use Exercise QI8 and Theorem to
show that there exists an orthonormal basis B for V' that diagonalises ¢,
that is, such that the matrix that represents ¢ with respect to B is diag-
onal.

(8) Does Lemma remain true if we leave out the hypothesis that V' is
finite-dimensional?



CHAPTER 11

External Direct Sums

Earlier in this course, we have discussed direct sums of linear subspaces of a vector
space. In this section, we discuss a way to contruct a vector space out of a given
family of vector spaces in such a way that the given spaces can be identified with
linear subspaces of the new space, which becomes their direct sum.

11.1. Definition. Let F' be a field, and let (V;);c; be a family of F-vector
spaces. The (external) direct sum of the spaces V; is the vector space

V= @Vi = {(UZ) € HV} :v; = 0 for all but finitely many 7 € I}.
iel icl
Addition and scalar multiplication in V' are defined component-wise.
If I is finite, say I = {1,2,...,n}, then we also write
V=VieVd oV,

as a set, it is just the cartesian product V; x --- x V.

11.2. Proposition. Let (V;);e; be a family of F-vector spaces, and
v-@v
il
their direct sum.
(1) There are injective linear maps v; : V; — V' given by
ti(v;) = (0,...,0,v;,0,...) with vj in the jth position

such that with V; = 1;(V}), we have V = D,c; Vi as a direct sum of
subspaces.

(2) If Bj is a basis for Vj, then B = J;c;1;(B;) is a basis for V.

(3) If W is another F-vector space, and ¢; : V; — W are linear maps, then
there is a unique linear map ¢ : V. — W such that ¢; = ¢ o ¢; for all
jel.

PROOF.

(1) This is clear from the definitions, compare [2.2]
(2) This is again clear from 2.2

(3) A linear map is uniquely determined by its values on a basis. Let B be a
basis as in (2). The only way to get ¢; = ¢oy; is to define ¢(1;(b)) = ¢,(b)
for all b € Bj; this gives a unique linear map ¢ : V- — W.

|

Statement (3) above is called the universal property of the direct sum. It is essen-
tially the only thing we have to know about €, ., V;; the explicit construction is
not really relevant (except to show that such an object exists).
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CHAPTER 12

The Tensor Product

As direct sums allow us to “add” vector spaces in a way (which corresponds to
“adding” their bases by taking the disjoint union), the tensor product allows us to
“multiply” vector spaces (“multiplying” their bases by taking a cartesian product).
The main purpose of the tensor product is to “linearize” multilinear maps.

You may have heard of “tensors”. They are used in physics (there is, for example,
the “stress tensor” or the “moment of inertia tensor”) and also in differential
geometry (the “curvature tensor” or the “metric tensor”). Basically a tensor is
an element of a tensor product (of vector spaces), like a vector is an element of
a vector space. You have seen special cases of tensors already. To start with, a
scalar (element of the base field F') or a vector or a linear form are trivial examples
of tensors. More interesting examples are given by linear maps, endomorphisms,
bilinear forms and multilinear maps in general.

The vector space of m x n matrices over F' can be identified in a natural way with
the tensor product (F™)* @ F™. This identification corresponds to the interpreta-
tion of matrices as linear maps from F™ to F™. The vector space of m x n matrices
over F' can also identified in a (different) natural way with (F™)* ® (F™)*; this
corresponds to the interpretation of matrices as bilinear forms on F™ x F™.

In these examples, we see that (for example), the set of all bilinear forms has the
structure of a vector space. The tensor product generalizes this. Given two vector
spaces V; and V5, it produces a new vector space V; ® V5 such that we have a
natural identification

Bil(V; x Vs, W) = Hom(V; ® Vs, W)

for all vector spaces W. Here Bil(V} x V5, W) denotes the vector space of bilinear
maps from Vi x V5 to W. The following definition states the property we want
more precisely.

12.1. Definition. Let V; and V5 be two vector spaces. A tensor product of
V) and V5 is a vector space V', together with a bilinear map ¢ : V) x Vo — V,
satisfying the following “universal property”:

For every vector space W and bilinear map v : Vi x Vo, — W there is a unique
linear map f : V — W such that ¢ = f o ¢.

VixVy—r v

In other words, the canonical linear map
Hom(V, W) — Bil(V} x Vo, W), fr— foo¢
is an isomorphism.
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It is easy to see that there can be at most one tensor product in a very specific
sense.

12.2. Lemma. Any two tensor products (V, @), (V',¢') are uniquely isomor-
phic in the following sense: There is a unique isomorphism ¢ : V. — V' such that

¢ =10¢.

<

~

T ———

PROOF. Since ¢’ : V} x Vo — V' is a bilinear map, there is a unique linear map
¢t : V. — V' making the diagram above commute. For the same reason, there is a
unique linear map ¢/ : V' — V such that ¢ =1 o ¢’. Now t/or: V — V is a linear
map satisfying (t/ o¢) o ¢ = ¢, and idy is another such map. But by the universal
property, there is a unique such map, hence ¢/ o« = idy. In the same way, we see
that ¢ o ¢/ = idy~, therefore ¢ is an isomorphism. O

Because of this uniqueness, it is allowable to simply speak of “the” tensor product
of V} and V5 (provided it exists! — but see below). The tensor product is denoted
Vi ® Vi, and the bilinear map ¢ is written (v, v) = v1 ® vs.

It remains to show existence of the tensor product.

12.3. Proposition. Let Vi and Vy be two vector spaces; choose bases By of Vi
and By of Vo. Let V' be the vector space with basis B = By X By, and define a
bilinear map ¢ : V3 X Vo — V wia ¢(by,by) = (b1,bs) € B for by € By, by € Bs.
Then (V, ¢) is a tensor product of Vi and Vs.

PRrOOF. Let ¢ : Vi x Vo — W be a bilinear map. We have to show that there
is a unique linear map f : V — W such that ¢ = f o ¢. Now if this relation is to
be satisfied, we need to have f((b1,b2)) = f(¢(b1,bs)) = (b1, by). This fixes the
values of f on the basis B, hence there can be at most one such linear map. It
remains to show that the linear map thus defined satisfies f(¢(vy,v2)) = ¥ (v1, v2)
for all v; € Vi, vy € V5. But this is clear since ¢ and f o ¢ are two bilinear maps
that agree on pairs of basis elements. U

12.4. Remark. This existence proof does not use that the bases are finite
and so also works for infinite-dimensional vector spaces (given the fact that every
vector space has a basis).

There is also a different construction that does not require the choice of bases. The
price one has to pay is that one first needs to construct a gigantically huge space V'
(with basis V} x V,), which one then divides by another huge space (incorporating
all relations needed to make the map V; x Vo — V bilinear) to end up with the
relatively small space V; ® V5. This is a kind of “brute force” approach, but it
works.

Note that by the uniqueness lemma above, we always get “the same” tensor prod-
uct, no matter which bases we choose.
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12.5. Elements of V; ® V5. What do the elements of V; ® V5, look like? Some
of them are values of the bilinear map ¢ : Vi x Vo — V; ® V5, so are of the form
v1 ® vy. But these are not alll However, elements of this form span V; ® V5, and
since

AV ® va) = (A1) ® vy = v1 @ (Avg)

(this comes from the bilinearity of ¢), every element of V; ® V5 can be written as
a (finite) sum of elements of the form v; ® v,.

The following result gives a more precise formulation that is sometimes useful.

12.6. Lemma. Let V and W be two vector spaces, and let wy,...,w, be a
basis for W. Then every element of V& W can be written uniquely in the form

Y vi@w =v@w +-+v, ®w,
i=1

with vy,...,v, € V.

PrROOF. Let x € V ® W; then by the discussion above, we can write
T=1 Q21+ +Yn® 2y

for some yq,...,ym € V and zy,..., 2z, € W. Since wy, ..., w, is a basis for W, we
can write

Zj = Qj1W1 + -+ -+ QypWy
with scalars aj;. Using the bilinearity of the map (y, z) — y ® z, we find that
=1y ® (apwy + - + W) + -+ Y @ (w1 + -+ - + A Wy,)
= (anyr + -+ Wn1Ym) Qi+ -+ + (@Y1 + -+ + WnYm) @ Wy,
which is of the required form.

For uniqueness, it suffices to show that
nOuw+-+v,Quw, =0 = vi=---=v,=0.

Assume that v; # 0. There is a bilinear form ¢ on V' x W such that ¢ (v;, w;) =1
and (v, w;) =0 for all v € V and ¢ # j. By the universal property of the tensor
product, there is a linear form f on V®W such that f(v®w) = (v, w). Applying
f to both sides of the equation, we find that

0=f(0)=fl1@wi +  + v, @wy) =Y(vi,wi) + -+ Y(vp, w,) =1,
a contradiction. O
In this context, one can think of V ® W as being “the vector space W with scalars
replaced by elements of V.” This point of view will be useful when we want to

enlarge the base field, e.g., in order to turn a real vector space into a complex
vector space of the same dimension.
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12.7. Basic Properties of the Tensor Product. Recall the axioms satis-
fied by a commutative “semiring” like the natural numbers:

a+(b+c)=(a+b)+c

a+b=b+a
a+0=a
a-(b-c)=1(a-b)-c
a-b=>b-a
a-1=a

a-(b+c)=a-b+a-c

(The name “semi’ring refers to the fact that we do not require the existence of
additive inverses.)

All of these properties have their analogues for vector spaces, replacing addition
by direct sum, zero by the zero space, multiplication by tensor product, one by
the one-dimensional space F', and equality by natural isomorphism:

Ua(VeaW2UaV)aW
UaV2VaU
Us0xU
Ua(VeW)2UeV)eW
UV 2Vel
U F~U
U(VeW)2UeV & U'W

There is a kind of “commutative diagram”:

B— #B
(Finite Sets, I1, X, %) # (N, +,-,=)

m) dim
(Finite-dim. Vector Spaces, ®, ®, )

Let us prove some of the properties listed above.

Proor. We show that U @ V =V ® U. We have to exhibit an isomorphism,
or equivalently, linear maps going both ways that are inverses of each other. By
the universal property, a linear map from U ® V into any other vector space W
is “the same” as a bilinear map from U x V into W. So we get a linear map
f:U®V — VU from the bilinear map U xV — V®U that sends (u,v) to v®u.
So we have f(u® v) = v ® u. Similarly, there is a linear map g: Vo U - U®V
that satisfies g(v ® u) = v ® v. Since f and g are visibly inverses of each other,
they are isomorphisms. O

Before we go on to the next statement, let us make a note of the principle we have
used.

12.8. Note. To give a linear map f : U ® V. — W, it is enough to specify
flu®@wv) forueU,veV. Themap U xV — W, (u,v) — f(u® v) must be
bilinear.
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PRrROOF. We now show that U® (VW) = (UV)®W. First fix u € U. Then
by the principle above, there is a linear map f, : VW — (U®V)® W such that
fulv®@w) = (uRV)@w. Now the map Ux (VW) — (URV)QW that sends (u, x)
to fu(z) is bilinear (check!), so we get a linear map f: U®(VOW) - (UeV)oW
such that f(u® (v ® w)) = (v ® v) ® w. Similarly, there is a linear map ¢ in the
other direction such that g((u ®v) @w) = u® (v®@w). Since f and g are inverses
of each other (this needs only be checked on elements of the form u ® (v ® w) or
(u ®v) ® w, since these span the spaces), they are isomorphisms. O

We leave the remaining two statements involving tensor products for the exercises.

Now let us look into the interplay of tensor products with linear maps.

12.9. Definition. Let f : V — W and f': V' — W’ be linear maps. Then
VXV > WeW, (v,v)— f(v)® f(v) is bilinear and therefore corresponds
to a linear map V ®@ V' — W @ W’  which we denote by f ® f’. Le., we have

(fof)ver)=fv)e f{).
12.10. Lemma. ldv X ldW = id\/@W,

PROOF. Obvious (check equality on elements v ® w). O

12.11. Lemma. Let U =5V 5 W and U' 25 v/ 2 W' be linear maps.
Then

(g@g)o(f@f)=(gof)®(g o f).

PROOF. Easy — check equality on u ® u/'. O

12.12. Lemma. Hom(U, Hom(V,W)) = Hom(U @ V,W).

PROOF. Let f € Hom(U, Hom(V,W)) and define f(u ® v) = (f(uw))(v) (note
that f(u) € Hom(V, W) is a linear map from V to W). Since (f(u))(v) is bilinear
in v and v, this defines a linear map f € Hom(U ® V,W). Conversely, given
¢ € Hom(U ® V, W), define ¢(u) € Hom(V, W) by (¢(u))(v) = ¢(u @ v). Then
¢ is a linear map from U to Hom(V, W), and the two linear(!) maps f f and
© — ¢ are inverses of each other. U

In the special case W = F', the statement of the lemma reads

Hom(U,V*) ZHom(U @V, F) = (U®V)*.

The following result is important, as it allows us to replace Hom spaces by tensor
products (at least when the vector spaces involved are finite-dimensional).
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12.13. Proposition. Let V and W be two vector spaces. There is a natural
linear map

¢:V*@W — Hom(V, W), [@w+— (v l(v)w),

which is an isomorphism when V or W is finite-dimensional.

ProOF. We will give the proof here for the case that W is finite-dimensional,
and leave the case “V finite-dimensional” for the exercises.

First we should check that ¢ is a well-defined linear map. By the general principle
on maps from tensor products, we only need to check that (I, w) — (v l(v)w)
is bilinear. Linearity in w is clear; linearity in [ follows from the definition of the
vector space structure on V*:

(arly + aoly, w) — (v (arly + ) (V) w = ayly (V)w + ol (v)w)

To show that ¢ is bijective when W is finite-dimensional, we choose a basis
wy, ..., w, of W. Let wj,...,w} be the basis for W* dual to wy,...,w,. De-
fine a map

¢ :Hom(V, W) — V'@ W, fr— Y (wiof)®u;.
=1

It is easy to see that ¢’ is linear. Let us check that ¢ and ¢’ are inverses. Recall
that for all w € W, we have

Now,

Now assume that V' = W is finite-dimensional. Then by the above,
Hom(V,V)=V oV

in a natural way. But Hom(V, V') contains a special element, namely idy. What
is the element of V* ® V' that corresponds to it?



12. THE TENSOR PRODUCT 109

12.14. Remark. Letvq,...,v, be a basis for V, and let vy, ..., v} be the basis
for V* dual to it. Then, with ¢ the canonical map from above, we have

qb(iz:;v;k ®vi> =1idy .

PROOF. Apply ¢ as defined above to idy . O

On the other hand, there is a natural bilinear form on V* x V| given by evaluation:
({,v) = l(v). This gives the following.

12.15. Lemma. LetV be a finite-dimensional vector space. There is a linear
form T:V*®@V — F given by T(l ® v) = l(v). It makes the following diagram
commutative.

VeV —— Hom(V,V)

ProOOF. That T is well-defined is clear by the usual principle. (The vector
space structure on V* is defined in order to make evaluation bilinear!) We have to
check that the diagram commutes. Fix a basis vy, ..., v,, with dual basis v}, ..., v}

and let f € Hom(V,V). Then ¢~'(f) = S2,(vF o f) ® v, hence T(¢~\(f)) =
> v¥(f(v;)). The terms in the sum are exactly the diagonal entries of the matrix A

7 1

representing f with respect to vy, ..., v,, so T(¢71(f)) = Tr(A) = Tr(f). O
The preceding operation is called “contraction”. More generally, it leads to linear
maps

0@ U@V Vel - W, —m U@ - U, @Wi---@W,.
This in turn is used to define “inner multiplication”
U@ U, @V)x (VW - W, —m U@ - U, @W;---@W,

(by first going to the tensor product). The roles of V' and V* can also be reversed.
This is opposed to “outer multiplication”, which is just the canonical bilinear map

(1@ @Un) x (W@ @W,) = U1 Q- @Up @Wr--- @ W,
An important example of inner multiplication is composition of linear maps.

12.16. Lemma. Let U,V,W be vector spaces. Then the following diagram
commutes.

tovrew) (U @V)x (VW) —2% s Hom(U, V) x Hom(V,W) (19
| | ¢ l I

U(v)l®w U'W Hom(U, W) gof

PrOOF. We have
o' @w)op(l@v) = (v = I'(V")w) o (ur L(u)v)

(u = U (l(uw)v)w =1'(v)l (u)w)
(I ()l @w) .
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12.17. Remark. Identifying Hom(F™, F") with the space Mat(n x m, F') of
n X m-matrices over F', we see that matrix multiplication is a special case of inner
multiplication of tensors.

12.18. Remark. Another example of inner multiplication is given by evalu-
ation of linear maps: the following diagram commutes.

Pxidy

(l®w,v) (V*@W) xV —=Hom(V,W) xV (f,v)

I | | |

l(v)w w w f(v)

Complexification of Vector Spaces. Now let us turn to another use of the
tensor product. There are situations when one has a real vector space, which
one would like to turn into a complex vector space with “the same” basis. For
example, suppose that Vg is a real vector space and W¢ is a complex vector space
(writing the field as a subscript to make it clear what scalars we are considering),
then TV can also be considered as a real vector space (just by restricting the scalar
multiplication to R C C). We write Wg for this space. Note that dimg W =
2dimc We — if by, ..., b, is a C-basis for W, then by, by, ..., b,,ib, is an R-basis.
Now we can consider an R-linear map f : Vg — Wg. Can we construct a C-vector
space Vg out of V in such a way that f extends to a C-linear map f : Ve — We?
(Of course, for this to make sense, Vg has to sit in Vi as a subspace.)

It turns out that we can use the tensor product to do this.

12.19. Lemma and Definition. Let V' be a real vector space. The real vector
space V.= C®grV can be given the structure of a complex vector space by defining
scalar multiplication as follows.

AMa®v)=(Aa) Qo
V is embedded into V as a real subspace via v:v— 1 ® v.

This C-vector space V is called the complezification of V.

PROOF. We first have to check that the equation above leads to a well-defined
R-bilinear map C x V' — V. But this map is just
C x (C@RV) — C®r (C@RV) = (C@RC)@)RVm@;MyC@RV,

where m : C®g C — C is induced from multiplication on C (which is certainly an
R-bilinear map). Since the map is in particular linear in the second argument, we
also have the “distributive laws”

Mz +y) =+ My, A+ p)x = Iz + px
for \,u € C, z,y € V. The “associative law”
Apx) = (Ap)z

(for ,ueC, z € f/) then needs only to be checked for x = @ ® v, in which case
we have

Ap(a @) = A((pa) ®v) = (i) @ v = (r)(a @ v).
The last statement is clear. O
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If we apply the representation of elements in a tensor product given in Lemma |12.6
to V', we obtain the following.

Suppose V' has a basis vy, ..., v,. Then every element of V can be written uniquely
in the form

a1 QU+ F o, Uy, for some ay,...,qa, € C.

In this sense, we can consider V' to have “the same” basis as V, but we allow
complex coordinates instead of real ones.

On the other hand, we can consider the basis 1,4 of C as a real vector space, then
we see that every element of V' can be written uniquely as

1v+i®v =uv)+i-u(v) for some v, 0" € V.

In this sense, elements of V have a real and an imaginary part, which live in V'
(identifying V' with its image under ¢ in V).

12.20. Proposition. Let V' be a real vector space and W a complex vector
space. Then for every R-linear map f : Vg — Wr, there is a unique C-linear map

f Ve — W such that for= f (wherev: Vg — Vi is the map defined above).
1

4

|

|
|

|

\ |
f +
w

PROOF. The map CxV — W, (a,v) = af(v) is R-bilinear. By the universal

property of the tensor product V' = C ®g V, there is a unique R-linear map
f:V — W such that f(a ® v) = af(v). Then we have

fw)) = fL@v) = f(v).

We have to check that f is in fact C-linear. It is certainly additive (being R-linear),
and for A\ € C,a®@uv eV,

fMa®@v)) = f((Aa) @) = Xaf(v) = Af(a®v).

Since any C-linear map f having the required property must be R-linear and
satisfy

V

fla@v) = fla(l@v) = af(l@v) =af(v),

and since there is only one such map, f is uniquely determined. O

12.21. Remark. The proposition can be stated in the form that
Homg (V, W) — Home(V, W), f+— f,
is an isomorphism. (The inverse is F' +— F o ¢.)

We also get that R-linear maps between R-vector spaces give rise to C-linear maps
between their complexifications.
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12.22. Lemma. Let f : V — W be an R-linear map between two R-vector
spaces. Then idec ®f : V — W s C-linear, extends f, and is the only such map.

Proo¥r. Consider the following diagram.

V—>W

o N L

V—>W

Here, I' =ty o f is an R-linear map from V' into the C-vector space W, hence
there is a unique C-linear map F :V — W such that the diagram is commutative.
We only have to verify that F = id¢ ® f. But

(ide ®f) (@ ®v) = a® [(v) = a(1® f(v)) = aluy o f)(v) = aF(v) = Fla® ).
O



CHAPTER 13

Symmetric and Alternating Products

Note. The material in this section is not required for the final exam.

Now we want to generalize the tensor product construction (in a sense) in order
to obtain similar results for symmetric and skew-symmetric (or alternating) bi-
and multilinear maps.

13.1. Reminder. Let V and W be vector spaces. A bilinear map f : V x
V. — W is called symmetric if f(v,v") = f(¢v/,v) for all v,v" € V. f is called
alternating if f(v,v) = 0 for all v € V; this implies that f is skew-symmetric, i.e.,
f(v,v") = —f(v',v) for all v,v" € V. The converse is true if the field of scalars is
not of characteristic 2.

Let us generalize these notions to multilinear maps.

13.2. Definition. Let V' and W be vector spaces, and let f : V" — W be a
multilinear map.

(1) fis called symmetric if

F(Vo(1), Vo(2), - - 3 Vo)) = f(V1,02, ..., Up)
for all vy,...,v, € V and all o € 5,,.

The symmetric multilinear maps form a linear subspace of the space of
all multilinear maps V" — W, denoted Sym(V", W).

(2) f is called alternating if
f(v1,v9,...,0,) =0

for all vy,...,v, € V such that v; = v; for some 1 <¢ < j <n.

The alternating multilinear maps form a linear subspace of the space of
all multilinear maps V" — W, denoted Alt(V™, W).

13.3. Remark. Since transpositions generate the symmetric group S,, we
have the following.

(1) f is symmetric if and only if it is a symmetric bilinear map in all pairs of
variables, the other variables being fixed.

(2) f is alternating if and only if it is an alternating bilinear map in all pairs
of variables, the other variables being fixed.

(3) Assume that the field of scalars has characteristic # 2. Then f is alter-
nating if and only if
f(vo(l)a Vg (2)y - - - 7Ucr(n)) = S(U)f(vb U,y ... avn)
for all v1,...,v, € V and all ¢ € S,,, where £(0) is the sign of the
permutation o.

113
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13.4. Example. We know from earlier that the determinant can be inter-
preted as an alternating multilinear map V" — F', where V is an n-dimensional
vector space — consider the n vectors in V' as the n columns in a matrix. More-
over, we had seen that up to scaling, the determinant is the only such map. This
means that

Alt(V™ F) = F det .

13.5. We have seen that we can express multilinear maps as elements of suit-
able tensor products: Assuming V' and W to be finite-dimensional, a multilinear
map f: V™ — W lives in

Hom (V" W) = (V*)®" @ W .

Fixing a basis vy,...,v,, of V and its dual basis v],...,v;, any element of this
tensor product can be written uniquely in the form
m
f= ) 0@ -0 Quw, .,
i yein=1

with suitable w;, ;, € W. How can we read off whether f is symmetric or alter-
nating?

13.6. Definition. Let x € V&,

(1) z is called symmetric if s,(x) = x for all o € S,,, where s, : V& — /&
is the automorphism given by

Sa(vl RV ® -+ ®Un) - 'Ua(l) ®'U0'(2) Q- ®U0(n) .
We will write Sym(V®™") for the subspace of symmetric tensors.

(2) z is called skew-symmetric if s,(z) = e(o)z for all o € S,,.
We will write Alt(V®™) for the subspace of skew-symmetric tensors.

13.7. Proposition. Let f : V" — W be a multilinear map, identified with its
image in (V*)®" @ W. The following statements are equivalent.

(1) f is a symmetric multilinear map.
(2) fe (V)" QW lies in the subspace Sym((V*)®™) @ W.
(3) Fizing a basis as above z'n in the representation of f as given there,
we have
Wy

O’(l)7"’7i0'(’ﬂ) = wil7"~7in

forall o € S,.

Note that in the case W = I and n = 2, the equivalence of (1) and (3) is just the
well-known fact that symmetric matrices encode symmetric bilinear forms.

PROOF. Looking at (3), we have that w;, ;. = f(vi,...,v;,). So symmetry
of f (statement (1)) certainly implies (3). Assuming (3), we see that f is a linear
combination of terms of the form

(Z U;i(l) K- ® Ulda(n)) & w
o€Gy

(with w = w;, 4, ), all of which are in the indicated subspace Sym((V*)®") @ W
of (V*)®" @ W, proving (2). Finally, assuming (2), we can assume [ = 2 ® w
with z € Sym((V*)®") and w € W. For y € VO and z € (V*)®" = (VO")*
we have (s,(2))(ss(y)) = z(y). Since s,(z) = z, we get z(s,(y)) = x(y) for all
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o € S, which implies that f(s,(y)) = 2(s,(y)) @ w = 2(y) @ w = f(y). So f is
symmetric. O

13.8. Proposition. Let f : V" — W be a multilinear map, identified with its
image in (V*)®" @ W. The following statements are equivalent.

(1) f is an alternating multilinear map.
(2) fe (V)" QW lies in the subspace Alt((V*)®") @ W.

(3) Fizing a basis as above in in the representation of f as given there,
we have

Wiy 1),y
forall o € S,.
The proof is similar to the preceding one.
The equivalence of (2) and (3) in the propositions above, in the special case W = F'
and replacing V* by V', gives the following. (We assume that F' is of characteristic
zero, i.e., that Q C F.)

13.9. Proposition. LetV be an m-dimensional vector space with basis vy, ..., Upy,.

(1) The elements

Z Uiy ® *+* & Vi,
O'GSn
for1 <iy <ip < -+ <i, <m form a basis for Sym(VE™). In particular,
—1
dim Sym(VE") = (m o ) .
n

(2) The elements
Z E(O’)’l}ia(l) Q& via(n)
oc€Sh
for 1 <iy <ig < -+ <i, <m form a basis for Alt(V®"). In particular,

dim ALt (VE") = (ZZ) .

PRrOOF. It is clear that the given elements span the spaces. They are linearly
independent since no two of them involve the same basis elements of V. (In the
alternating case, note that the element given above vanishes if two of the 7; are
equal.) O

The upshot of this is that (taking W = F' for simplicity) we have identified
Sym(V", F) = Sym((V*)®") € (V)= = (V=")”
and
Alt(V™ F) = Alb((VH)E") C (VH)E" = (VO
as subspaces of (V®")*. But what we would like to have are spaces Sym" (V') and
Alt"(V) such that we get identifications

Sym(V", F') = Hom(Sym"(V), F') = (Sym"(V))*

and
Alt(V"™ F) = Hom(Alt"(V), F) = (Alt"(V))*.
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Now there is a general principle that says that subspaces are “dual” to quotient
spaces: If W is a subspace of V', then W* is a quotient space of V* in a natural
way, and if W is a quotient of V', then W* is a subspace of V* in a natural way. So
in order to translate the subspace Sym(V", F') (or Alt(V", F)) of the dual space
of V®" into the dual space of something, we should look for a suitable quotient
of V@

13.10. Definition. Let V' be a vector space, n > 0 an integer.

(1) Let W C V®" be the subspace spanned by all elements of the form
1}1®U2®"'®’l}n—’UU(1)®'UU(2)®"'®'UU(n)
for v, v9,...,v, € V and o € S,,. Then the quotient space
Sym"™(V) = S™(V) = Ve /W

is called the nth symmetric tensor power of V. The image of vy ® vy ®

< @y, in S™(V) is denoted vy - vy - - - Uy,
(2) Let W C V®™ be the subspace spanned by all elements of the form

V1 QU@ Q Uy

for vi,vs,...,v, € V such that v; = v; for some 1 < ¢ < j <n. Then the
quotient space

A" (V)y = N"(V) =Ve /W

is called the nth alternating tensor power of V. The image of v; ® vy ®
<+ ®u, in \"(V) is denoted vy Avg A -+ Ay,

13.11. Theorem.

(1) The map
e: V" — S"(V), (v1,09,...,0,) —> v - Vg -1y
15 multilinear and symmetric. For every multilinear and symmetric map
f V" = U, there is a unique linear map g : S™(V) — U such that
f=go0¢p.
(2) The map
PV — AN"(V), (v1,09,...,05) —> 01 AV A=+ Ay,

15 multilinear and alternating. For every multilinear and alternating map
f V" = U, there is a unique linear map g : N"(V) — U such that

f=g0v.
These statements tell us that the spaces we have defined do what we want: We

get identifications

Sym(V",U) = Hom(S"(V),U) and Alt(V",U) = Hom(A"(V),U).

Proor. We prove the first part; the proof of the second part is analogous.
First, it is clear that ¢ is multilinear: it is the composition of the multilinear map
(V1. ., 0,) = V] ® -+ ® v, and the linear projection map from V& to S™(V).
We have to check that ¢ is symmetric. But

O(Vo(1)s - -+ Vo(n)) — QU151 Vn) = Vg1) "+ Vo(n) — V1 -+ Vp =0,
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since it is the image in S™(V) of Uo(1) ® * - @ Vg(n) — 1 ® - -~ @ v, € W. Now let
f V"™ = U be multilinear and symmetric. Then there is a unique linear map
f': Ve — U corresponding to f, and by symmetry of f, we have

f/<UU(1)®"'®UU(n)_Ul®“'®vn):0'

So f’ vanishes on all the elements of a spanning set of W. Hence it vanishes on W
and therefore induces a unique linear map g : S™(V) = V& /W — U.

®

vn L yen s sn(v)

N

g

The two spaces Sym(V®™) and S™(V) (resp., Alt(V®") and A"(V)) are closely
related. We assume that F' is of characteristic zero.

13.12. Proposition.
(1) The maps Sym(V®™) C V& — S™(V) and

1
Sn(V) — Sym(V®n> . VLU Uy a Z V(1) X Vg (2) R ® Vo(n)

’ O'GS”VL
are inverse isomorphisms. In particular, if by, ..., b, is a basis for V,
then the elements

form a basis for S™(V'), and dim S™(V) = (m+:_1).
(2) The maps Als(V®™) C Ve — A" (V) and

n 1 :
AN'(V) — AIL(VEY) | v AvgA---Av, — o Z SIgN(0) V(1) @ Vg (2) @+ * * D V()
’ O'GSH

are inverse isomorphisms. In particular, if by, ..., b, is a basis for V,
then the elements

form a basis for N\"(V), and dim \"(V) = (7).

n

PROOF. It is easy to check that the specified maps are well-defined linear maps
and inverses of each other, so they are isomorphisms. The other statements then
follow from the description in Prop. [13.9] U
Note that if dim V' = n, then we have

N'V)=F(vy A+ Awy)

for any basis vy,...,v, of V.
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13.13. Corollary. Let vy,...,v, € V. Then vy,...,v, are linearly indepen-
dent if and only if vy A --- ANv, # 0.

Proor. If vq,...,v, are linearly dependent, then we can express one of them,
say v,, as a linear combination of the others:
Up = MU1+ -+ A 1Un_1 -
Then
VIA AU g AUy =01 Ao Avpg A (Mo + -+ A 10p-1)
=AML A Avp_r Avy) F e F A (VA AU A Up_q)

=0+---+0=0.
On the other hand, when vy,...,v, are linearly independent, they form part of
a basis v1,...,Un,..., Uy, and by Prop. [13.12) v; A --- A v, is a basis element of
A" (V), hence nonzero. O

13.14. Lemma and Definition. Let f:V — W be linear. Then [ induces
linear maps S™(f) : S™(V) — S"(W) and N\"(f) : N"(V) = N" (W) satisfying

S (v -on) = flon) - flon), A ()0 AeeAon) = Flo) Ao A f(vn)

ProOOF. The map V" — S™(W), (v1,...,v,) — f(v1)--- f(vy,), is a symmetric
multilinear map and therefore determines a unique linear map S™(f) : S"(V) —
S™(W) with the given property. Similarly for A\"(f). O

13.15. Proposition. Let f: V — V be a linear map, with V' an n-dimensional
vector space. Then N"(f): N"(V) = N"(V) is multiplication by det(f).

PrOOF. Since \"(V) is a one-dimensional vector space, A"(f) must be multi-
plication by a scalar. We pick a basis vy, ..., v, of V and represent f by a matrix A
with respect to this basis. The scalar in question is the element § € F' such that

FW)NAflog) A A fon) =0 (v Avg A+ Ay .

The vectors f(vy), ..., f(v,) correspond to the columns of the matrix A, and ¢ is
an alternating multilinear form on them. Hence § must be det(A), up to a scalar
factor. Taking f to be idy, we see that the scalar factor is 1. U

13.16. Corollary. Let V be a finite-dimensional vector space, f,g:V — V
two endomorphisms. Then det(g o f) = det(g) det(f).

PROOF. Let n = dim V. We have A"(go f) = A" go A" f, and the map on the
left is multiplication by det(g o f), whereas the map on the right is multiplication
by det(g) det(f). O

We see that, similarly to the trace Hom(V, V) = V*® V — F, our constructions
give us a natural (coordinate-free) definition of the determinant of an endomor-
phism.
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alternating, [63] [68]
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classification, [70]
classification over C,[72]
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canonical map ay
relation to fTT,
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classification of symmetric bilinear forms,
(0
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orthogonal,
complex conjugate space,
complex inner product space, [77]
complexification, [110
linear map, 111
congruent, [07]
congruent matrices, @
conic section, [07]
conjugate-linear, [77]
contraction, [T09]
coordinate map, [47]
coprime polynomials,
criterion for positive definiteness, [74]

determinant
is multiplicative, [L18
of direct sum, [9]
diagonal part endomorphism,
uniqueness, [37]
diagonalisation, [97]
diagonalizable,
minimal polynomial,
nilpotent matrix/endomorphism is zero,
19
simultaneously,
diagonalize a matrix, [71]
differential equations
linear, first-order with constant
coefficients,
direct sum
determinant, [9]



124

external,

internal, [7]
of endomorphisms, [9]
relation to characteristic polynomial,
10
relation to minimal polynomial,
of subspaces, [7]
orthogonal,
trace, [
universal property, [L01
distance,
division of polynomials,
dot product,
dual
basis, [47]
uniqueness, [A7]
basis change, [52]
linear map,
inverse, [50]
matrix representation, [51]
vector space, [47]

dimension,

eigenspace, [3]
generalised,
A-eigenspace,
eigenvalue,
eigenvector, [3]
eigenvectors
generalised, [3]]
endomorphism ring
is isomorphic to V* @ V, [10§]
equivalent norms, [60]
Euclidean norm,
evaluation map, [49]
evaluation paring,

exact, 54

exponential

matrix, [35]
external direct sum, [101

Fourier expansion, [82]

generalised eigenspace,
generalised eigenvectors,
geometric multiplicity,
Gram-Schmidt Orthonormalization

Process,

Hermitian inner product, [78]
Hermitian matrix, [87]
Hilbert matrix, [67] [73]

ideal, [I5]

inner multiplication, [T09]
composition, [T09]
evaluation, (110

inner product,

inner product space,
complex, [77]
real,

internal direct sum, [7]
invariant subspace, [9]
f-invariant subspace, [J]

isometry, [84] [91]

characterization, [85]

Jordan Normal Form,
general version,

real, [30]

kernel matrix,

Lagrange interpolation polynomials, [£9]
left kernel,

linear form, [47]

linear functional,

matrix exponential,
matrix representation
adjoint,
dual linear map, [5]]
of bilinear forms, [66]
maximum norm, [59|
metric, [59]
minimal polynomial,
of diagonalizable matrix/endomorphism,
10}
of nilpotent matrix/endomorphism,
uniqueness, [T5]
minimum polynomial, see also minimal
polynomial, [14]
multilinear map
alternating, 113
equivalent statements, [115
symmetric, [I13]
equivalent statements,
multiplicity
algebraic,
geometric, [3]

nilpotent,

nilpotent matrix/endomorphism
characteristic polynomial,
diagonalizable iff zero,
minimal polynomial, [T9]
structure of,

nilpotent part endomorphism,
uniqueness, [37]

nondegenerate bilinear form,

norm, [59
equivalent, [60]
is continuous, [59]

normal,

normal endomorphism
complex inner product space

is orthodiagonalizable, [05]

is self-adjoint iff all eigenvalues are real,
properties, [03]

normal matrix,



ONB, [T
orientation preserving, 06|
orthodiagonalizable, 03]
criterion complex inner product space,
criterion real inner product space,
orthogonal, [79]
subspace,
orthogonal complement, [70} [79]
orthogonal direct sum, [69] [94]
orthogonal map, [87]
orthogonal matrix,
orthogonal set,
is linearly independent,
orthogonally diagonalized,
orthogonally similar, [06]
orthonormal, [79]
orthonormal basis, [79]
equivalent statements,
orthonormal set,
orthonormalization,
outer multiplication, [109

Parseval’s identity,
polynomial
characteristic, [3]
coprime, [I0]
division (algorithm),
minimal,
positive definite,
positive definiteness
criterion, [4]
principal axes, [97]
transformation, [97]
principal ideal domain,

quadric, [97]

rank of a bilinear form, [67]
real inner product space, [77]
Real Jordan Normal Form,
right kernel, [64]

scalar product, [50]
self-adjoint, [84]
self-adjoint endomorphism

real inner product space

is orthodiagonalizable,

semi-simple,
semiring, [T05]
semiring of vector spaces, [100]
sesquilinear form, [77]
signature of a bilinear form,
similar, [97]
simultaneously diagonalizable,
skew-symmetric bilinear form,
skew-symmetric bilinear map, [L13
skew-symmetric tensor,
Spectral Theorem, [95]
subspace of alternating tensors

dimension, [L15
subspace of symmetric tensors
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dimension, [L15
sum norm, [59
symmetric bilinear form,
can be diagonalized,
classification, [70]
classification over C,
classification over R, [73|
symmetric bilinear map, 113
symmetric matrix, [87]
is diagonalizable,
symmetric multilinear map, [L13
equivalent statements, [T14]
symmetric tensor, [[14]
symmetric tensor power, m
basis,
dimension,
linear map, {118
nth symmetric tensor power, [I16]

tensor product,
elements, [105|
existence, [I04]
linear map, [107]

of finite dimensional vector spaces
is isomorphic to Hom(V, W),

uniqueness, [I04]
trace

of direct sum, [9]
transpose linear map, see also dual linear
map
triangle inequality,

unit vector, [79]

unitary map, [87]
unitary matrix, [87]

Vandermonde Matrix, [49]
Zorn’s Lemma,
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