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CHAPTER 1

Euclidean space: lines and hyperplanes

This chapter deals, for any non-negative integer n, with Euclidean n-space Rn,
which is the set of all (ordered) sequences of n real numbers, together with a
distance that we will define. We make it slightly more general, so that we can
also apply our theory to, for example, the rational numbers instead of the real
numbers: instead of just the set R of real numbers, we consider any subfield of R.
At this stage, it suffices to say that a subfield of R is a nonempty subset F ⊂ R
containing 0 and 1, in which we can multiply, add, subtract, and divide (except
by 0); that is, for any x, y ∈ F , also the elements xy, x + y, x − y (and x/y if
y ̸= 0) are contained in F . We refer the interested reader to Appendix B for a
more precise definition of a field in general.

Therefore, for this entire chapter (and only this chapter), we let F denote a sub-
field of R, such as the field R itself or the field Q of rational numbers. Furthermore,
we let n denote a non-negative integer.

1.1. Definition

An n-tuple is an ordered sequence of n objects. We let F n denote the set of all
n-tuples of elements of F . For example, the sequence(

− 17, 0, 3, 1 +
√
2, eπ

)
is an element of R5. The five numbers are separated by commas. In general, if we
have n numbers x1, x2, . . . , xn ∈ F , then

x = (x1, x2, . . . , xn)

is an element of F n. Again, the numbers are separated by commas. Such n-tuples
are called vectors; the numbers in a vector are called coordinates. In other words,
the i-th coordinate of the vector x = (x1, x2, . . . , xn) is the number xi.

We define an addition by adding two elements of F n coordinate-wise:

(x1, x2, . . . , xn)⊕ (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn).

For example, the sequence (12, 14, 16, 18, 20, 22, 24) is an element of R7 and we
have

(12, 14, 16, 18, 20, 22, 24)⊕ (11, 12, 13, 14, 13, 12, 11) = (23, 26, 29, 32, 33, 34, 35).

Unsurprisingly, we also define a coordinate-wise subtraction:

(x1, x2, . . . , xn)⊖ (y1, y2, . . . , yn) = (x1 − y1, x2 − y2, . . . , xn − yn).

Until the end of this section, we denote the sum and the difference of two elements
x, y ∈ F n by x⊕ y and x⊖ y, respectively, in order to distinguish them from the
usual addition and subtraction of two numbers. Similarly, we define a scalar
multiplication: for any element λ ∈ F , we set

λ⊙ (x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn).

5



6 1. EUCLIDEAN SPACE: LINES AND HYPERPLANES

This is called scalar multiplication because the elements of F n are scaled; the
elements of F , by which we scale, are often called scalars. We abbreviate the
special vector (0, 0, . . . , 0) consisting of only zeros by 0, and for any vector x ∈ F n,
we abbreviate the vector 0⊖ x by −x. In other words, we have

−(x1, x2, . . . , xn) = (−x1,−x2, . . . ,−xn).
Because our new operations are all defined coordinate-wise, they obviously satisfy
the following properties:

(1) for all x, y ∈ F n, we have x⊕ y = y ⊕ x;
(2) for all x, y, z ∈ F n, we have (x⊕ y)⊕ z = x⊕ (y ⊕ z);
(3) for all x ∈ F n, we have 0⊕ x = x and 1⊙ x = x;
(4) for all x ∈ F n, we have (−1)⊙ x = −x and x⊕ (−x) = 0;
(5) for all x, y, z ∈ F n, we have x⊕ y = z if and only if y = z ⊖ x;
(6) for all x, y ∈ F n, we have x⊖ y = x⊕ (−y);
(7) for all λ, µ ∈ F and x ∈ F n, we have λ⊙ (µ⊙ x) = (λ · µ)⊙ x;
(8) for all λ, µ ∈ F and x ∈ F n, we have (λ+ µ)⊙ x = (λ⊙ x)⊕ (µ⊙ x);
(9) for all λ ∈ F and x, y ∈ F n, we have λ⊙ (x⊕ y) = (λ⊙ x)⊕ (λ⊙ y).

In fact, in the last two properties, we may also replace + and ⊕ by − and ⊖,
respectively, but the properties that we then obtain follow from the properties
above. All these properties together mean that the operations ⊕, ⊖, and ⊙ really
behave like the usual addition, subtraction, and multiplication, as long as we
remember that the scalar multiplication is a multiplication of a scalar
with a vector, and not of two vectors!.

We therefore will usually leave out the circle in the notation: instead of x⊕ y and
x⊖ y we write x+ y and x− y, and instead of λ⊙ x we write λ · x or even λx.

As usual, scalar multiplication takes priority over addition and subtraction, so
when we write λx±µy with λ, µ ∈ F and x, y ∈ F n, we mean (λx)± (µy). Also as
usual, when we have vectors x1, x2, . . . , xt ∈ F n, the expression x1±x2±x3±· · ·±xt
should be read from left to right, so it stands for

(. . . ((︸ ︷︷ ︸
t−2

x1 ± x2)± x3)± · · · )± xt.

If all the signs in the expression are positive (+), then any other way of putting
the parentheses would yield the same by property (2) above.

1.2. Euclidean plane and Euclidean space

For n = 2 or n = 3 we can identify Rn with the pointed plane or three-dimensional
space, respectively. We say pointed because they come with a special point,
namely 0. For instance, for R2 we take an orthogonal coordinate system in the
plane, with 0 at the origin, and with equal unit lengths along the two coordinate
axes. Then the vector p = (p1, p2) ∈ R2, which is by definition nothing but a pair
of real numbers, corresponds with the point in the plane whose coordinates are p1
and p2. In this way, the vectors get a geometric interpretation. We can similarly
identify R3 with three-dimensional space. We will often make these identifications
and talk about points as if they are vectors, and vice versa. By doing so, we can
now add points in the plane, as well as in space! Figure 1.1 shows the two points
p = (3, 1) and q = (1, 2) in R2, as well as the points 0,−p, 2p, p+ q, and q − p.

For n = 2 or n = 3, we may also represent vectors by arrows in the plane or
space, respectively. In the plane, the arrow from the point p = (p1, p2) to the
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p

2p

q

p+ q

−p

q − p

0

Figure 1.1. Two points p and q in R2, as well as 0,−p, 2p, p+ q, and q − p

point q = (q1, q2) represents the vector v = (q1 − p1, q2 − p2) = q − p. (A careful
reader notes that here we do indeed identify points and vectors.) We say that the
point p is the tail of the arrow and the point q is the head. Note the distinction
we make between an arrow and a vector, the latter of which is by definition just a
sequence of real numbers. Many different arrows may represent the same vector v,
but all these arrows have the same direction and the same length, which together
narrow down the vector. One arrow is special, namely the one with 0 as its tail;
the head of this arrow is precisely the point q − p, which is the point identified
with v! See Figure 1.2, in which the arrows are labeled by the name of the vector v
they represent, and the points are labeled either by their own name (p and q), or
the name of the vector they correspond with (v or 0). Note that besides v = q−p,
we (obviously) also have q = p+ v.

p

q

q − p = v

0

v

v

Figure 1.2. Two arrows representing the same vector v = (−2, 1)

Of course we can do the same for R3. For example, take the points p = (3, 1,−4)
and q = (−1, 2, 1) and set v = q − p. Then we have v = (−4, 1, 5). The arrow
from p to q has the same direction and length as the arrow from 0 to the point
(−4, 1, 5). Both these arrows represent the vector v.

Note that we now have three notions: points, vectors, and arrows.

points vectors arrows

Vectors and points can be identified with each other, and arrows represent vectors
(and thus points).

We can now interpret negation, scalar multiples, sums, and differences of vectors
(as defined in Section 1.1) geometrically, namely in terms of points and arrows.
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For points this was already depicted in Figure 1.1. If p is a point in R2, then
−p is obtained from p by rotating it 180 degrees around 0; for any real number
λ > 0, the point λp is on the half line from 0 through p with distance to 0 equal
to (λ times the distance from p to 0). For any points p and q in R2 such that
0, p, and q are not collinear, the points p + q and q − p are such that the four
points 0, p, p+ q, and q are the vertices of a parallelogram (a quadrangle of which
opposite sides are parallel and have equal length) with p and q opposite vertices,
and the four points 0, −p, q− p, q are the vertices of a parallelogram with −p and
q opposite vertices.

In terms of arrows we get the following. If a vector v is represented by a certain
arrow, then −v is represented by any arrow with the same length but opposite
direction; furthermore, for any positive λ ∈ R, the vector λv is represented by the
arrow obtained by scaling the arrow representing v by a factor λ.

If v and w are represented by two arrows that have common tail p, then these two
arrows are the sides of a unique parallelogram; the vector v + w is represented
by a diagonal in this parallelogram, namely the arrow that also has p as tail and
whose head is the opposite point in the parallelogram. An equivalent description
for v+w is to take two arrows, for which the head of the one representing v equals
the tail of the one representing w; then v + w is represented by the arrow from
the tail of the first to the head of the second. See Figure 1.3.

p

q

r

v

v

v

w

−w

−w

w
v + w

v + (−w)

v − w

Figure 1.3. Geometric interpretation of addition and subtraction

The description of laying the arrows head-to-tail generalises well to the addition of
more than two vectors. Let v1, v2, . . . , vt in R2 or R3 be vectors and p0, p1, . . . , pt
points such that vi is represented by the arrow from pi−1 to pi. Then the sum
v1 + v2 + · · ·+ vt is represented by the arrow from p0 to pt. See Figure 1.4.

For the same v and w, still represented by arrows with common tail p and with
heads q and r, respectively, the difference v−w is represented by the other diagonal
in the same parallelogram, namely the arrow from r to q. Another construction
for v−w is to write this difference as the sum v+(−w), which can be constructed
as described above. See Figure 1.3.

Representing vectors by arrows is very convenient in physics. In classical mechan-
ics, for example, we identify forces applied on a body with vectors, which are often
depicted by arrows. The total force applied on a body is then the sum of all the
forces in the sense that we have defined it.

Motivated by the case n = 2 and n = 3, we will sometimes refer to vectors in
Rn as points in general. Just as arrows in R2 and R3 are uniquely determined by
their head and tail, for general n we define an arrow to be a pair (p, q) of points
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p0

p1

p2

p3

p4

v1

v2

v3

v4

v1
+
v2
+
v3
+
v4

Figure 1.4. Adding four vectors

p, q ∈ Rn and we say that this arrow represents the vector q−p. The points p and
q are the tail and the head of the arrow (p, q).

Exercises

1.2.1. Compute the sum of the given vectors v and w in R2 and draw a corresponding
picture by identifying the vectors with points or representing them by arrows
(or both) in R2.
(1) v = (−2, 5) and w = (7, 1),
(2) v = 2 · (−3, 2) and w = (1, 3) + (−2, 4),
(3) v = (−3, 4) and w = (4, 3),
(4) v = (−3, 4) and w = (8, 6),
(5) v = w = (5, 3).

1.2.2. Let p, q, r, s ∈ R2 be the vertices of a parallelogram, with p and r opposite
vertices. Show that p+ r = q + s.

1.2.3. Let p, q ∈ R2 be two points such that 0, p, and q are not collinear. How many
parallelograms are there with 0, p, and q as three of the vertices? For each of
these parallelograms, express the fourth vertex in terms of p and q.

1.3. The standard scalar product

We now define the (standard) scalar product1 on F n.

Definition 1.1. For any two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
in F n we define the standard scalar product of x and y as

⟨x, y⟩ = x1y1 + x2y2 + · · ·+ xnyn.

We will often leave out the word ‘standard’. The scalar product derives its name
from the fact that ⟨x, y⟩ is a scalar, that is, an element of F . In LATEX , the scalar
product is not written $<x,y>$, but $\langle x,y \rangle$!

1The scalar product should not be confused with the scalar multiplication; the scalar mul-
tiplication takes a scalar λ ∈ F and a vector x ∈ Fn, and yields a vector λx, while the scalar
product takes two vectors x, y ∈ Fn and yields a scalar ⟨x, y⟩.
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Warning 1.2. While the name scalar product and the notation ⟨x, y⟩ for it are
standard, in other pieces of literature, the standard scalar product is also often
called the (standard) inner product, or the dot product, in which case it may get
denoted by x · y. Also, in other pieces of literature, the notation ⟨x, y⟩ may be
used for other notions. One should therefore always check which meaning of the
notation ⟨x, y⟩ is used.2

Example 1.3. Suppose we have x = (3, 4,−2) and y = (2,−1, 5) in R3. Then
we get

⟨x, y⟩ = 3 · 2 + 4 · (−1) + (−2) · 5 = 6 + (−4) + (−10) = −8.

The scalar product satisfies the following useful properties.

Proposition 1.4. Let λ ∈ F be an element and let x, y, z ∈ F n be elements. Then
the following identities hold.

(1) ⟨x, y⟩ = ⟨y, x⟩,
(2) ⟨λx, y⟩ = λ · ⟨x, y⟩ = ⟨x, λy⟩,
(3) ⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩.

Proof. Write x and y as

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

Then x1, . . . , xn and y1, . . . , yn are real numbers, so we obviously have xiyi = yixi
for all integers i with 1 ≤ i ≤ n. This implies

⟨x, y⟩ = x1y1 + x2y2 + · · ·+ xnyn = y1x1 + y2x2 + · · ·+ ynxn = ⟨y, x⟩,
which proves identity (1).

For identity (2), note that we have λx = (λx1, λx2, . . . , λxn), so

⟨λx, y⟩ = (λx1)y1 + (λx2)y2 + . . .+ (λxn)yn

= λ · (x1y1 + x2y2 + · · ·+ xnyn) = λ · ⟨x, y⟩,
which proves the first equality of (2). Combining it with (1) gives

λ · ⟨x, y⟩ = λ · ⟨y, x⟩ = ⟨λy, x⟩ = ⟨x, λy⟩,
which proves the second equality of (2).

For identity (3), we write z as z = (z1, z2, . . . , zn). Then we have

⟨x, y + z⟩ = x1(y1 + z1) + x2(y2 + z2) + . . .+ xn(yn + zn)

= (x1y1 + . . .+ xnyn) + (x1z1 + . . .+ xnzn) = ⟨x, y⟩+ ⟨x, z⟩,
which proves identity (3). □

Note that the equality ⟨x+y, z⟩ = ⟨x, z⟩+⟨y, z⟩ follows from properties (1) and (3).
From the properties above, it also follows that we have ⟨x, y− z⟩ = ⟨x, y⟩ − ⟨x, z⟩
for all vectors x, y, z ∈ F n; of course this is also easy to check directly.

Example 1.5. Let L ⊂ R2 be the line of all points (x, y) ∈ R2 that satisfy
3x+ 5y = 7. For the vector a = (3, 5) and v = (x, y), we have

⟨a, v⟩ = 3x+ 5y,

2In fact, this warning holds for any notation...
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so we can also write L as the set of all points v ∈ R2 that satisfy ⟨a, v⟩ = 7.

Example 1.6. Let V ⊂ R3 be a plane. Then there are constants p, q, r, b ∈ R,
with p, q, r not all 0, such that V is given by

V = {(x, y, z) ∈ R3 : px+ qy + rz = b}.
If we set a = (p, q, r) ∈ R3, then we can also write this as

V = {v ∈ R3 : ⟨a, v⟩ = b}.

In examples 1.5 and 1.6, we used the terms line and plane without an exact
definition. Lines in R2 and planes in R3 are examples of hyperplanes, which we
define now.

Definition 1.7. A hyperplane in F n is a subset of F n that equals

{ v ∈ F n : ⟨a, v⟩ = b }
for some nonzero vector a ∈ F n and some constant b ∈ F . A hyperplane in F 3 is
also called a plane; a hyperplane in F 2 is also called a line.

Example 1.8. Let H ⊂ R5 be the subset of all quintuples (x1, x2, x3, x4, x5) of
real numbers that satisfy

x1 − x2 + 3x3 − 17x4 − 1
2
x5 = 13.

This can also be written as

H = {x ∈ R5 : ⟨a, x⟩ = 13 }
where a = (1,−1, 3,−17,−1

2
) is the vector of coefficients of the left-hand side

of the equation, so H is a hyperplane.

As in this example, in general a hyperplane in F n is a subset of F n that is given by
one linear equation a1x1 + . . .+ anxn = b, with a1, . . . , an, b ∈ F . For any nonzero
scalar λ, the equation ⟨a, x⟩ = b is equivalent with ⟨λa, x⟩ = λb, so the hyperplane
defined by a ∈ F n and b ∈ F is also defined by λa and λb.

As mentioned above, a hyperplane in F 2 is nothing but a line in F 2. The following
proposition states that instead of giving an equation for it, we can also describe
the line in a different way: by specifying two vectors v and w. See Figure 1.5.

0

wv

L

Figure 1.5. Parametrisation of the line L
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Proposition 1.9. For every line L ⊂ F 2, there are vectors v, w ∈ F 2, with v
nonzero, such that we have

L = {w + λv ∈ F 2 : λ ∈ F }.
Conversely, for every vectors v, w ∈ F 2 with v nonzero, the set

{w + λv ∈ F 2 : λ ∈ F }
is a line.

Proof. For the first statement, suppose L is a line. Then by definition there are
p, q, b ∈ F , with p, q not both zero, such that L is the set of all points (x, y) ∈ F 2

that satisfy px+ qy = b. Let w = (x0, y0) be a point of L, which exists because
we can fix x0 and solve for y0 if q is nonzero, or the other way around if p is
nonzero. Set v = (−q, p). We denote the set {w + λv ∈ F 2 : λ ∈ F } of the
proposition by M .

Since we have px0 + qy0 = b, we can write the equation for L as

(1.1) p(x− x0) + q(y − y0) = 0.

To prove the equality L = M , we first prove the inclusion L ⊂ M . Let
z = (x, y) ∈ L be any point. We claim that there is a λ ∈ F with x−x0 = −qλ
and y − y0 = pλ. Indeed, if p ̸= 0, then we can set λ = (y − y0)/p; using
y− y0 = λp, equation (1.1) yields x−x0 = −qλ. If instead we have p = 0, then
q ̸= 0, and we set λ = −(x − x0)/q to find y − y0 = pλ = 0. This proves our
claim, which implies z = (x, y) = (x0 − λq, y0 + λp) = w + λv ∈M , so we have
L ⊂M .

For the opposite inclusion, it is clear that for every scalar λ ∈ F , the point
w + λv = (x0 − λq, y0 + λp) satisfies (1.1) and is therefore contained in L, so
we have M ⊂ L. This finishes the proof of the first statement.

For the converse statement, let p, q, x0, y0 ∈ F be such that v = (−q, p) and
w = (x0, y0). Set a = (p, q) ∈ F 2 and b = px0 + qy0 ∈ F . We denote the
set {w + λv ∈ F 2 : λ ∈ F } of the proposition by M . Let L be the line
{u ∈ F 2 : ⟨a, u⟩ = b }. Now the second and third paragraph of this proof can
be repeated as a proof for the second statement of the proposition. □

We say that Proposition 1.9 gives a parametrisation of the line L, because for each
scalar λ ∈ F (the parameter) we get a point on L, and this yields a bijection (see
Appendix A) between F and L.

Example 1.10. The points (x, y) ∈ R2 that satisfy y = 2x+ 1 are exactly the
points of the form (0, 1) + λ(1, 2) with λ ∈ R.

Inspired by the description of a line in Proposition 1.9, we define the notion of a
line in F n for general n. By Proposition 1.9, the following definition is equivalent
with Definition 1.7 for n = 2.

Definition 1.11. A line in F n is a subset of F n that equals

{w + λv : λ ∈ F }
for some vectors v, w ∈ F n with v ̸= 0.
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Proposition 1.12. Let p, q ∈ F n be two distinct points. Then there is a unique
line L that contains both. Moreover, every hyperplane that contains p and q also
contains L.

Proof. The existence of such a line is clear, as we can take w = p and v = q− p
in Definition 1.11. The line L determined by these vectors contains p = w+0 ·v
and q = w + 1 · v. Conversely, suppose v ̸= 0 and w are vectors such that the
line L′ = {w + λv : λ ∈ F } contains p and q. Then there are µ, ν ∈ F with
w+µv = p and w+νv = q. Subtracting these identities yields q−p = (ν−µ)v.
Since p and q are distinct, we have ν − µ ̸= 0. We write c = (ν − µ)−1 ∈ F .
Then v = c(q − p), and for every λ ∈ F we have

w + λv = p− µv + λv = p+ (λ− µ)c(q − p) ∈ L.

This shows L′ ⊂ L. The opposite inclusion L ⊂ L′ follows from the fact that
for each λ ∈ F , we have p + λ(q − p) = w + (µ + λc−1)v ∈ L′. Hence, we find
L = L′, which proves the first statement.

Let a ∈ F n be nonzero and b ∈ F a constant and suppose that the hy-
perplane H = {v ∈ F n : ⟨a, v⟩ = b} contains p and q. Then we have
⟨a, q−p⟩ = ⟨a, q⟩−⟨a, p⟩ = b−b = 0. Hence, for each λ ∈ F , and the correspond-
ing point x = p+λ(q− p) ∈ L, we have ⟨a, x⟩ = ⟨a, p⟩+λ⟨a, q− p⟩ = b+0 = b.
This implies x ∈ H and therefore L ⊂ H, which proves the second state-
ment. □

Notation 1.13. For every vector a ∈ F n, we let L(a) denote the set {λa : λ ∈ F}
of all scalar multiples of a. If a is nonzero, then L(a) is the line through 0 and a.

Exercises

1.3.1. For each of the pairs (v, w) given in Exercise 1.2.1, compute the scalar prod-
uct ⟨v, w⟩.

1.3.2. For each of the following lines in R2, find vectors v, w ∈ R2, such that the line
is given as in Proposition 1.9. Also find a vector a ∈ R2 and a number b ∈ R,
such that the line is given as in Definition 1.7.
(1) The line {(x, y) ∈ R2 : y = −3x+ 4}.
(2) The line {(x, y) ∈ R2 : 2y = x− 7}.
(3) The line {(x, y) ∈ R2 : x− y = 2}.
(4) The line {v ∈ R2 : ⟨c, v⟩ = 2}, with c = (1, 2).
(5) The line through the points (1, 1) and (2, 3).

1.3.3. Write the following equations for lines in R2 with coordinates x1 and x2 in
the form ⟨a, x⟩ = c, that is, specify a vector a and a constant c in each case,
such that the line equals the set {x ∈ R2 : ⟨a, x⟩ = c}.
(1) L1 : 2x1 + 3x2 = 0,
(2) L2 : x2 = 3x1 − 1,
(3) L3 : 2(x1 + x2) = 3,
(4) L4 : x1 − x2 = 2x2 − 3,
(5) L5 : x1 = 4− 3x1,
(6) L6 : x1 − x2 = x1 + x2,
(7) L7 : 6x1 − 2x2 = 7.

1.3.4. Let V ⊂ R3 be the subset given by

V = {(x1, x2, x3) : x1 − 3x2 + 3 = x1 + x2 + x3 − 2}.
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Show that V is a plane as defined in Definition 1.7.

1.3.5. For each pair of points p and q below, determine vectors v, w, such that the
line through p and q equals {w + λv : λ ∈ F}.
(1) p = (1, 0) and q = (2, 1),
(2) p = (1, 1, 1) and q = (3, 1,−2),
(3) p = (1,−1, 1,−1) and q = (1, 2, 3, 4).

1.3.6. Let a = (1, 2,−1) and a′ = (−1, 0, 1) be vectors in R3. Show that the inter-
section of the hyperplanes

H = {v ∈ R3 : ⟨a, v⟩ = 4} and H ′ = {v ∈ R3 : ⟨a′, v⟩ = 0}
is a line as defined in Definition 1.11.

1.3.7. Let p, q ∈ Rn be distinct points. Show that the line through p and q (cf.
Proposition 1.12) equals

{λp+ µq : λ, µ ∈ R with λ+ µ = 1}.

1.4. Angles, orthogonality, and normal vectors

As in Section 1.2, we identify R2 and R3 with the Euclidean plane and Euclidean
three-space: vectors correspond with points, and vectors can also be represented
by arrows. In the plane and three-space, we have our usual notions of length, angle,
and orthogonality. (Two intersecting lines are called orthogonal, or perpendicular,
if the angle between them is π/2, or 90◦.) We will generalise these notions to F n

in the remaining sections of this chapter3.

Because our field F is a subset of R, we can talk about elements being ‘positive’
or ‘negative’ and ‘smaller’ or ‘bigger’ than other elements. This is used in the
following proposition.

Proposition 1.14. For every element x ∈ F n we have ⟨x, x⟩ ≥ 0, and equality
holds if and only if x = 0.

Proof. Write x as x = (x1, x2, . . . , xn). Then ⟨x, x⟩ = x21 + x22 + · · · + x2n.
Since squares of real numbers are non-negative, this sum of squares is also non-
negative and it equals 0 if and only if each terms equals 0, so if and only if
xi = 0 for all i with 1 ≤ i ≤ n. □

The vector x = (x1, x2, x3) ∈ R3 is represented by the arrow from the point
(0, 0, 0) to the point (x1, x2, x3); by Pythagoras’ Theorem, the length of this arrow

is
√
x21 + x22 + x23, which equals

√
⟨x, x⟩. See Figure 1.6, which is the only figure in

this chapter where edges and arrows are labeled by their lengths, rather than the
names of the vectors they represent. Any other arrow representing x has the same
length. Similarly, the length of any arrow representing a vector x ∈ R2 equals√

⟨x, x⟩. We define the length of a vector in F n for general n ≥ 0 accordingly.

Definition 1.15. For any element x ∈ F n we define the length ∥x∥ of x as

∥x∥ =
√

⟨x, x⟩.

3Those readers that adhere to the point of view that even for n = 2 and n = 3, we have
not carefully defined these notions, have a good point and may skip the paragraph before Def-
inition 1.15, as well as Proposition 1.19. They may take our definitions for general n ≥ 0 as
definitions for n = 2 and n = 3 as well.
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x = (x1, x2, x3)

x1
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2
3

Figure 1.6. The length of an arrow

Note that by Proposition 1.14, we can indeed take the square root in R, but the
length ∥x∥ may not be an element of F . For instance, the vector (1, 1) ∈ Q2 has
length

√
2, which is not contained in Q. As we have just seen, the length of a

vector in R2 or R3 equals the length of any arrow representing it.

Example 1.16. The vector (1,−2, 2, 3) in R4 has length
√
1 + 4 + 4 + 9 = 3

√
2.

Lemma 1.17. For all λ ∈ F and x ∈ F n we have ∥λx∥ = |λ| · ∥x∥.

Proof. This follows immediately from the identity ⟨λx, λx⟩ = λ2 · ⟨x, x⟩ and the

fact that
√
λ2 = |λ|. □

In R2 and R3, the distance between two points x, y equals ∥x − y∥. We will use
the same phrasing in F n.

Definition 1.18. The distance between two points x, y ∈ F n is defined as ∥x−y∥.
It is sometimes written as d(x, y).

Proposition 1.19. Suppose n = 2 or n = 3. Let v, w be two nonzero elements
in Rn and let α ∈ [0, π] be the angle between the arrow from 0 to v and the arrow
from 0 to w. Then we have

(1.2) cosα =
⟨v, w⟩

∥v∥ · ∥w∥
.

The arrows are orthogonal to each other if and only if ⟨v, w⟩ = 0.

Proof. Because we have n = 2 or n = 3, the new definition of length coincides
with the usual notion of length and we can use ordinary geometry. The arrows
from 0 to v, from 0 to w, and from v to w form a triangle in which α is the
angle at 0. The arrows represent the vectors v, w, and w− v, respectively. See
Figure 1.7. By the cosine rule, we find that the length ∥w − v∥ of the side
opposite the angle α satisfies

∥w − v∥2 = ∥v∥2 + ∥w∥2 − 2 · ∥v∥ · ∥w∥ · cosα.
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We also have

∥w− v∥2 = ⟨w− v, w− v⟩ = ⟨w,w⟩ − 2⟨v, w⟩+ ⟨v, v⟩ = ∥v∥2 + ∥w∥2 − 2⟨v, w⟩.
Equating the two right-hand sides yields the desired equation. The arrows are
orthogonal if and only if we have cosα = 0, so if and only if ⟨v, w⟩ = 0. □

0

w

v

w − v

α

Figure 1.7. The cosine rule

Example 1.20. Let l and m be the lines in the (x, y)-plane R2, given by
y = ax + b and y = cx + d, respectively, for some a, b, c, d ∈ R. Then
their directions are the same as those of the line l′ through 0 and (1, a) and
the line m′ through 0 and (1, c), respectively. By Proposition 1.19, the lines
l′ and m′, and thus l and m, are orthogonal to each other if and only if
0 = ⟨(1, a), (1, c)⟩ = 1 + ac, so if and only if ac = −1. See Figure 1.8.

1

a

b

d

c

l′

m′

l

m

Figure 1.8. Orthogonal lines in R2

Inspired by Proposition 1.19, we define orthogonality for vectors in Rn.

Definition 1.21. We say that two vectors v, w ∈ F n are orthogonal, or perpen-
dicular to each other, when ⟨v, w⟩ = 0; we then write v ⊥ w.
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Warning 1.22. Let v, w ∈ F n be vectors, which by definition are just n-tuples
of elements in F . If we want to think of them geometrically, then we can think of
them as points or we can represent them by arrows. If we want to interpret the
notion orthogonality geometrically, then we should represent v and w by arrows:
Proposition 1.19 states for n ∈ {2, 3} that the vectors v and w are orthogonal if
and only if any two arrows with a common tail that represent them, are orthogonal
to each other.

Note that the zero vector is orthogonal to every vector. With Definitions 1.15 and
1.21 we immediately have the following analogon of Pythagoras’ Theorem.

Proposition 1.23. Two vectors v, w ∈ F n are orthogonal if and only if they sat-
isfy ∥v−w∥2 = ∥v∥2+∥w∥2, and if and only if they satisfy ∥v+w∥2 = ∥v∥2+∥w∥2.

Proof. We have

∥v ±w∥2 = ⟨v ±w, v ±w⟩ = ⟨v, v⟩ ± 2⟨v, w⟩+ ⟨w,w⟩ = ∥v∥2 + ∥w∥2 ± 2⟨v, w⟩.
The right-most side equals ∥v∥2 + ∥w∥2 if and only if ⟨v, w⟩ = 0, so if and only
if v and w are orthogonal. □

Definition 1.24. For any subset S ⊂ F n, we let S⊥ denote the set of those
elements of F n that are orthogonal to all elements of S, that is,

S⊥ = {x ∈ F n : ⟨s, x⟩ = 0 for all s ∈ S }.

For every element a ∈ F n we define a⊥ as {a}⊥. We leave it as an exercise to show
that if a is nonzero, then we have a⊥ = L(a)⊥.

Lemma 1.25. Let S ⊂ F n be any subset. Then the following statements hold.

(1) For every x, y ∈ S⊥, we have x+ y ∈ S⊥.
(2) For every x ∈ S⊥ and every λ ∈ F , we have λx ∈ S⊥.

Proof. Suppose x, y ∈ S⊥ and λ ∈ F . Take any element s ∈ S. By definition of
S⊥ we have ⟨s, x⟩ = ⟨s, y⟩ = 0, so we find ⟨s, x+ y⟩ = ⟨s, x⟩+ ⟨s, y⟩ = 0+0 = 0
and ⟨s, λx⟩ = λ⟨s, x⟩ = 0. Since this holds for all s ∈ S, we conclude x+y ∈ S⊥

and λx ∈ S⊥. □

By definition, every nonzero vector a ∈ F n is orthogonal to every element in the
hyperplane a⊥. As mentioned in Warning 1.22, in R2 and R3 we think of this as
the arrow from 0 to (the point identified with) a being orthogonal to every arrow
from 0 to an element of a⊥. Since a⊥ contains 0, these last arrows have both their
tail and their head contained in the hyperplane a⊥. Therefore, when we consider
a hyperplane H that does not contain 0, the natural analog is to be orthogonal to
every arrow that has both its tail and its head contained in H. As the arrow from
p ∈ H to q ∈ H represents the vector q − p ∈ F n, this motivates the following
definition.

Definition 1.26. Let S ⊂ F n be a subset. We say that a vector z ∈ F n is normal
to S when for all p, q ∈ S we have ⟨q − p, z⟩ = 0. In this case, we also say that z
is a normal of S.
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z

v

v

0

p

H

q

v

Figure 1.9. Normal z to a hyperplane H

See Figure 1.9, in which S = H ⊂ R3 is a (hyper-)plane that contains two points
p and q, and the vector v = q − p is represented by three arrows: one from p to
q, one with its tail at the intersection point of H with L(a), and one with its tail
at 0. The first two arrows are contained in H.

Note that the zero vector 0 ∈ F n is normal to every subset of F n. We leave
it as an exercise to show that every element of S⊥ is a normal to S, and, if S
contains 0, then a vector z ∈ F n is normal to S if and only if we have z ∈ S⊥ (see
Exercise 1.4.6).

Example 1.27. Let L ⊂ R2 be the line L = {λ · (1, 1) : λ ∈ R}, consisting
of all points (x, y) satisfying y = x. The set L⊥ consists of all points v = (a, b)
that satisfy 0 = ⟨v, (λ, λ)⟩ = λ(a+ b) for all λ ∈ R; this is equivalent to b = −a
and to v = a · (1,−1), so L⊥ = {a · (1,−1) : a ∈ R} is a line. As mentioned
above, since L contains 0, the set L⊥ consists of all elements that are normal
to L.

Example 1.28. Let M ⊂ R2 be the line M = {(0, 1) + λ · (1, 1) : λ ∈ R},
consisting of all points (x, y) satisfying y = x + 1. The set M⊥ consists of all
points v = (a, b) that satisfy 0 = ⟨v, (λ, λ + 1)⟩ = λ(a + b) + b for all λ ∈ R;
this is equivalent to a = b = 0 and v = 0, so M⊥ = {0}. In this case, the line
M does not contain 0. We leave it to the reader to verify that every multiple
of the vector (1,−1) is a normal to M .

Proposition 1.29. Let a ∈ F n be a nonzero vector and b ∈ F a constant. Then
a is normal to the hyperplane H = {x ∈ F n : ⟨a, x⟩ = b }.

Proof. For every two elements p, q ∈ H we have ⟨p, a⟩ = ⟨q, a⟩ = b, so we find
⟨q − p, a⟩ = ⟨q, a⟩ − ⟨p, a⟩ = b− b = 0. This implies that a is normal to H. □

Corollary 1.36 of the next section implies the converse of Proposition 1.29: for
every nonzero normal a′ of a hyperplane H there is a constant b′ ∈ F such that

H = {x ∈ F n : ⟨a′, x⟩ = b′ }.

Exercises

1.4.1. Let a and b be the lengths of the sides of a parallelogram and c and d the
lengths of its diagonals. Prove that c2 + d2 = 2(a2 + b2).

1.4.2.
(1) Show that two vectors v, w ∈ Rn have the same length if and only if v−w

and v + w are orthogonal.
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(2) Prove that the diagonals of a parallelogram are orthogonal to each other
if and only if all sides have the same length.

1.4.3. Let a ∈ Fn be nonzero. Show that we have a⊥ = L(a)⊥.

1.4.4. Determine the angle between the lines L(a) and L(b) with a = (2, 1, 3) and
b = (−1, 3, 2).

1.4.5. True or False? If true, explain why. If false, give a counterexample.
(1) If a ∈ R2 is a nonzero vector, then the lines {x ∈ R2 : ⟨a, x⟩ = 0} and

{x ∈ R2 : ⟨a, x⟩ = 1} in R2 are parallel.
(2) If a, b ∈ R2 are nonzero vectors and a ̸= b, then the lines

{x ∈ R2 : ⟨a, x⟩ = 0} and {x ∈ R2 : ⟨b, x⟩ = 1} in R2 are not parallel.
(3) For each vector v ∈ R2 we have ⟨0, v⟩ = 0. (What do the zeros in this

statement refer to?)

1.4.6. Let S ⊂ Fn be a subset.
(1) Show that every element in S⊥ is a normal to S.
(2) Assume that S contains the zero element 0. Show that every normal to S

is contained in S⊥.

1.4.7. What would be a good definition for a line and a hyperplane (neither neces-
sarily containing 0) to be orthogonal?

1.4.8. What would be a good definition for two lines (neither necessarily contain-
ing 0) to be parallel?

1.4.9. What would be a good definition for two hyperplanes (neither necessarily
containing 0) to be parallel?

1.4.10. Let a, v ∈ Fn be nonzero vectors, p ∈ Fn any point, and b ∈ F a scalar. Let
L ⊂ Fn be the line given by

L = {p+ tv : t ∈ F}

and let H ⊂ Fn be the hyperplane given by

H = {x ∈ Fn : ⟨a, x⟩ = b}.

(1) Show that L ∩H consists of exactly one point if v ̸∈ a⊥.
(2) Show that L ∩H = ∅ if v ∈ a⊥ and p ̸∈ H.
(3) Show that L ⊂ H if v ∈ a⊥ and p ∈ H.

1.5. Orthogonal projections and normality

Note that our field F is still assumed to be a subset of R.

1.5.1. Projecting onto lines and hyperplanes containing zero.

Proposition 1.30. Let a ∈ F n be a vector. Then every element v ∈ F n can be
written uniquely as a sum v = v1 + v2 of an element v1 ∈ L(a) and an element
v2 ∈ a⊥. Moreover, if a is nonzero, then we have v1 = λa with λ = ⟨a, v⟩ · ∥a∥−2.

Proof. For a = 0 the statement is trivial, as we have 0⊥ = F n, so we may
assume a is nonzero. Then we have ⟨a, a⟩ ̸= 0. See Figure 1.10. Let v ∈ F n be
a vector. Let v1 ∈ L(a) and v2 ∈ F n be such that v = v1 + v2. Then there is a
λ ∈ F with v1 = λa and we have ⟨a, v2⟩ = ⟨a, v⟩ − λ⟨a, a⟩; this implies that we
have ⟨a, v2⟩ = 0 if and only if ⟨a, v⟩ = λ⟨a, a⟩ = λ∥a∥2, that is, if and only if

λ = ⟨a,v⟩
∥a∥2 . Hence, this λ corresponds to unique elements v1 ∈ L(a) and v2 ∈ a⊥

with v = v1 + v2. □
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v1 = λa

a

0 v2 = v − v1

v2

v
v1

a⊥

Figure 1.10. Decomposing the vector v as the sum of a multiple
v1 of the vector a and a vector v2 orthogonal to a

Definition 1.31. Using the same notation as in Proposition 1.30 and assuming a
is nonzero, we call v1 the orthogonal projection of v onto a or onto L = L(a), and
we call v2 the orthogonal projection of v onto the hyperplane H = a⊥. We let

πL : F
n → F n and πH : F n → F n

be the maps4 that send v to these orthogonal projections of v on L and H,
respectively, so πL(v) = v1 and πH(v) = v2. These maps are also called the
orthogonal projections onto L and H, respectively.

We will also write πa for πL, and of course πa⊥ for πH . Note that by Proposi-
tion 1.30 these maps are well defined and we have

(1.3) πa(v) =
⟨a, v⟩
⟨a, a⟩

· a, πa⊥(v) = v − ⟨a, v⟩
⟨a, a⟩

· a.

Example 1.32. Take a = (2, 1) ∈ R2. Then the hyperplane a⊥ is the line
consisting of all points (x1, x2) ∈ R2 satisfying 2x1 + x2 = 0. To write the
vector v = (3, 4) as a sum v = v1 + v2 with v1 a multiple of a and v2 ∈ a⊥, we
compute

λ =
⟨a, v⟩
⟨a, a⟩

=
10

5
= 2,

so we get πa(v) = v1 = 2a = (4, 2) and thus πa⊥(v) = v2 = v − v1 = (−1, 2).
Indeed, we have v2 ∈ a⊥.

Example 1.33. Take a = (1, 1, 1) ∈ R3. Then the hyperplane H = a⊥ is the
set

H = {x ∈ R3 : ⟨a, x⟩ = 0 } = { (x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0 }.
To write the vector v = (2, 1, 3) as a sum v = v1 + v2 with v1 a multiple of a
and v2 ∈ H, we compute

λ =
⟨a, v⟩
⟨a, a⟩

=
6

3
= 2,

4For a review on maps, see Appendix A.
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so we get πa(v) = v1 = 2a = (2, 2, 2) and thus

πH(v) = v2 = v − v1 = (2, 1, 3)− (2, 2, 2) = (0,−1, 1).

Indeed, we have v2 ∈ H.

In fact, we can do the same for every element in R3. We find that we can write
x = (x1, x2, x3) as x = x′ + x′′ with

x′ =
x1 + x2 + x3

3
· a = πa(x)

and

x′′ =

(
2x1 − x2 − x3

3
,
−x1 + 2x2 − x3

3
,
−x1 − x2 + 2x3

3

)
= πH(x) ∈ H.

Verify this and derive it yourself!

Example 1.34. Suppose an object T is moving along an inclined straight path
in R3. Gravity exerts a force f on T , which corresponds to a vector. The force f
can be written uniquely as the sum of two components: a force along the path
and a force perpendicular to the path. The acceleration due to gravity depends
on the component along the path. If we take the zero of Euclidean space to
be at the object T , and the path is decribed by a line L, then the component
along the path is exactly the orthogonal projection πL(f) of f onto L. See
Figure 1.11.

L
0

f

πL(f)

Figure 1.11. Two components of a force: one along the path and
one perpendicular to it

We have already seen that for every vector a ∈ F n we have L(a)⊥ = a⊥, so
the operation S ⇝ S⊥ sends the line L(a) to the hyperplane a⊥. The following
proposition shows that the opposite holds as well.

Proposition 1.35. Let a ∈ F n be a vector. Then we have (a⊥)⊥ = L(a).

Proof. For every λ ∈ F and every t ∈ a⊥, we have ⟨λa, t⟩ = λ⟨a, t⟩ = 0, so we
find L(a) ⊂ (a⊥)⊥. For the opposite inclusion, let v ∈ (a⊥)⊥ be arbitrary and
let v1 ∈ L(a) and v2 ∈ a⊥ be such that v = v1 + v2 (as in Proposition 1.30).
Then by the inclusion above we have v1 ∈ (a⊥)⊥, so by Lemma 1.25 we find
v2 = v − v1 ∈ (a⊥)⊥. Hence, the element v2 is orthogonal to every element in
a⊥, and in particular to itself, which implies v2 = 0. We conclude v−v1 = 0, so
v = v1 ∈ L(a). This implies (a⊥)⊥ ⊂ L(a), which proves the proposition. □
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For generalisations of Proposition 1.35, see Proposition 8.20 and Exercise 8.2.45

(cf. Proposition 3.33, Remark 3.34). The following corollary shows that every
hyperplane is determined by a nonzero normal to it and a point contained in
it. Despite the name of this subsection, this corollary, and one of the examples
following it, is not restricted to hyperplanes that contain the element 0.

Corollary 1.36. Let a, z ∈ F n be nonzero vectors. Let b ∈ F be a scalar and set

H = {x ∈ F n : ⟨a, x⟩ = b }.
Let p ∈ H be a point. Then the following statements hold.

(1) The vector z is normal to H if and only if z is a multiple of a.
(2) If z is normal to H, then we have

H = {x ∈ F n : ⟨z, x⟩ = ⟨z, p⟩ } = {x ∈ F n : x− p ∈ z⊥ }.

Proof. We first prove the ‘if’-part of (1). Suppose z = λa for some λ ∈ F .
Then λ is nonzero, and the equation ⟨a, x⟩ = b is equivalent with ⟨z, x⟩ = λb.
Hence, by Proposition 1.29, applied to z = λa, we find that z is normal to H.
For the ‘only if’-part and part (2), suppose z is normal to H. We translate H
by subtracting p from each point in H, and obtain6

H ′ = { y ∈ F n : y + p ∈ H }.
Since p is contained in H, we have ⟨a, p⟩ = b, so we find

H ′ = { y ∈ F n : ⟨a, y + p⟩ = ⟨a, p⟩ } = { y ∈ F n : ⟨a, y⟩ = 0 } = a⊥.

On the other hand, for every y ∈ H ′, we have y+p ∈ H, so by definition of nor-
mality, z is orthogonal to (y+p)−p = y. This implies z ∈ H ′⊥ = (a⊥)⊥ = L(a)
by Proposition 1.35, so z is indeed a multiple of a, which finishes the proof of
(1).

This also implies that H ′ = a⊥ equals z⊥, so we get

H = {x ∈ F n : x− p ∈ H ′ } = {x ∈ F n : x− p ∈ z⊥ }
= {x ∈ F n : ⟨z, x− p⟩ = 0 } = {x ∈ F n : ⟨z, x⟩ = ⟨z, p⟩ }.

□

Example 1.37. If H ⊂ F n is a hyperplane that contains 0, and a ∈ F n is a
nonzero normal of H, then we have H = a⊥ by Corollary 1.36.

Example 1.38. Suppose V ⊂ R3 is a plane that contains the points

p1 = (1, 0, 1), p2 = (2,−1, 0), and p3 = (1, 1, 1).

A priori, we do not know if such a plane exists. If a vector a = (a1, a2, a3) ∈ R3

is a normal of V , then we have

0 = ⟨p2 − p1, a⟩ = a1 − a2 − a3 and 0 = ⟨p3 − p1, a⟩ = a2,

5The proof of Proposition 1.35 relies on Proposition 1.30, which is itself proved by explicitly
computing the scalar λ. Therefore, one might qualify both these proofs as computational.
In this book, we try to avoid computational proofs when more enlightening arguments are
available. Proposition 8.20, which uses the notion of dimension, provides an independent non-
computational proof of a generalisation of Proposition 1.35 (see Exercise 8.2.4).

6Make sure you understand why this is what we obtain, including the plus-sign in y + p.
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which is equivalent with a1 = a3 and a2 = 0, and thus with a = a3 · (1, 0, 1).
Taking a3 = 1, we find that the vector a = (1, 0, 1) is a normal of V and as we
have ⟨a, p1⟩ = 2, the plane V equals

(1.4) { x ∈ R3 : ⟨a, x⟩ = 2 }
by Corollary 1.36, at least if V exists. It follows from ⟨p2−p1, a⟩ = ⟨p3−p1, a⟩ = 0
that ⟨p2, a⟩ = ⟨p1, a⟩ = 2 and ⟨p3, a⟩ = ⟨p1, a⟩ = 2, so the plane in (1.4) contains
p1, p2, and p3. This shows that V does indeed exist and is uniquely determined
by the fact that it contains p1, p2, and p3.

Remark 1.39. In a later chapter, we will see that any three points in R3 that
are not on one line determine a unique plane containing these points.

Remark 1.40. If W ⊂ F n is a line containing 0, and a ∈ W is a nonzero
element, then W = L(a) by Proposition 1.12. If W ⊂ F n is a hyperplane con-
taining 0, and a ∈ W is a nonzero normal ofW , thenW = a⊥ by Corollary 1.36.

Corollary 1.41. Let W ⊂ F n be a line or a hyperplane and assume 0 ∈ W . Then
we have (W⊥)⊥ = W .

Proof. If W is a line and a ∈ W is a nonzero element, then we have W = L(a)
by Proposition 1.12; then we get W⊥ = a⊥, and the equality (W⊥)⊥ = W
follows from Proposition 1.35. If W is a hyperplane and a ∈ F n is a nonzero
normal ofW , thenW = a⊥ by Corollary 1.36; then we getW⊥ = (a⊥)⊥ = L(a)
by Proposition 1.35, so we also find (W⊥)⊥ = L(a)⊥ = a⊥ = W . □

In the definition of orthogonal projections, the roles of the line L(a) and the hy-
perplane a⊥ seem different. The following proposition characterises the orthogonal
projection completely analogous for lines and hyperplanes containing 0 (cf. Fig-
ure 1.12). Proposition 1.43 generalises this to general lines and hyperplanes, which
allows us to define the orthogonal projection of a point to any line or hyperplane.

Proposition 1.42. Let W ⊂ F n be a line or a hyperplane, suppose 0 ∈ W , and
let v ∈ F n be an element. Then there is a unique element z ∈ W such that
v − z ∈ W⊥. This element z equals πW (v).

0

W

v

z = πW (v)

Figure 1.12. Orthogonal projection of v onto a line or hyper-
plane W with 0 ∈ W

Proof. We have two cases. If W is a line, then we take any nonzero a ∈ W , so
that we have W = L(a) and W⊥ = L(a)⊥ = a⊥. Then, by Proposition 1.30,
there is a unique element z ∈ W such that v − z ∈ W⊥, namely z = πa(v).
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If W is a hyperplane, then we take any nonzero normal a to W , so that we
have W = a⊥, and then W⊥ = L(a) by Proposition 1.35. Then, again by
Proposition 1.30, there is a unique element z ∈ W such that v − z ∈ W⊥,
namely z = πa⊥(v). □

Exercises

1.5.1. Show that there is a unique plane V ⊂ R3 containing the points

p1 = (1, 0, 2), p2 = (−1, 2, 2), and p3 = (1, 1, 1).

Determine a vector a ∈ R3 and a number b ∈ R such that

V = {x ∈ R3 : ⟨a, x⟩ = b}.

1.5.2. Take a = (2, 1) ∈ R2 and v = (4, 5) ∈ R2. Find v1 ∈ L(a) and v2 ∈ a⊥ such
that v = v1 + v2.

1.5.3. Take a = (2, 1) ∈ R2 and v = (x1, x2) ∈ R2. Find v1 ∈ L(a) and v2 ∈ a⊥ such
that v = v1 + v2.

1.5.4. Take a = (−1, 2, 1) ∈ R3 and set V = a⊥ ⊂ R3. Find the orthogonal projec-
tions of the element x = (x1, x2, x3) ∈ R3 onto L(a) and V .

1.5.5. Show that for every subset S ⊂ Fn we have S ∩ S⊥ ⊂ {0}.
1.5.6. Let W ⊂ Fn be a line or a hyperplane, and assume 0 ∈W . Use (1.3) to show

that
(1) for every x, y ∈ Fn we have πW (x+ y) = πW (x) + πW (y), and
(2) for every x ∈ Fn and every λ ∈ F we have πW (λx) = λπW (x).

1.5.7. Let W ⊂ Fn be a line or a hyperplane, and assume 0 ∈W .
(1) Show that there exists a nonzero a ∈ Fn such that W = L(a) or W = a⊥.
(2) Show that for every v, w ∈W we have v + w ∈W .

1.5.8. This exercise proves the same as Exercise 1.5.6, but without formulas. Let
W ⊂ Fn be a line or a hyperplane, and assume 0 ∈ W . Use Exercise 1.5.7,
Proposition 1.42, and Lemma 1.25 to show that
(1) for every x, y ∈ Fn we have πW (x+ y) = πW (x) + πW (y), and
(2) for every x ∈ Fn and every λ ∈ F we have πW (λx) = λπW (x).

1.5.9. Let W ⊂ Fn be a line or a hyperplane, and assume 0 ∈ W . Let p ∈ W
and v ∈ Fn be points. Prove that we have πW (v − p) = πW (v) − p. See
Proposition 1.43 for a generalisation.

1.5.10. Let a ∈ Fn be nonzero and set L = L(a). Let q ∈ Fn be a point and let
H ⊂ Fn be the hyperplane with normal a ∈ Fn and containing the point q.
(1) Show that the line L intersects the hyperplane H in a unique point, say p

(see Exercise 1.4.10).
(2) Show that for every point x ∈ H we have πL(x) = p.

1.5.11. (1) Let p, q, r, s ∈ R2 be four distinct points. Show that the line through p
and q is perpendicular to the line through r and s if and only if

⟨p, r⟩+ ⟨q, s⟩ = ⟨p, s⟩+ ⟨q, r⟩.

(2) Let p, q, r ∈ R2 be three points that are not all on a line. Then the altitudes
of the triangle with vertices p, q, and r are the lines through one of the
three points, orthogonal to the line through the other two points.
Prove that the three altitudes in a triangle go through one point. This
point is called the orthocenter of the triangle. [Hint: let p, q, r be the
vertices of the triangle and let s be the intersection of two of the three al-
titudes. Be careful with the case that s coincides with one of the vertices.]
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1.5.2. Projecting onto arbitrary lines and hyperplanes.

We now generalise Proposition 1.42 to arbitrary lines and hyperplanes, not neces-
sarily containing 0.

Proposition 1.43. Let W ⊂ F n be a line or a hyperplane, and let v ∈ F n be an
element. Then there is a unique element z ∈ W such that v − z is normal to W .
Moreover, if p ∈ W is any point, then W ′ = {x− p : x ∈ W} contains 0 and we
have

z − p = πW ′(v − p).

W

0

v

z

p

W ′

v′ = v − p

z′ = z − p

Figure 1.13. Orthogonal projection of v onto a general line or
hyperplane W

Proof. We start with the special case that W contains 0 and we have p = 0.
SinceW contains 0, a vector x ∈ F n is contained inW⊥ if and only if x is normal
to W (see Exercise 1.4.6), so this special case is exactly Proposition 1.42. Now
let W be an arbitrary line or hypersurface and let p ∈ W be an element. See
Figure 1.13. For any vector z ∈ F n, each of the two conditions

(i) z ∈ W , and
(ii) v − z is normal to W

is satisfied if and only if it is satisfied after replacing v, z, and W by v′ = v− p,
z′ = z − p, and W ′, respectively. The hyperplane W ′ contains 0, so from the
special case above, we find that there is indeed a unique vector z ∈ F n satisfying
(i) and (ii), and the elements v′ = v − p and z′ = z − p satisfy z′ = πW ′(v′),
which implies the final statement of the proposition. □

Proposition 1.43 can be used to define the orthogonal projection onto any line or
hyperplane W ⊂ F n.

Definition 1.44. Let W ⊂ F n be a line or a hyperplane. The orthogonal projec-
tion πW : F n → F n onto W is the map that sends v ∈ F n to the unique element z
of Proposition 1.43, that is,

πW (v) = p+ πW ′(v − p).

When W contains 0, Proposition 1.42 shows that this new definition of the or-
thogonal projection agrees with Definition 1.31, because in this case, the vector
v − z is normal to W if and only if v − z ∈ W⊥ (see Exercise 1.4.6).

It follows from Definition 1.44 that if we want to project v onto a line or hyperplane
W that does not contain 0, then we may first translate everything so that the
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resulting line or hyperplane does contain 0, then project orthogonally, and finally
translate back.

p

q

r

πL(r)

Figure 1.14. Altitude of a triangle

Exercises

1.5.12. Let H ⊂ R3 be a hyperplane with normal a = (1, 2, 1) that contains the point
p = (1, 1, 1). Find the orthogonal projection of the point q = (0, 0, 0) onto H.

1.5.13. Let p, q, r ∈ R2 be three points that are not all on a line. Show that the
altitude through r intersects the line L through p and q in the point

πL(r) = p+
⟨r − p, q − p⟩
∥q − p∥2

· (q − p).

See Figure 1.14.

1.6. Distances

Lemma 1.45. Let a, v ∈ F n be elements with a ̸= 0. Set L = L(a) and H = a⊥.
Let v1 = πL(v) ∈ L and v2 = πH(v) ∈ H be the orthogonal projections of v on L
and H, respectively. Then the lengths of v1 and v2 satisfy

∥v1∥ =
|⟨a, v⟩|
∥a∥

and ∥v2∥2 = ∥v∥2 − ∥v1∥2 = ∥v∥2 − ⟨a, v⟩2

∥a∥2
.

Moreover, for any x ∈ L we have d(v, x) ≥ d(v, v1) = ∥v2∥ and for any y ∈ H we
have d(v, y) ≥ d(v, v2) = ∥v1∥.

Proof. By (1.3) we have v1 = λa with λ = ⟨a,v⟩
∥a∥2 . Lemma 1.17 then yields

∥v1∥ = |λ| · ∥a∥ =
|⟨a, v⟩|
∥a∥

.

Since v1 and v2 are orthogonal, and v1 + v2 = v, we find from Proposition 1.23
(Pythagoras) that we have

∥v2∥2 = ∥v∥2 − ∥v1∥2 = ∥v∥2 − ⟨a, v⟩2

∥a∥2
,

Suppose x ∈ L. we can write v − x as the sum (v − v1) + (v1 − x) of two
orthogonal vectors (see Figure 1.15), so that, again by Proposition 1.23, we
have

d(v, x)2 = ∥v − x∥2 = ∥v − v1∥2 + ∥v1 − x∥2 ≥ ∥v − v1∥2 = ∥v2∥2.
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H

L

0

v

πH(v) = v2

πL(v) = v1

y

x

Figure 1.15. Distance from v to points on L and H

Because distances and lengths are non-negative, this proves the first part of
the last statement. The second part follows similarly by writing v − y as
(v − v2) + (v2 − y). □

Lemma 1.45 shows that if a ∈ F n is a nonzero vector and W is either the line
L(a) or the hyperplane a⊥, then the distance d(v, x) = ∥v − x∥ from v to any
point x ∈ W is at least the distance from v to the orthogonal projection of v
on W . This shows that the minimum in the following definition exists, at least if
W contains 0. Of course the same holds when W does not contain 0, as we can
translate W and v, and translation does not affect the distances between points.
So the following definition makes sense.

Definition 1.46. Suppose W ⊂ F n is either a line or a hyperplane. For any
v ∈ F n, we define the distance d(v,W ) from v to W to be the minimal distance
from v to any point in W , that is,

d(v,W ) = min
w∈W

d(v, w) = min
w∈W

∥v − w∥.

Proposition 1.47. Let a, v ∈ F n be elements with a ̸= 0. Then we have

d(v, a⊥) = d(v, πa⊥(v)) =
|⟨a, v⟩|
∥a∥

and

d(v, L(a)) = d(v, πL(a)(v)) =
√
∥v∥2 − ⟨a,v⟩2

∥a∥2 .

Proof. Let v1 and v2 be the orthogonal projections of v onto L(a) and a⊥,
respectively. Then from Lemma 1.45 we obtain

d(v, a⊥) = d(v, πa⊥(v)) = ∥v − v2∥ = ∥v1∥ =
|⟨a, v⟩|
∥a∥

and

d(v, L(a)) = d(v, πL(a)(v)) = ∥v − v1∥ = ∥v2∥ =
√

∥v∥2 − ⟨a,v⟩2
∥a∥2 .

□
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Note that L(a) and a⊥ contain 0, so Proposition 1.47 states that if a line or
hyperplane W contains 0, then the distance from a point v to W is the distance
from v to the nearest point on W , which is the orthogonal projection πW (v) of v
onto W . Exercise 1.6.11 shows that the same is true for any line or hyperplane
(see Proposition 1.43 and the subsequent paragraph for the definition of orthogonal
projection onto general lines and hyperplanes).

In order to find the distance to a line or hyperplane that does not contain 0, it
is usually easiest to first apply an appropriate translation (which does not affect
distances between points) to make sure the line or hyperplane does contain 0
(cf. Examples 1.50 and 1.51).

Example 1.48. We continue Example 1.33. We find that the distance d(v, L(a))
from v to L(a) equals ∥v2∥ =

√
2 and we find that the distance from v to H

equals d(v,H) = ∥v1∥ = 2
√
3. We leave it as an exercise to use the general

description of πa(x) and πH(x) in Example 1.33 to find the distances from
x = (x1, x2, x3) to L(a) and H = a⊥.

Example 1.49. Consider the point p = (2, 1, 1) and the plane

V = { (x1, x2, x3) ∈ R3 : x1 − 2x2 + 3x3 = 0 }
in R3. We compute the distance from p to V . The normal vector a = (1,−2, 3)
of V satisfies ⟨a, a⟩ = 14. Since we have V = a⊥, by Proposition 1.47, the
distance d(p, V ) from p to V equals the length of the orthogonal projection of p
on a. This projection is λa with λ = ⟨a, p⟩ · ∥a∥−2 = 3

14
. Therefore, the distance

we want equals ∥λa∥ = 3
14

√
14.

Example 1.50. Consider the vector a = (1,−2, 3), the point p = (2, 1, 1) and
the plane

W = {x ∈ R3 : ⟨a, x⟩ = 1 }
in R3. We will compute the distance from p to W . Since W does not contain 0,
it is not a subspace and our results do not apply directly. Note that the point
q = (2,−1,−1) is contained in W . We translate the whole configuration by −q
and obtain the point p′ = p− q = (0, 2, 2) and the plane7

W ′ = {x− q : x ∈ W }
= {x ∈ R3 : x+ q ∈ W }
= {x ∈ R3 : ⟨a, x+ q⟩ = 1 }
= {x ∈ R3 : ⟨a, x⟩ = 0 } = a⊥,

which does contain 0 (by construction, of course, because it is the image of
q ∈ W under the translation). By Proposition 1.47, the distance d(p′,W ′)
from p′ to W ′ equals the length of the orthogonal projection of p′ on a. This
projection is λa with λ = ⟨a, p′⟩ · ∥a∥−2 = 1

7
. Therefore, the distance we want

equals d(p,W ) = d(p′,W ′) = ∥λa∥ = 1
7

√
14.

Example 1.51. Let L ⊂ R3 be the line through the points p = (1,−1, 2)
and q = (2,−2, 1). We will find the distance from the point v = (1, 1, 1)
to L. First we translate the whole configuration by −p to obtain the point
v′ = v−p = (0, 2,−1) and the line L′ through the points 0 and q−p = (1,−1,−1).

7Note the plus sign in the derived equation ⟨a, x+q⟩ = 1 forW ′ and make sure you understand
why it is there!
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If we set a = q − p, then we have L′ = L(a) (which is why we translated in the
first place) and the distance d(v, L) = d(v′, L′) is the length of the orthogonal
projection of v′ onto the hyperplane a⊥. We can compute this directly with
Proposition 1.47. It satisfies

d(v′, L′)2 = ∥v′∥2 − ⟨a, v′⟩2

∥a∥2
= 5− (−1)2

3
=

14

3
,

so we have d(v, L) = d(v′, L′) =
√

14
3

= 1
3

√
42. Alternatively, in order to

determine the orthogonal projection of v′ onto a⊥, it is easiest to first compute

the orthogonal projection of v′ onto L(a), which is λa with λ = ⟨a,v′⟩
∥a∥2 = −1

3
.

Then the orthogonal projection of v′ onto a⊥ equals v′−(−1
3
a) = (1

3
, 5
3
,−4

3
) and

the length of this vector is indeed 1
3

√
42.

Exercises

1.6.1. Take a = (2, 1) ∈ R2 and p = (4, 5) ∈ R2. Find the distances from p to L(a)
and a⊥.

1.6.2. Take a = (2, 1) ∈ R2 and p = (x, y) ∈ R2. Find the distances from p to L(a)
and a⊥.

1.6.3. Compute the distance from the point (1, 1, 1, 1) ∈ R4 to the line L(a) with
a = (1, 2, 3, 4).

1.6.4. Given the vectors p = (1, 2, 3) and w = (2, 1, 5), let L be the line consisting
of all points of the form p+ λw for some λ ∈ R. Compute the distance d(v, L)
for v = (2, 1, 3).

1.6.5. Suppose that V ⊂ R3 is a plane that contains the points

p1 = (1, 2,−1), p2 = (1, 0, 1), and p3 = (−2, 3, 1).

Determine the distance from the point q = (2, 2, 1) to V .

1.6.6. Let a1, a2, a3 ∈ R be such that a21 + a22 + a23 = 1, and let f : R3 → R be the
function that sends x = (x1, x2, x3) to a1x1 + a2x2 + a3x3.
(1) Show that the distance from any point p to the plane in R3 given by

f(x) = 0 equals |f(p)|.
(2) Suppose b ∈ R. Show that the distance from any point p to the plane in

R3 given by f(x) = b equals |f(p)− b|.
1.6.7. Finish Example 1.48 by computing the distances from a general point x ∈ R3

to the line L(a) and to the hyperplane a⊥ with a = (1, 1, 1).

1.6.8. Given a = (a1, a2, a3) and b = (b1, b2, b3) in R3, the cross product of a and b
is the vector

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

(1) Show that a× b is perpendicular to a and b.
(2) Show ∥a× b∥2 = ∥a∥2 ∥b∥2 − ⟨a, b⟩2.
(3) Show ∥a× b∥ = ∥a∥ ∥b∥ sin(θ), where θ is the angle between a and b.
(4) Show that the area of the parallelogram spanned by a and b equals ∥a×b∥.
(5) Show that the distance from a point c ∈ R3 to the plane containing 0, a,

and b equals

|⟨a× b, c⟩|
∥a× b∥

.

(6) Show that the volume of the parallelepiped spanned by vectors a, b, c ∈ R3

equals |⟨a× b, c⟩|.
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1.6.9. Let L ⊂ R3 be the line through two distinct points p, q ∈ R3 and set v = q−p.
Show that for every point r ∈ R3 the distance d(r, L) from r to L equals

∥v × (r − p)∥
∥v∥

(see Exercise 1.6.8).

1.6.10. Let H ⊂ R4 be the hyperplane with normal a = (1,−1, 1,−1) and containing
the point q = (1, 2,−1,−3). Determine the distance from the point (2, 1,−3, 1)
to H.

q

πW (q)

W0

d(q,W )

Figure 1.16. Distance from q to W

1.6.11. Let W ⊂ Fn be a line or a hyperplane, not necessarily containing 0, and
let q ∈ Fn be a point. In Proposition 1.43 and the subsequent paragraph, we
defined the orthogonal projection πW (q) of q onto W . Proposition 1.47 states
that if W contains 0, then πW (q) is the nearest point to q on W . Show that
this is true in general, that is, we have

d(q,W ) = d(q, πW (q)) = ∥q − πW (q)∥.
See Figure 1.16.

1.7. Reflections

If H ⊂ R3 is a plane, and v ∈ R3 is a point, then, roughly speaking, the reflection
of v in H is the point ṽ on the other side of H that is just as far from H and for
which the vector ṽ − v is normal to H (see Figure 1.17). This is made precise in
Exercise 1.7.8 for general hyperplanes in F n, but we will use a slightly different
description.

v

1
2
(v + ṽ)

ṽ

0 H

Figure 1.17. Reflection of a point v in a plane H

Note that in our rough description above, the element ṽ being just as far from H
as v, yet on the other side of H, means that the midpoint 1

2
(v+ ṽ) between v and
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ṽ is on H. This allows us to formulate an equivalent description of ṽ, which avoids
the notion of distance. Proposition 1.52 makes this precise, and also applies to
lines.

1.7.1. Reflecting in lines and hyperplanes containing zero.

In this subsection, we let W denote a line or a hyperplane with 0 ∈ W .

Proposition 1.52. Let v ∈ F n be a point. Then there is a unique vector ṽ ∈ F n

such that

(1) the vector v − ṽ is normal to W , and
(2) we have 1

2
(v + ṽ) ∈ W .

This point equals 2πW (v)− v.

Proof. Let ṽ ∈ F n be arbitrary and set z = 1
2
(v + ṽ). Then v − z = 1

2
(v − ṽ)

is normal to W if and only if v − ṽ is. Since W contains 0, this happens if
and only if z − v ∈ W⊥ (see Exercise 1.4.6). Hence, by Proposition 1.42, the
element ṽ satisfies the two conditions if and only if we have z = πW (v), that is,
ṽ = 2πW (v)− v. □

Definition 1.53. The reflection in W is the map sW : F n → F n that sends a
vector v ∈ F n to the unique element ṽ of Proposition 1.52, so

(1.5) sW (v) = 2πW (v)− v.

Note that the identity (1.5) is equivalent to the identity sW (v)−v = 2(πW (v)−v),
so the vectors sW (v)− v and πW (v)− v are both normal to W and the former is
the double of the latter. In fact, this last vector equals −πW⊥(v) by the identity
v = πW (v) + πW⊥(v), so we also have

(1.6) sW (v) = v − 2πW⊥(v)

and

(1.7) sW (v) = πW (v)− πW⊥(v).

From this last identity and the uniqueness mentioned in Proposition 1.30 we find
the orthogonal projections of the point sW (v) onto W and W⊥. They satisfy

πW (sW (v)) = πW (v) and πW⊥(sW (v)) = −πW⊥(v),

so the vector v and its reflection sW (v) in W have the same projection onto W ,
and the opposite projection onto W⊥. This implies the useful properties

sW (sW (v)) = v,(1.8)

sW (v) = −sW⊥(v),(1.9)

d(v,W ) = d(sW (v),W ).(1.10)

To make it more concrete, let a ∈ Rn be nonzero and set L = L(a) and H = a⊥.
Let v ∈ Rn be a point and let v1 = πa(v) and v2 = πH(v) be its orthogonal
projections on L and H, respectively. By Proposition 1.30, we have v1 = λa with

λ = ⟨a,v⟩
∥a∥2 , so we find

(1.11) sH(v) = v − 2v1 = v − 2
⟨a, v⟩
∥a∥2

· a
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H = L(a)⊥

L(a) = H⊥

0

v

v2 = πH(v)

πa(v) = v1

−v1 sH(v) = v2 − v1 = v − 2v1

sL(v)
= v1 − v2
= v − 2v2

v1

−v1

−v2 v2

v2

Figure 1.18. Reflection of v in L = L(a) and in H = a⊥

and sL(v) = −sH(v). See Figure 1.18 for a schematic depiction of this, with H
drawn as a line (which it would be in R2). Figure 1.19 shows the same in R3,
this time with the plane H actually drawn as a plane. It is a useful exercise to
identify identity (1.5), which can be rewritten as sW (v)− v = 2(πW (v)− v), and
the equivalent identities (1.6) and (1.7) in both figures (for both W = L and
W = H, and for the various points shown)!

We still consider H ⊂ R3, as in Figure 1.19. For v ∈ H we have πH(v) = v and
πL(v) = 0, so sH(v) = v and sL(v) = −v. This means that on H, the reflection
in the line L corresponds to rotation around 0 over 180 degrees. We leave it as an
exercise to show that on the whole of R3, the reflection in the line L is the same
as rotation around the line over 180 degrees.

0H

L

Figure 1.19. An object with its orthogonal projections on L
and H, and its reflections in L and H
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Example 1.54. Let H ⊂ R3 be the plane through 0 with normal a = (0, 0, 1),
and set L = L(a). For any point v = (x, y, z), the orthogonal projection πL(v)
equals (0, 0, z), so we find sH(v) = (x, y,−z) and sL(v) = (−x,−y, z).

Example 1.55. LetM ⊂ R2 be the line consisting of all points (x, y) satisfying
y = −2x. ThenM = a⊥ for a = (2, 1), that is, a is a normal ofM . The reflection
of the point p = (3, 4) in M is

sM(p) = p− 2πa(p) = p− 2
⟨p, a⟩
⟨a, a⟩

a = p− 2 · 10
5

· a = p− 4a = (−5, 0).

Draw a picture to verify this.

Exercises

1.7.1. Let L ⊂ R2 be the line of all points (x1, x2) satisfying x2 = 2x1. Determine
the reflection of the point (5, 0) in L.

1.7.2. Let L ⊂ R2 be the line of all points (x1, x2) satisfying x2 = 2x1. Determine
the reflection of the point (z1, z2) in L for all z1, z2 ∈ R.

1.7.3. Let V ⊂ R3 be the plane through 0 that has a = (3, 0, 4) as normal. Determine
the reflections of the point (1, 2,−1) in V and L(a).

1.7.4. LetW ⊂ Fn be a line or a hyperplane, and assume 0 ∈W . Use Exercise 1.5.8
to show that
(1) for every x, y ∈ Fn we have sW (x+ y) = sW (x) + sW (y), and
(2) for every x ∈ Fn and every λ ∈ F we have sW (λx) = λsW (x).

1.7.5. Let a ∈ Fn be nonzero and set L = L(a). Let p ∈ L be a point, and let
H ⊂ Fn be the hyperplane with normal a ∈ Fn and containing the point p.
(1) Show that for every point v ∈ H, we have sL(v) − p = −(v − p) (see

Exercise 1.5.10).
(2) Conclude that for n = 3 the restriction of the reflection sL to H coincides

with rotation within H around p over 180 degrees.
(3) Conclude that for n = 3 the reflection sL in L coincides with rotation

around the line L over 180 degrees (cf. Figure 1.19).

1.7.2. Reflecting in arbitrary lines and hyperplanes.

In this subsection, we generalise reflections to arbitrary lines and hyperplanes, not
necessarily containing 0. It relies on orthogonal projections, which for general lines
and hyperplanes are defined in Definition 1.44. In this subsection, we no longer
assume that W is a line or a hyperplane containing 0.

Proposition 1.56. Let W ⊂ F n be a line or a hyperplane, and v ∈ F n a point.
Then there is a unique vector ṽ ∈ F n such that

(1) the vector v − ṽ is normal to W , and
(2) we have 1

2
(v + ṽ) ∈ W .

Moreover, this point equals 2πW (v)− v.

Proof. Let ṽ ∈ F n be arbitrary and set z = 1
2
(v + ṽ). Then v − z = 1

2
(v − ṽ) is

normal to W if and only if v− ṽ is. Hence, ṽ satisfies the two conditions if and
only if we have z = πW (v), that is, ṽ = 2πW (v)− v. □
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Definition 1.57. Let W ⊂ F n be a line or a hyperplane. The reflection

sW : F n → F n

is the map that sends a vector v ∈ F n to the unique element ṽ of Proposition 1.56,
that is,

sW (v) = 2πW (v)− v.

Clearly, this is consistent with Definition 1.53 for lines and hyperplanes that con-
tain 0.

Warning 1.58. The reflection sW in W is defined in terms of the projection πW ,
just as in (1.5) for the special case that W contains 0. Note, however, that the
alternative descriptions (1.6) and (1.7) only hold in this special case.

Proposition 1.59. Let W ⊂ F n be a line or a hyperplane, and p ∈ F n a point.
Then the hyperplane W ′ = {x− p : x ∈ W} contains 0 and we have

sW (v)− p = sW ′(v − p).

W

0

v

ṽ

1
2(v + ṽ)

p

W ′

v − p

ṽ − p

1
2(v + ṽ)− p

a

Figure 1.20. Reflection of v in a line or hyperplane W

Proof. We have sW (v) = 2πW (v) − v and sW ′(v − p) = 2πW ′(v − p) − (v − p)
by Definition 1.57. Hence, the proposition follows from the fact that we have
πW (v) = p+ πW ′(v − p) by Definition 1.44. □

Proposition 1.59 states that if we want to reflect v in a line or hyperplane that
does not contain 0, then we may first translate everything so that the resulting
line or hyperplane does contain 0, then we reflect, and then we translate back. See
Figure 1.20 and the end of Subsection 1.5.2.

Example 1.60. Consider the vector a = (−1, 2, 3) ∈ R3 and the plane

V = { v ∈ R3 : ⟨a, v⟩ = 2}.
We will compute the reflection of the point q = (0, 3, 1) in V . Note that
p = (0, 1, 0) is contained in V , and set q′ = q − p = (0, 2, 1) and

V ′ = {v − p : v ∈ V }.
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The vector a is normal to the plane V ′ and V ′ contains 0, so we have V ′ = a⊥.

The projection πa(q
′) of q′ onto L(a) is λa with λ = ⟨a,q′⟩

⟨a,a⟩ = 1
2
. Hence, we have

sV ′(q′) = 2πa⊥(q
′)− q′ = q′ − 2πa(q

′) = q′ − 2λa = q′ − a = (1, 0,−2).

Hence, we have sV (q) = sV ′(q′) + p = (1, 1,−2).

Exercises

1.7.6. Let V ⊂ R3 be the plane that has normal a = (1, 2,−1) and that goes through
the point p = (1, 1, 1). Determine the reflection of the point (1, 0, 0) in V .

1.7.7. Let p, q ∈ Rn be two different points. Let V ⊂ Rn be the set of all points in
Rn that have the same distance to p as to q, that is,

V = { v ∈ Rn : ∥v − p∥ = ∥v − q∥ }.
(1) Show that V is the hyperplane of all v ∈ Rn that satisfy

⟨q − p, v⟩ = 1

2
(∥q∥2 − ∥p∥2).

(2) Show q−p is a normal of V and that the point 1
2(p+ q) is contained in V .

(3) Show that the reflection of p in V is q.

1.7.8. Let H ⊂ Fn be a hyperplane and v ∈ Fn a point that is not contained in H.
Show that there is a unique vector ṽ ∈ Fn such that
(1) v ̸= ṽ,
(2) the vector v − ṽ is normal to H, and
(3) we have d(v,H) = d(ṽ, H).
Show that this vector ṽ is the reflection of v in H.

1.7.9. Let p, q ∈ R3 be two distinct points, and let L be the line through p and q.
Let H ⊂ R3 be the plane through p that is orthogonal to L, that is, the vector
a = q − p is normal to H.
(1) Show that for every v ∈ H we have v − p ∈ a⊥.
(2) Show that for every v ∈ H we have πL(v) = p.
(3) Show that for every v ∈ H we have sL(v)− p = −(v − p).
(4) Conclude that the restriction of the reflection sL to H coincides with

rotation within H around p over 180 degrees.
(5) Conclude that the reflection sL in L coincides with rotation around the

line L over 180 degrees (cf. Figure 1.19).

1.8. Cauchy-Schwarz

We would like to define the angle between two vectors in Rn by letting the angle
α ∈ [0, π] between two nonzero vectors v, w be determined by (1.2). However,
before we can do that, we need to know that the value on the right-hand side of
(1.2) lies in the interval [−1, 1]. We will first prove that this is indeed the case.

Proposition 1.61 (Cauchy-Schwarz). For all vectors v, w ∈ F n we have

|⟨v, w⟩| ≤ ∥v∥ · ∥w∥
and equality holds if and only if there are λ, µ ∈ F , not both zero, such that
λv + µw = 0.

Proof. If v = 0, then we automatically have equality, and for λ = 1 and µ = 0
we have λv + µw = 0. Suppose v ̸= 0. Let z be the orthogonal projection of
w onto v⊥ (see Definition 1.31, so our vectors v, w, z correspond to a, v, v2 of
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0

v

v

w

w
v + w

v − w

Figure 1.21. Arrows representing the vectors v, w and v±w make
a triangle

Proposition 1.30, respectively). Then by Proposition 1.30 we have

∥z∥2 = ∥w∥2 − ⟨v, w⟩2

∥v∥2
.

From ∥z∥2 ≥ 0 we conclude ⟨v, w⟩2 ≤ ∥v∥2 · ∥w∥2, which implies the inequality,
as lengths are non-negative. We have equality if and only if z = 0, so if and only
if w = λv for some λ ∈ F , in which case we have λv+(−1) ·w = 0. Conversely,
if we have λv + µw = 0 with λ and µ not both zero, then we have µ ̸= 0, for
otherwise λv = 0 would imply λ = 0; therefore, we have w = −λµ−1v, so w is
a multiple of v and the inequality is an equality. □

The triangle inequality usually refers to the inequality c ≤ a+b for the sides a, b, c
of a triangle in R2 or R3. Proposition 1.62 generalises this to F n. See Figure 1.21.

Proposition 1.62 (Triangle inequality). For all vectors v, w ∈ F n we have

∥v + w∥ ≤ ∥v∥+ ∥w∥
and equality holds if and only if there are non-negative scalars λ, µ ∈ F , not both
zero, such that λv = µw.

Proof. By the inequality of Cauchy-Schwarz, Proposition 1.61, we have

∥v + w∥2 = ⟨v + w, v + w⟩ = ⟨v, v⟩+ 2⟨v, w⟩+ ⟨w,w⟩
=∥v∥2 + 2⟨v, w⟩+ ∥w∥2 ≤ ∥v∥2 + 2 · ∥v∥ · ∥w∥+ ∥w∥2 = (∥v∥+ ∥w∥)2.

Since all lengths are non-negative, we may take square roots to find the desired
inequality. Equality holds if and only if ⟨v, w⟩ = ∥v∥ · ∥w∥.
If v = 0 or w = 0, then clearly equality holds and there exist λ and µ as claimed:
take one of them to be 1 and the other 0, depending on whether v or w equals 0.
For the remaining case, we suppose v ̸= 0 and w ̸= 0.

Suppose equality holds in the triangle inequality. Then ⟨v, w⟩ = ∥v∥ · ∥w∥, so
by Proposition 1.61 there exist λ′, µ′ ∈ F , not both zero, with λ′v + µ′w = 0.
Since v and w are nonzero, both λ′ and µ′ are nonzero. For λ = 1 and
µ = −µ′/λ′ we have v = λv = µw, and from

∥v∥ · ∥w∥ = ⟨v, w⟩ = ⟨µw,w⟩ = µ∥w∥2

we conclude µ ≥ 0.

Conversely, suppose λ, µ ≥ 0, not both zero, and λv = µw. Then λ and µ
are both nonzero, because v and w are nonzero. With ν = µ/λ > 0, we find
v = νw, so we have ⟨v, w⟩ = ⟨νw,w⟩ = ν∥w∥2 = |ν| · ∥w| · ∥w∥ = ∥v∥ · ∥w∥,
which implies that equality holds in the triangle inequality. □
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Definition 1.63. For all nonzero vectors v, w ∈ F n, we define the angle between
v and w to be the unique real number α ∈ [0, π] that satisfies

(1.12) cosα =
⟨v, w⟩

∥v∥ · ∥w∥
.

Note that the angle α between v and w is well defined, as by Proposition 1.61, the
right-hand side of (1.12) lies between −1 and 1. By Proposition 1.19, the angle
also corresponds with the usual notion of angle in R2 and R3 in the sense that the
angle between v and w equals the angle between the two arrows that represent v
and w and that have 0 as tail. Finally, Definitions 1.21 and 1.63 imply that two
nonzero vectors v and w in F n are orthogonal if and only if the angle between
them is π/2.

Example 1.64. For v = (3, 0) and w = (2, 2) in R2 we have ⟨v, w⟩ = 6, while
∥v∥ = 3 and ∥w∥ = 2

√
2. Therefore, the angle θ between v and w satisfies

cos θ = 6/(3 · 2
√
2) = 1

2

√
2, so we have θ = π/4.

Example 1.65. For v = (1, 1, 1, 1) and w = (1, 2, 3, 4) in R4 we have ⟨v, w⟩ = 10,
while ∥v∥ = 2 and ∥w∥ =

√
30. Therefore, the angle θ between v and w satisfies

cos θ = 10/(2 ·
√
30) = 1

6

√
30, so θ = arccos

(
1
6

√
30
)
.

Exercises

1.8.1. Prove that for all v, w ∈ Rn we have ∥v−w∥ ≤ ∥v∥+∥w∥. When does equality
hold?

1.8.2. Prove the cosine rule in Rn.
1.8.3. Suppose v, w ∈ Fn are nonzero, and let α be the angle between v and w.

(1) Prove that α = 0 if and only if there are positive λ, µ ∈ F with λv = µw.
(2) Prove that α = π if and only if there are λ, µ ∈ F with λ < 0 and µ > 0

and λv = µw.

1.8.4. Determine the angle between the vectors (1,−1, 2) and (−2, 1, 1) in R3.

1.8.5. Let p, q, r ∈ Rn be three points. Show that p, q, and r are collinear (they lie
on one line) if and only if we have

⟨p− r, q − r⟩2 = ⟨p− r, p− r⟩ · ⟨q − r, q − r⟩.
1.8.6. Determine the angle between the vectors (1,−1, 1,−1) and (1, 0, 1, 1) in R4.

1.8.7. The angle between two hyperplanes is defined as the angle between their
normal vectors. Determine the angle between the hyperplanes in R4 given by
x1 − 2x2 + x3 − x4 = 2 and 3x1 − x2 + 2x3 − 2x4 = −1, respectively.

1.9. What is next?

We have seen that Rn is a set with an addition, a subtraction, and a scalar mul-
tiplication, satisfying the properties mentioned in Section 1.1. This makes Rn our
first example of a vector space, which we will define in the next chapter. In fact,
a vector space is nothing but a set together with an addition and a scalar multi-
plication satisfying a priori only some of those same properties. The subtraction
and the other properties will then come for free! Because we only have addition
and scalar multiplication, all our operations are linear, which is why the study of
vector spaces is called linear algebra.
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In the next chapter we will see many more examples of vector spaces, such as the
space of all functions from R to R. Lines and hyperplanes in Rn that contain 0
are vector spaces as well. In fact, so is the zero space {0} ⊂ Rn. Because these
are all contained in Rn, we call them subspaces of Rn.

One of the most important notions in linear algebra is the notion of dimension,
which we will define for general vector spaces in Chapter 7. It will not come
as a surprise that our examples R1, R2, and R3 have dimension 1, 2, and 3,
respectively. Indeed, the vector space Rn has dimension n. Lines (containing 0)
have dimension 1, and every hyperplane in Rn (containing 0) has dimension n−1,
which means that planes in R3 have dimension 2, as one would expect.

For Rn with n ≤ 3 this covers all dimensions, so every subspace of Rn with n ≤ 3
is either {0} or Rn itself, or a line or a hyperspace, and these last two notions
are the same in R2. For n ≥ 4, however, these are far from all subspaces of Rn,
which exist for any dimension between 0 and n. All of them are intersections of
hyperplanes containing 0.

The theory of linear algebra allows us to generalise some of the important results
of this chapter about lines and hyperplanes to all subspaces of Rn. For example,
in Proposition 1.30 and Corollary 1.41, we have seen that for every line or hyper-
surface W ⊂ Rn containing 0, we can write every v ∈ Rn uniquely as v = v1 + v2
with v1 ∈ W and v2 ∈ W⊥. This does indeed hold for any subspace W of Rn (see
Corollary 8.24). Moreover, for every subspace W ⊂ Rn we have (W⊥)⊥ = W (see
Proposition 8.20), thus generalising Proposition 1.35. Both results make exten-
sive use of theorems about dimensions. These two results can be used to compute
the intersection of any two subspaces, or to solve any system of linear equations.
The last of these two results can also be used to parametrise any subspace and
translates thereof, including hyperplanes. In this chapter, we have only done this
for lines (see Proposition 1.9). Orthogonal projections and reflections can also be
defined with respect to any subspace of Rn, just like distances from points to any
(translate of a) subspace.

But linear algebra can be applied to many more vector spaces than only those
contained in Rn. For example, the set of all functions from R to R is a vector
space of infinite dimension, to which our theory will apply just as easily as to Rn!
Therefore, most of this book will be about general vector spaces. As mentioned
before, the space Rn of this first chapter is just one example.

As opposed to what we did in this chapter, we will also consider fields F that are
not contained in R. This allows examples over the field C of complex numbers and
even over the field F2 = {0, 1} of two elements (in which we have 1+1 = 0), which
is widely used in cryptography. The precise definition of a field (and of C and F2)
is given in Appendix B, but, if wanted, readers can skip this definition and think
of a field as just R (or as a subset of R containing 0 and 1 in which we can add,
subtract, multiply, and divide by any nonzero element). They will still be able
to learn linear algebra from this book by skipping a few examples, exercises, and
remarks about fields such as F2, which are indicated by the symbol ††.
The real strength of linear algebra comes from the understanding of linear maps,
which are functions between vector spaces that preserve the linear structure (the
addition and the scalar multiplication) of the spaces. Linear maps are defined in
Chapter 4. Matrices are a convenient way to describe maps from F n to Fm and
to do explicit computations. They are defined in Chapter 5. The last chapters of
this book are dedicated to understanding various aspects of linear maps.



CHAPTER 2

Vector spaces

In Section 1.1 we have seen that the newly defined addition (⊕) and scalar multi-
plication (⊙) on Euclidean space Rn behave so closely to the regular addition and
multiplication, that we use the regular notations (+ and ·) for them. Although
much of Chapter 1 also relies on the scalar product, we can prove many interesting
theorems about Euclidean space using just the addition and scalar multiplication
and the fact that they satisfy the properties (1)-(9) mentioned in Section 1.1.

It turns out that in mathematics we encounter many other sets V where one could
define an interesting new addition and a scalar multiplication satisfying the same
properties (1)-(9) of Section 1.1. Any proof of a fact about Euclidean space Rn

that only makes use of these properties of addition and scalar multiplication is
then also a proof of the analogous fact for V .

Rather than stating these facts and their proofs for all sets with an addition and
a scalar multiplication separately, we define the abstract notion of a vector space,
which is a set in which we can add and scale elements, and where the addition and
scaling satisfy eight simple rules, called axioms. Euclidean space Rn then becomes
merely an example of a vector space.

Linear algebra is the study of these abstract vector spaces in general and starts
with proving that the properties (1)-(9) of Section 1.1 follow from the axioms. By
proving theorems using only these axioms and all the rules that follow from them,
we prove these theorems for all vector spaces at once.

As mentioned, in Chapter 1 we have seen the first examples, namely V = F n for
any subfield F of R, that is, for any subset F ⊂ R containing 0 and 1 in which
we can add, multiply, subtract, and divide (except by 0). The scaling, or scalar
multiplication, scales elements of V by elements of F . For the rest of this book,
we do not require that F is a subset of R. All we require from our scaling factors,
or scalars, is that they form a field, which means that –roughly speaking– they
form a set in which we can somehow add, subtract, and multiply elements, and
divide by any nonzero element. See Appendix B for a precise definition of fields.

For the rest of this book, we let F denote a field; elements of F are called scalars.

So as not to force all readers to first study the theory of fields, this book is set up
to allow some simplifications.

• Readers may assume that F is (contained in) the field C of complex num-
bers, in which case they should skip all examples, exercises, and remarks
indicated by ††.

• Readers may assume that F is (contained in) the field R of real num-
bers, in which case they should skip all examples, exercises, and remarks
indicated by † and ††.

Under these simplifying asumptions, the definition of a field reduces precisely to F
being a subset of R or C that contains 0 and 1 and in which we can add, subtract,

39
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and multiply elements, and divide by any nonzero element. Examples are R and C
themselves, and the field Q of rational numbers.

We will often use the field R of real numbers in our examples, but by allowing
ourselves to work with general fields, we also cover linear algebra over the field C
of complex numbers, and over finite fields, such as the field F2 = {0, 1} of two
elements (with 1 + 1 = 0), which has important applications in computer science,
cryptography, and coding theory. For the definitions of C and F2, see Appendix B.

2.1. Definition of a vector space

Roughly speaking, a vector space over the field F is just a set V of which we can
add any two elements to get a new element of V , and of which we can scale any
element by an element of F . The addition and scalar multiplication have to satisfy
some rules, and the exact definition of a vector space is as follows.

Definition 2.1. A vector space or linear space over F , or an F -vector space, is
a set V with a distinguished zero element 0V ∈ V , together with an operation
⊕ (‘addition’1) that assigns to two elements x, y ∈ V their sum x ⊕ y ∈ V , and
an operation ⊙ (‘scalar multiplication’2) that assigns to a scalar λ ∈ F and an
element x ∈ V the scaled multiple λ ⊙ x ∈ V of x, such that these operations
satisfy the following axioms.

(1) For all x, y ∈ V , x⊕ y = y ⊕ x (addition is commutative).

(2) For all x, y, z ∈ V , (x⊕ y)⊕ z = x⊕ (y ⊕ z) (addition is associative).

(3) For all x ∈ V , x⊕ 0V = x (adding the zero element does nothing).

(4) For every x ∈ V , there is an x′ ∈ V such that x⊕ x′ = 0V (existence of

negatives).

(5) For all λ, µ ∈ F and x ∈ V , λ⊙ (µ⊙ x) = (λ · µ)⊙ x (scalar multipli-

cation is associative).

(6) For all x ∈ V , 1⊙ x = x (multiplication by 1 is the identity).

(7) For all λ ∈ F and x, y ∈ V , λ⊙ (x⊕ y) = (λ⊙ x)⊕ (λ⊙ y) (distribu-

tivity I).

(8) For all λ, µ ∈ F and x ∈ V , (λ+ µ)⊙ x = (λ⊙ x)⊕ (µ⊙ x) (distribu-

tivity II).

The elements of a vector space are usually called vectors. A real vector space is a
vector space over the field R of real numbers and (†) a complex vector space is a
vector space over the field C of complex numbers.

Remarks 2.2.

(1) Instead of writing (V, 0V ,⊕,⊙) (which is the complete data for a vector
space), we usually just write V , with the zero element, the addition,
and scalar multiplication being understood.

1Addition is a function V × V → V that sends the pair (x, y) to x⊕ y.
2Scalar multiplication is a function F × V → V that sends the pair (λ, x) to λ⊙ x.
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(2) We will often leave out the subscript V in 0V , and just write 0 for the
zero of the vectorspace. It is crucial to always distinguish this from the
zero of the field F , even though both may be written as 0; it should
always be clear from the context which zero is meant.

(3) For now, we denote the addition and scalar multiplication of a vector
space by the symbols ⊕ and ⊙, in order to distinguish them from the
addition and multiplication in F . Soon, we will see that they behave
so much like the usual addition and scaling, that we drop the circles in
the notation.

Exercises

2.1.1. Suppose that F is contained in R. Show that Fn together with the zero
element and the coordinate-wise addition ⊕ and scalar multiplication ⊙ as
defined in Section 1.1 is a vector space. [In Example 2.5 we will generalise this
to general fields.]

2.1.2. Let V ⊂ R3 be the set of all triples (x1, x2, x3) ∈ R3 with x1+x2+x3 = 0. Is V ,
together with the usual coordinate-wise addition and scalar multiplication, and
the zero vector of R3, a vector space?

2.1.3. Let V ⊂ R3 be the set of all triples (x1, x2, x3) ∈ R3 with x1+x2+x3 = 1. Is V ,
together with the usual coordinate-wise addition and scalar multiplication, and
the zero vector of R3, a vector space?

2.1.4. Let V be a vector space over F . In the following table, with a and b elements
of F or V as given, indicate whether the elements a⊙ b and a⊕ b are defined
and, if so, whether they are contained in F or in V .

a b a⊙ b a⊕ b
F F
F V
V V

2.2. Examples

Recall that F is a field (see the beginning of this chapter).

Example 2.3. The simplest (and perhaps least interesting) example of a vector
space over F is V = {0}, with addition given by 0⊕ 0 = 0 and scalar multipli-
cation by λ⊙ 0 = 0 for all λ ∈ F (these are the only possible choices). Trivial
as it may seem, this vector space, called the zero space, is important. It plays a
role in linear algebra similar to the role played by the empty set in set theory.

Example 2.4. The next (still not very interesting) example is V = F over
itself, with addition, multiplication, and the zero being the ones that make F
into a field. The axioms above in this case just reduce to the rules for addition
and multiplication in F (see Appendix B).

Example 2.5. Now we come to a very important example, which is themodel of
a vector space over F . For F contained in R, it was already studied extensively
in Chapter 1 (cf. Exercise 2.1.1). Let n be a non-negative integer. We consider
the set V = F n of n-tuples of elements of F . As in Section 1.1, we define
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addition and scalar multiplication ‘component-wise’:

(x1, x2, . . . , xn)⊕ (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

λ⊙ (x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn).

Also as in Section 1.1, we set 0V = (0, 0, . . . , 0).

Of course, we now have to prove that our eight axioms are satisfied by our
choice of (V, 0V ,⊕,⊙). In this case, this is very easy3, since everything reduces
to addition and multiplication in the field F . As an example, let us spell out in
complete detail that the first distributive law (7) and the existence of negatives
(4) are satisfied. We leave the other properties as an exercise.

For the first distributive law (7), take x, y ∈ F n and write them as

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

Then we have

λ⊙ (x⊕ y) = λ⊙
(
(x1, x2, . . . , xn)⊕ (y1, y2, . . . , yn)

)
= λ⊙ (x1 + y1, x2 + y2, . . . , xn + yn)

=
(
λ(x1 + y1), λ(x2 + y2), . . . , λ(xn + yn)

)
= (λx1 + λy1, λx2 + λy2, . . . , λxn + λyn)

= (λx1, λx2, . . . , λxn)⊕ (λy1, λy2, . . . , λyn)

=
(
λ⊙ (x1, x2, . . . , xn)

)
⊕

(
λ⊙ (y1, y2, . . . , yn)

)
= (λ⊙ x)⊕ (λ⊙ y),

where the first three and the last three equalities follow from the definitions of
x, y and the operations ⊕ and ⊙; the middle equality follows from the fact that
for each i we have λ(xi+ yi) = λxi+ λyi by the distributive law for the field F .
This proves the first distributive law (7) for F n.

For the existence of negatives (4), take an element x ∈ F n and write it as
x = (x1, x2, . . . , xn). For each i with 1 ≤ i ≤ n, we can take the negative −xi
of xi in the field F , where we already know we can take negatives, and set

x′ = (−x1,−x2, . . . ,−xn).
Then, of course, we have

x⊕ x′ = (x1, x2, . . . , xn)⊕ (−x1,−x2, . . . ,−xn)
=

(
x1 + (−x1), x2 + (−x2), . . . , xn + (−xn)

)
= (0, 0, . . . , 0) = 0V ,

which proves, indeed, that for every x ∈ F n there is an x′ ∈ F n with x+x′ = 0V .

For n = 1, this example reduces to the previous one (if one identifies each
element x ∈ F with the 1-tuple (x)); for n = 0, it reduces to the zero space.
(Why? Well, like an empty product of numbers should have the value 1, an
empty product of sets like F 0 has exactly one element, the empty tuple (),
which we can call 0 here.)

In physics, more precisely in the theory of relativity, R4 is often interpreted as
space with a fourth coordinate for time.

3In fact, in Section 1.1 (where the fact that F was contained in R was actually never used)
we already claimed that all these properties follow directly from the fact that the operations are
defined coordinate-wise.
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Example 2.6. Let F∞ denote the set of all infinite sequences (an)n≥0 of ele-
ments in F . Similar to Example 2.5, we define the addition and scalar multi-
plication component-wise, so

(a0, a1, a2, . . .)⊕ (b0, b1, b2, . . .) = (a0 + b0, a1 + b1, a2 + b2, . . .)

and
λ⊙ (a0, a1, a2, . . .) = (λa0, λa1, λa2, . . .).

Together with the zero vector consisting of only zeros, this is again a vector
space, and checking that all eight axioms are satisfied is just as easy as in
Example 2.5.

Example 2.7. Suppose F = R. Amagic square is a square of 3×3 real numbers
such that the three column sums, the three row sums and the two diagonal sums
are all equal. An example is the following.

4 9 2

3 5 7

8 1 6

This magic square is well known, because it uses all integers from 1 to 9 exactly
once. Less interesting magic squares are

A =

1 1 1

1 1 1

1 1 1

, B =

-1 1 0

1 0 -1

0 -1 1

, and C =

0 1 -1

-1 0 1

1 -1 0

.

Note that if we multiply each of the nine numbers in a magic square X by the
same number λ, then we obtain a new square, which we denote by λ ⊙ X. If
all rows, columns, and diagonals of X add up to s, then those of λ⊙X all add
up to λ · s, so λ⊙X is a magic square as well. Moreover, if we have two magic
squares X and Y , then we can make a new magic square, which we will denote
by X ⊕ Y , by letting the top-left number in X ⊕ Y be the sum of the top-left
numbers in X and Y , et cetera; if the sums in X and Y are all s and all t,
respectively, then the sums of X ⊕ Y are all s + t. Check this, and verify that
((5⊙A)⊕B)⊕(3⊙C) equals the well-known magic square above. As mentioned
above, we will see that ⊕ and ⊙ behave as addition and scalar multiplication,
so we will also write this combination as 5A+B+3C. We leave it as an exercise
to show that the set of magic squares, together with this addition ⊕ and scalar
multiplication ⊙ is a vector space over R, with the square of all zeros as zero
vector.

Definition 2.8. For any two sets A and B, the set of all functions from A to B
is denoted by both Map(A,B) and BA.

Remark 2.9. Obviously, if f is a function from A to B and a is an element
of A, then f(a) is an element of B. In our notation, we will always be careful to
distinguish between the function f and the element f(a). For example, in the
case A = B = R, we will not say: “the function f(x) = x2.” Correct would be
“the function f that is given by f(x) = x2 for all x ∈ R.”



44 2. VECTOR SPACES

Example 2.10. Suppose F = R. Consider the set Map(R,R) of all functions
from R to R. The sum of two functions f, g ∈ Map(R,R) is the function f ⊕ g
that is given by

(f ⊕ g)(x) = f(x) + g(x)

for all x ∈ R. The scalar multiplication of a function f ∈ Map(R,R) by a factor
λ ∈ R is the function λ⊙ f that is given by

(λ⊙ f)(x) = λ · (f(x))
for all x ∈ R. Of course, this is just the usual addition and scaling of functions,
and soon we will use the usual notation f + g and λf again. The operations
obviously satisfy the eight axioms, but it is a good exercise to write this out in
detail. As an example, let us prove that the addition is associative.

Let f, g, h ∈ Map(R,R) be three functions. We want to show that p = (f⊕g)⊕h
and q = f⊕(g⊕h) are the same function. The two functions both have domain
and codomain R, so it suffices to prove that for all x ∈ R we have p(x) = q(x).
Indeed, for all x ∈ R we have

p(x) = ((f ⊕ g)⊕ h)(x) = (f ⊕ g)(x) + h(x) = (f(x) + g(x)) + h(x)

and

q(x) = (f ⊕ (g ⊕ h))(x) = f(x) + (g ⊕ h)(x) = f(x) + (g(x) + h(x)),

which implies p(x) = q(x), because addition in R is associative. We leave it
to the reader to finish the verification that Map(R,R) is indeed a vector space
over R, with the constant zero function that sends every x ∈ R to 0 ∈ R as
zero. (For the first distributive law, see Example 2.11, which generalises this
example.)

Example 2.11. This example generalises Example 2.10. Let X be a set.
Consider the set V = Map(X,F ) = FX of all maps (or functions) from X to F .
In order to get a vector space over F , we have to define addition and scalar
multiplication. To define addition, for every pair of functions f, g : X → F , we
have to define a new function f ⊕ g : X → F . The only reasonable way to do
this is point-wise:

(f ⊕ g)(x) = f(x) + g(x).

In a similar way, we define scalar multiplication:

(λ⊙ f)(x) = λ · f(x).
We take the zero vector 0V to be the constant zero function that sends each
element x ∈ X to 0 ∈ F . We then have to check the axioms in order to verify
that we really get a vector space. Let us do again the first distributive law as
an example. We have to check the identity λ ⊙ (f ⊕ g) = (λ ⊙ f) ⊕ (λ ⊙ g),
which means that for all x ∈ X, we want(

λ⊙ (f ⊕ g)
)
(x) = ((λ⊙ f)⊕ (λ⊙ g))(x) .
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So let λ ∈ F and f, g : X → F be given, and take any x ∈ X. Then we get(
λ⊙ (f ⊕ g)

)
(x) = λ ·

(
(f ⊕ g)(x)

)
= λ ·

(
f(x) + g(x)

)
= λ · f(x) + λ · g(x)
= (λ⊙ f)(x) + (λ⊙ g)(x)

=
(
(λ⊙ f)⊕ (λ⊙ g)

)
)(x) ,

where all equalities, except for the middle one, follow from the definitions of
the operators ⊕ and ⊙; the middle equality follows from the first distributive
law for F . We leave it to the reader to finish the verification that Map(X,F )
is indeed a vector space over F .

Remark 2.12. Note the parallelism of this proof with the one of Example 2.5.
That parallelism goes much further. If we take X to be I = {1, 2, . . . , n},
then the vector space F I = Map(I, F ) of maps from {1, 2, . . . , n} to F can be
identified with F n by letting such a map f correspond to the n-tuple

(f(1), f(2), . . . , f(n)).

Under this identification, the addition on F I corresponds with the addition
on F n, and the same is true for scalar multiplication. It is not a coincidence
that the notations F I and F n are chosen so similar! See also Proposition A.1.

Similarly, if we take X = Z≥0, then the vector space Map(Z≥0, F ) can be
identified with the vector space F∞ of Example 2.6 by letting a map f : Z≥0 → F
correspond to the sequence

( f(0), f(1), f(2), f(3), . . . ) .

Cf. Example C.3. Again, the addition and scalar multiplication on Map(Z≥0, F )
correspond with those on F∞.

What do we get when X is the empty set?

Example 2.13. A polynomial in the variable x over F is a formal sum

f = adx
d + ad−1x

d−1 + · · ·+ a2x
2 + a1x+ a0

of a finite number of scalar multiples of integral powers xi (with i ≥ 0); the
products aix

i are called the terms of f and we say that ai ∈ F is the coefficient
of the monomial xi in f . Here, we have used some intimidation, as we did not
explain what a variable is, nor a formal sum. Any feeling of discomfort caused
by this intimidation should be taken as a sign of good taste; a reader with this
feeling is encouraged to read Appendix D, and to match what is said there with
what we say in this example and the next.

We let the zero vector 0 be the zero polynomial: the polynomial of which all
coefficients are 0. The degree of a nonzero polynomial f =

∑d
i=0 aix

i with ad ̸= 0
is d. By definition, the degree of 0 equals −∞. Let F [x] denote the set of all
polynomials over F .

A real polynomial in the variable x is a polynomial in the variable x over R, so
R[x] denotes the set of all real polynomials in the variable x.

We define the addition of polynomials coefficientwise. In other words, we collect
equal powers of x, so that the sum of the polynomials

f = adx
d + · · ·+ a2x

2 + a1x+ a0 and g = bdx
d + · · ·+ b2x

2 + b1x+ b0
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in F [x] equals

f ⊕ g = (ad + bd)x
d + · · ·+ (a2 + b2)x

2 + (a1 + b1)x+ (a0 + b0).

The scalar multiplication of f by λ ∈ F is given by

λ⊙ f = λadx
d + · · ·+ λa2x

2 + λa1x+ λa0.

For example, the real polynomials

f = 3x5 + 2x4 − x2 +
√
5

and
g = −x4 + 7x3 + 3x2 −

√
2x+ 1

have degrees 5 and 4, respectively, and their sum is

f ⊕ g = 3x5 + x4 + 7x3 + 2x2 −
√
2x+ (1 +

√
5).

As before, we are merely using the notation ⊕ to distinguish it from the usual
addition of two real numbers, but we will soon write f + g for this sum again.

Anybody who can prove that the previous examples are vector spaces, will have
no problems showing that F [x] is a vector space as well.

Remark 2.14. We can multiply the polynomials f =
∑d

i=0 aix
i and g =

∑e
j=0 bjx

j

over F by expanding the product and using xi · xj = xi+j, which gives

f · g =
d+e∑
k=0

 ∑
i,j

i+j=k

aibj

xk.

However, this multiplication is not part of the vector space structure on F [x].

Moreover, we can also define the derivative f ′ of a polynomial f =
∑d

i=0 aix
i

by f ′ =
∑d

i=1 iaix
i−1. (††) Note that while this reminds us of the derivative in

analysis, we need to define this explicitly, as analysis does not make any sense
for some fields, such as F2.

Example 2.15. (††) There are other examples that may appear stranger.
Let X be any set, and let V be the set of all subsets of X. (For example,
if X = {a, b}, then V has the four elements ∅, {a}, {b}, {a, b}.) We define
addition on V as the symmetric difference: A⊕B = (A \B)∪ (B \A) (this is
the set of elements of X that are in exactly one of A and B). We define scalar
multiplication by elements of F2 in the only possible way: 0⊙A = ∅, 1⊙A = A.
These operations turn V into an F2-vector space, with the empty set as zero.

To prove this assertion, we can check the vector space axioms (this is an in-
structive exercise). An alternative (and perhaps more elegant) way is to note
that subsets of X correspond to maps X → F2 (a map f corresponds to the
subset {x ∈ X : f(x) = 1}) — there is a bijection between V and FX2 — and
this correspondence translates the addition and scalar multiplication we have
defined on V into those we had defined on FX2 in Example 2.11.

Exercises

2.2.1. Show that the set of magic squares, together with the addition and scalar
multiplication defined in Example 2.7, is a real vector space.
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2.2.2. Let A,B,C be the magic squares as in Example 2.7. Prove that for each 3×3
magic square X, there are real numbers λ, µ, ν such that X = λA+ µB + νC.

*2.2.3. Let n ≥ 1 be an integer.
(1) Show that there exists a finite number of n×n ‘basic’ magic squares, such

that every n × n magic square is a sum of scalar multiples of these basic
magic squares.

(2) How many basic squares do you need for n = 4?
(3) How many do you need for general n?

2.2.4. In Example 2.5, the first distributive law and the existence of negatives were
proved for Fn. Show that the other six axioms for vector spaces hold for Fn

as well, so that Fn is indeed a vector space over F .

2.2.5. Let X be the set of all your family members. We define two functions f, g
from X to R (see Example 2.11). For every family member x, we let f(x) be
the year in which x was born, and we let g(x) be the age of x (in years) today.
Is the function f ⊕ g constant?

2.2.6. Finish the proof of the fact that Map(R,R) is a vector space (see Exam-
ple 2.10).

2.2.7. In Example 2.11, the first distributive law was proved for FX . Show that the
other seven axioms for vector spaces hold for FX as well, so that FX is indeed
a vector space over F .

2.2.8. Prove that the set F [x] of polynomials over F , together with addition, scalar
multiplication, and the zero as defined in Example 2.13 is a vector space.

2.2.9. Given the field F and the set V in the following cases, together with the
implicit element 0, are the described addition and scalar multiplication well
defined, and if so, do they determine a vector space? If they are well defined,
but they do not determine a vector space, then which rule is not satisfied?
(1) The field F = R and the set V of all functions [0, 1] → R>0, together with

the usual addition and scalar multiplication.
(2) (††) Example 2.15.
(3) The field F = Q and the set V = R with the usual addition and multipli-

cation.
(4) The field R and the set V of all functions f : R → R with f(3) = 0,

together with the usual addition and scalar multiplication.
(5) The field R and the set V of all functions f : R → R with f(3) = 1,

together with the usual addition and scalar multiplication.
(6) Any field F together with the subset

{(x, y, z) ∈ F 3 : x+ 2y − z = 0},

with coordinatewise addition and scalar multiplication.
(7) The field F = R together with the subset

{(x, y, z) ∈ R3 : x− z = 1},

with coordinatewise addition and scalar multiplication.

2.2.10. Let a ∈ Rn be a vector. Show that the set a⊥ is a vector space.

2.2.11. (††) Suppose the set X contains exactly n elements. Then how many elements
does the vector space FX2 of functions X → F2 consist of?

2.2.12. We can generalise Example 2.11 further. Let V be a vector space over F . Let
X be any set and let V X = Map(X,V ) be the set of all functions f : X → V .
Define an addition and scalar multiplication on V X that makes it into a vector
space.

2.2.13. Let V be a vector space over F , and Map(V, V ) the vector space of all functions
from V to itself (see Exercise 2.2.12). Let idV denote the identity map on V .
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For every p ∈ V , we let cp : V → V denote the constant map that sends every
v ∈ V to p, and we write Tp = idV +cp.
(1) Show that for every v ∈ V , we have Tp(v) = v + p.

[This is why we call Tp ‘translation by p’.]
(2) Show that for every p, q ∈ V , the composition Tq ◦ Tp equals Tp+q.
(3) Show that Tp is a bijection, with inverse T−p.

2.2.14. Let R∞ be the vector space of Example 2.6 with F = R. Let S ⊂ R∞ be the
subset of all infinite sequences (an)n≥0 of real numbers satisfying the recurrence
relation

an+2 = an+1 + an for all n ≥ 0.

An example of an element in S is the sequence

(a0, a1, a2, a3, a4, a5, a6, a7, . . .) = (0, 1, 1, 2, 3, 5, 8, 13, . . .)

of Fibonacci numbers. Show that the (term-wise) sum of two sequences from S
is again in S and that any (term-wise) scalar multiple of a sequence from S is
again in S. Finally show that S (with this addition and scalar multiplication)
is a real vector space.

2.2.15. Let U and V be vector spaces over the same field F . Consider the Cartesian
product

W = U × V = { (u, v) : u ∈ U, v ∈ V }.
Define an addition and scalar multiplication on W that makes it into a vector
space.

2.2.16. Set V = R≥0, the set of non-negative real numbers. Define the operation ⊕
on V by x ⊕ y = max(x, y) for all x, y ∈ V , and define a scalar multiplication
by λ ⊙ x = x for all λ ∈ R and x ∈ V . Is V , together with these operations,
and the element 0 ∈ V , a vector space?

*2.2.17. For each of the eight axioms in Definition 2.1, try to find a system (V, 0,+, ·)
that does not satisfy that axiom, while it does satisfy the other seven.

2.3. Basic properties

Before we can continue, we have to deal with a few little things. The fact that we
talk about ‘addition’ and (scalar) ‘multiplication’ might tempt us to use more of
the rules that hold for the traditional addition and multiplication than just the
eight axioms given in Definition 2.1. We will show that many such rules do indeed
follow from the basic eight. The first is a cancellation rule.

Lemma 2.16. If three elements x, y, z of a vector space V satisfy x⊕ z = y ⊕ z,
then we have x = y.

Proof. Suppose x, y, z ∈ V satisfy x⊕z = y⊕z. By axiom (4) there is a z′ ∈ V
with z ⊕ z′ = 0. Using such z′ we get

x = x⊕ 0 = x⊕ (z⊕ z′) = (x⊕ z)⊕ z′ = (y⊕ z)⊕ z′ = y⊕ (z⊕ z′) = y⊕ 0 = y,

where we use axioms (3), (2), (2), and (3) for the first, third, fifth, and seventh
equality respectively. So x = y. □

It follows immediately that a vector space has only one zero element, as stated in
the next remark.

Proposition 2.17. In a vector space V , there is only one zero element: if two
elements 0′ ∈ V and z ∈ V satisfy 0′ ⊕ z = z, then 0′ = 0.
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Proof. Exercise. □

Because of Proposition 2.17, we often leave the zero vector implicit when defining
a specific vector space. For instance, in Example 2.7 we could have just defined
the addition and scalar multiplication of magic squares; for this to be a vector
space, the only choice for the zero is the magic square consisting of only zeros.

Proposition 2.18. In any vector space V , there is a unique negative for each
element.

Proof. The way to show that there is only one element with a given property
is to assume there are two and then to show they are equal. Take x ∈ V and
assume that a, b ∈ V are both negatives of x, that is, x⊕ a = 0 and x⊕ b = 0.
Then by commutativity we have

a⊕ x = x⊕ a = 0 = x⊕ b = b⊕ x,

so a = b by Lemma 2.16. □

Notation 2.19. Since negatives are unique, given x ∈ V we may write −x for the
unique element that satisfies x⊕ (−x) = 0. Now we can also define a subtraction:
we write x⊖ y for x⊕ (−y).

Note that if F is contained in R, then the subtraction on F n that we just got for
free, coincides with the subtraction that we defined in Section 1.1.

Here are some more harmless facts.

Proposition 2.20. Let (V, 0V ,⊕,⊙) be a vector space over F .

(1) For all x ∈ V , we have 0⊙ x = 0V .

(2) For all x ∈ V , we have (−1)⊙ x = −x.
(3) For all λ ∈ F , we have λ⊙ 0V = 0V .

(4) We have −0V = 0V .

(5) For all λ ∈ F and x ∈ V such that λ⊙x = 0V , we have λ = 0 or x = 0V .

(6) For all λ ∈ F and x ∈ V , we have −(λ⊙ x) = λ⊙ (−x) = (−λ)⊙ x.

(7) For all x, y, z ∈ V , we have z = x⊖ y if and only if x = y ⊕ z.

Proof. We prove (1), (2), and (5), and leave the rest as an exercise.

(1) We have

(0⊙ x)⊕ 0V = 0⊙ x = (0 + 0)⊙ x = (0⊙ x)⊕ (0⊙ x)

with the equalities following from axiom (3), the fact that 0 = 0 + 0
in F , and axiom (8), respectively. The Cancellation Lemma 2.16 im-
plies 0V = 0⊙ x.

(2) It suffices to show that (−1)⊙ x satisfies the property that defines −x
uniquely, that is, it suffices to show x⊕ ((−1)⊙ x) = 0V . This follows
from axioms (6) and (8), and property (1) of this proposition:

x⊕ ((−1)⊙ x) = (1⊙ x)⊕ ((−1)⊙ x) = (1 + (−1))⊙ x = 0⊙ x = 0V .

(5) Suppose λ ∈ F and x ∈ V satisfy λ ⊙ x = 0V . If λ = 0, then we are
done, so we assume λ ̸= 0 without loss of generality. Then λ has a
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multiplicative inverse λ−1 in the field F . We find

x = 1⊙ x = (λ−1 · λ)⊙ x = λ−1 ⊙ (λ⊙ x) = λ−1 ⊙ 0V = 0V ,

where the equalities following from axiom (6), the fact that λ−1 ·λ = 1
in F , axiom (5), the hypothesis λ ⊙ x = 0V , and property (3) of this
proposition, respectively.

□

The axioms of Definition 2.1 and the properties that we just proved, show that
the addition, scalar multiplication, and subtraction in a vector space behave just
like the usual addition, multiplication, and subtraction, as long as we remember
that the scalar multiplication is a multiplication of a scalar with a vector,
and not of two vectors! Therefore, from now on, we will just use the usual
notation: instead of x⊕ y and x⊖ y we write x+ y and x− y, and instead of λ⊙x
we write λ · x or even λx.

From the context it should always be clear what the symbols mean. Suppose, for
example, that V is a general vector space over F . If x is an element of V , and we
see the equality

0 · x = 0,

then we know that the dot does not indicate the multiplication in F , so it stands
for the scalar multiplication of V . Therefore, the first zero is the zero element
of F . The scaled multiple 0 · x is an element of V , so the second zero is the zero
element of V .

As usual, and as in Section 1.1, scalar multiplication takes priority over addition
and subtraction, so when we write λx ± µy with λ, µ ∈ F and x, y ∈ V , we
mean (λx) ± (µy). Also as usual, when we have t vectors x1, x2, . . . , xt ∈ V , the
expression x1±x2±x3±· · ·±xt should be read from left to right, so it stands for

(. . . ((︸ ︷︷ ︸
t−2

x1 ± x2)± x3)± · · · )± xt.

If all the signs in the expression are positive (+), then any other way of putting
the parentheses would yield the same by the fact that the addition is associative
(axiom (2)). The sum of t vectors x1, . . . , xt is x1 + x2 + · · ·+ xt.

Exercises

2.3.1. Prove Proposition 2.17.

2.3.2. Finish the proof of Proposition 2.20.

2.3.3. Is the following statement correct? “Axiom (4) of Definition 2.1 is redundant
because we already know by Proposition 2.20(2) that for each vector x ∈ V the
vector −x = (−1)⊙ x is also contained in V .”

2.3.4. Let (V, 0V ,⊕,⊙) be a real vector space and define x⊖ y = x⊕ (−y), as usual.
Which of the vector space axioms are satisfied and which are not (in general),
for (V, 0V ,⊖,⊙)? Note. You are expected to give proofs for the axioms that
hold and to give counterexamples for those that do not hold.
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Subspaces

Recall that F is a field (see the beginning of Chapter 2).

3.1. Definition and examples

In many applications, we do not want to consider all elements of a given vector
space V , but only the elements of a certain subset. Usually, it is desirable that
this subset is again a vector space (with the addition and scalar multiplication it
‘inherits’ from V ). In order for this to be possible, a minimal requirement certainly
is that addition and scalar multiplication make sense on the subset. Also, the zero
vector of V has to be contained in U . (Can you explain why the zero vector of V
is forced to be the zero vector in U?)

Definition 3.1. Let V be an F -vector space. A subset U ⊂ V is called a vector
subspace or linear subspace of V if it has the following properties.

(1) 0 ∈ U .

(2) If u1, u2 ∈ U , then u1 + u2 ∈ U (‘U is closed under addition’).

(3) If λ ∈ F and u ∈ U , then λu ∈ U (‘U is closed under scalar multiplica-
tion’).

Here the addition and scalar multiplication are those of V . Often we will just say
subspace without the words linear or vector.

Note that, given the third property, the first is equivalent to saying that U is
non-empty. Indeed, let u ∈ U , then by (3), we have 0 = 0 · u ∈ U . Note that here
the first 0 denotes the zero vector, while the second 0 denotes the scalar 0.

We should justify the name ‘subspace’.

Lemma 3.2. Let (V,+, ·, 0) be an F -vector space. If U ⊂ V is a linear subspace
of V , then (U,+, ·, 0) is again an F -vector space1.

Proof. By definition of what a linear subspace is, we really have well-defined
addition and scalar multiplication maps on U . It remains to check the axioms.

For the axioms that state ‘for all . . . , . . . ’ and do not involve any existence

statements, this is clear, since they hold (by assumption) even for all elements
of V , so certainly for all elements of U . This covers all axioms but axiom (4).
For axiom (4), we need that for all u ∈ U there is an element u′ ∈ U with
u + u′ = 0. In the vector space V there is a unique such an element, namely
u′ = −u = (−1)u (see Proposition 2.18, Notation 2.19, and Proposition 2.20).

1The operators + and · for V are functions from V × V and F × V , respectively, to V . The
operators for U , also denoted by + and ·, are strictly speaking the restrictions +|U×U and ·|F×U

to U ×U and F ×U of these operators for V , with the codomain restricted from V to U as well.
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This element u′ = −u is contained in U by the third property of linear subspaces
(take λ = −1 ∈ F ). □

It is time for some examples.

Example 3.3. Let V be a vector space. Then {0} ⊂ V and V itself are linear
subspaces of V .

Example 3.4. Let V ⊂ R3 be the set of all triples (x1, x2, x3) satisfying
x1 + x2 + x3 = 0. Clearly the zero vector 0 ∈ R3 is contained in V . Suppose we
have elements x, y ∈ V and write them as x = (x1, x2, x3) and y = (y1, y2, y3).
Then by definition of V we have x1 + x2 + x3 = 0 = y1 + y2 + y3. Hence, if
we write the sum z = x + y as z = (z1, z2, z3), then we have zi = xi + yi for
i ∈ {1, 2, 3}, so we get

z1+z2+z3 = (x1+y1)+(x2+y2)+(x3+y3) = (x1+x2+x3)+(y1+y2+y3) = 0+0 = 0.

This implies that z = x + y is also contained in V . We leave it as an exercise
to show that for any λ ∈ R and any x ∈ V , we also have λx ∈ V . This means
that the subset V ⊂ R3 satisfies all three requirements for being a subspace, so
V is a linear subspace of R3. In Section 3.2 we will generalise this example.

Example 3.5. Consider V = R2 and, for b ∈ R, set
Ub = {(x, y) ∈ R2 : x+ y = b}.

For which b is Ub a linear subspace?

We check the first condition. We have 0 = (0, 0) ∈ Ub if and only if 0 + 0 = b,
so Ub can only be a linear subspace when b = 0. The question remains whether
Ub is indeed a subspace for b = 0. Let us check the other properties for U0.

If we have (x1, y1), (x2, y2) ∈ U0, then x1 + y1 = 0 and x2 + y2 = 0, so
(x1+x2)+(y1+y2) = 0. This implies (x1, y1)+(x2, y2) = (x1+x2, y1+y2) ∈ U0.
This shows that U0 is closed under addition.

For each λ ∈ R and (x, y) ∈ U0, we have x+ y = 0, so λx+ λy = λ(x+ y) = 0.
This implies λ(x, y) = (λx, λy) ∈ U0. This shows that U0 is also closed under
scalar multiplication. We conclude that U0 is indeed a subspace.

The following example is a generalisation of Example 3.5. The scalar product and
Proposition 1.4 allow us to write everything much more efficiently.

Example 3.6. Given a nonzero vector a ∈ R2 and a constant b ∈ R, let L ⊂ R2

be the line consisting of all points v ∈ R2 satisfying ⟨a, v⟩ = b. We wonder when
L is a subspace of R2. The requirement 0 ∈ L forces b = 0.

Conversely, assume b = 0. Then for two elements v, w ∈ L we have

⟨a, v + w⟩ = ⟨a, v⟩+ ⟨a, w⟩ = 2b = 0,

so v + w ∈ L. Similarly, for any λ ∈ R and v ∈ L, we have

⟨a, λv⟩ = λ⟨a, v⟩ = λ · b = 0.

So L is a subspace if and only if b = 0.

Example 3.7. Let X be a set, and x ∈ X an element. Consider the subset

Ux = {f ∈ FX : f(x) = 0}
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of the vector space FX = Map(X,F ). Clearly the zero function 0 is con-
tained in Ux, as we have 0(x) = 0. For any two functions f, g ∈ Ux we have
f(x) = g(x) = 0, so also (f+g)(x) = f(x)+g(x) = 0, which implies f+g ∈ Ux.
For any λ ∈ F and any f ∈ Ux we have (λf)(x) = λ ·f(x) = λ ·0 = 0, which im-
plies λf ∈ Ux. We conclude that Ux is a subspace of the vector space Map(X,F )
over F .

Example 3.8. Consider Map(R,R) = RR, the set of real-valued functions on R.
You will learn in Analysis that if f and g are continuous functions, then f + g
is again continuous, and λf is continuous for any λ ∈ R. Of course, the zero
function x 7→ 0 is continuous as well. Hence, the set of all continuous functions

C(R) = {f ∈ Map(R,R) : f is continuous}
is a linear subspace of Map(R,R).
Similarly, you will learn that sums and scalar multiples of differentiable func-
tions are again differentiable. Also, derivatives respect sums and scalar multi-
plication: (f + g)′ = f ′ + g′, (λf)′ = λf ′. From this, we conclude that

Cn(R) = {f ∈ Map(R,R) : f is n times differentiable and f (n) is continuous}
is again a linear subspace of Map(R,R).
In a different direction, consider the set of all periodic functions with period 1:

U = {f ∈ Map(R,R) : f(x+ 1) = f(x) for all x ∈ R} .
The zero function is certainly periodic. If f and g are periodic, then

(f + g)(x+ 1) = f(x+ 1) + g(x+ 1) = f(x) + g(x) = (f + g)(x) ,

so f + g is again periodic. Similarly, λf is periodic (for λ ∈ R). So U is a linear
subspace of Map(R,R).

Exercises

3.1.1. Let V ⊂ R3 be the set of all triples (x1, x2, x3) satisfying x1 + 2x2 − 3x3 = 0.
Show that V is a linear subspace of R3.

3.1.2. Let U ⊂ R3 be the set of all triples (x1, x2, x3) satisfying x1 + 2x2 − 3x3 = 1.
Is U a linear subspace of R3?

3.1.3. Let W be the set of all 3× 3 magic squares whose row, column, and diagonal
sums are all equal to 0. Is W a vector space?

3.1.4. Given an integer d ≥ 0, let R[x]d denote the set of real polynomials of degree
at most d. Show that the addition of two polynomials f, g ∈ R[x]d satisfies
f + g ∈ R[x]d. Show also that any scalar multiple of a polynomial f ∈ R[x]d is
contained in R[x]d. Prove that R[x]d is a vector space.

3.1.5. Let X be a set with elements x1, x2 ∈ X. Show that the set

U = { f ∈ FX : f(x1) = 2f(x2) }
is a subspace of FX .

3.1.6. Let X be the interval [0, 1] ⊂ R. Is the set

U = { f ∈ Map(X,R) : f(0) = f(1)2 }
a subspace of Map(X,R)?

3.1.7. Which of the following are linear subspaces of the vector space R2?
(1) U1 = {(x, y) ∈ R2 : y = −

√
eπx},

(2) U2 = {(x, y) ∈ R2 : y = x2},
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(3) U3 = {(x, y) ∈ R2 : xy = 0}.
3.1.8. Which of the following are linear subspaces of the vector space V of all func-

tions from R to R?
(1) U1 = {f ∈ V : f is continuous}
(2) U2 = {f ∈ V : f(3) = 0}
(3) U3 = {f ∈ V : f is continuous or f(3) = 0}
(4) U4 = {f ∈ V : f is continuous and f(3) = 0}
(5) U5 = {f ∈ V : f(0) = 3}
(6) U6 = {f ∈ V : f(0) ≥ 0}

3.1.9. Let X be a set.
(1) Show that the set F (X) of all functions f : X → F that satisfy f(x) = 0

for all but finitely many x ∈ X is a subspace of the vector space FX .
(2) More generally, let V be a vector space over F . Show that the set V (X)

of all functions f : X → V that satisfy f(x) = 0 for all but finitely many
x ∈ X is a subspace of the vector space V X (cf. Exercise 2.2.12).

3.1.10. Let X be a set.
(1) Let U ⊂ FX be the subset of all functions X → F whose image is finite.

Show that U is a subspace of FX that contains F (X) of Exercise 3.1.9.
(2) More generally, let V be a vector space over F . Show that the set of all

functions f : X → V with finite image is a subspace of the vector space
V X that contains V (X) of Exercise 3.1.9.

3.2. The standard scalar product (again)

In Section 1.3 we defined the (standard) scalar product2 for fields that are con-
tained in R. That section actually never used the fact that the field was contained
in R, so we can quickly restate the definitions and results in the generality that
we are working in now3. For this section, we let n be a non-negative integer.

Definition 3.9. For any two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
in F n we define the standard scalar product of x and y as

⟨x, y⟩ = x1y1 + x2y2 + · · ·+ xnyn.

As mentioned in Section 1.3, we will often leave out the word ‘standard’, and the
scalar product may, in other books, be called the dot product, in which case it may
get denoted by x · y. Some books may call it the (standard) inner product for any
field, but we will only use that phrase for fields contained in R.

Example 3.10. (††) Suppose we have z = (1, 0, 1, 1, 0, 1, 0) in F7
2. Then we get

⟨z, z⟩ = 1 · 1 + 0 · 0 + 1 · 1 + 1 · 1 + 0 · 0 + 1 · 1 + 0 · 0
= 1 + 0 + 1 + 1 + 0 + 1 + 0 = 0.

2See footnote 1 on page 9.
3For those readers that are assuming that F is contained in R (see the beginning of Chap-

ter 2), the only things new in this section are Proposition 3.14 and the identity (3.1).



3.2. THE STANDARD SCALAR PRODUCT (AGAIN) 55

Proposition 3.11. Let λ ∈ F be a scalar and let x, y, z ∈ F n be elements. Then
the following identities hold.

(1) ⟨x, y⟩ = ⟨y, x⟩,
(2) ⟨λx, y⟩ = λ · ⟨x, y⟩ = ⟨x, λy⟩,
(3) ⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩.
(4) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩.
(5) ⟨x, y − z⟩ = ⟨x, y⟩ − ⟨x, z⟩.
(6) ⟨x− y, z⟩ = ⟨x, z⟩ − ⟨y, z⟩.

Proof. See Proposition 1.4 for the first three identities. The last three follow
from the first three. □

We also generalise the notion of hyperplanes and lines to general fields.

Definition 3.12. A hyperplane in F n is a subset H ⊂ F n for which there exist a
nonzero vector a ∈ F n and a constant b ∈ F with

H = { v ∈ F n : ⟨a, v⟩ = b }.

Definition 3.13. A line in F n is a subset L ⊂ F n for which there exist vectors
a, v ∈ F n with v nonzero and with

L = { a+ λv : λ ∈ F }.

In Exercise 3.2.4 we will see when two hyperplanes or two lines are equal.

Proposition 3.14. Let W ⊂ F n be a line or a hyperplane. Then W is a subspace
if and only if it contains the element 0.

Proof. Exercise. □

Inspired by Chapter 1, we define the notion of orthogonality to general fields, even
though for fields that are not contained in R, it has nothing to do with any angle
being 90 degrees (see Definition 1.21 and Warning 3.17).

Definition 3.15. We say that two vectors v, w ∈ F n are orthogonal 4 to each
other when ⟨v, w⟩ = 0; we then write v ⊥ w.

Of course, now we also generalise the notation S⊥ of Definition 1.24 to general
fields.

Definition 3.16. For any subset S ⊂ F n, we let S⊥ denote the set of those
elements of F n that are orthogonal to all elements of S, that is,

S⊥ = {x ∈ F n : ⟨s, x⟩ = 0 for all s ∈ S }.
For every element a ∈ F n we define a⊥ as {a}⊥.

If a ∈ F n is nonzero, then a⊥ is a hyperplane containing 0. By definition, the set
S⊥ is the intersection of all subspaces a⊥ with a ∈ S, that is,

(3.1) S⊥ =
⋂
a∈S

a⊥.

4We reserve the word “perpendicular” for fields that are contained in R.
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This description will be used in the next section to show that S⊥ is a linear
subspace of F n for any S ⊂ F n, though it is also a nice exercise to prove this
directly.

Warning 3.17. (†) Proposition 1.14 states that the only vector in Rn that is
orthogonal to itself is 0. Over other fields, however, we may have ⟨v, v⟩ = 0 for
nonzero v. For instance, the vector a = (1, i) ∈ C2 satisfies ⟨a, a⟩ = 0. The fact
that a is orthogonal to itself, means that a is contained in the hyperplane a⊥! (††)
Also the vectors w = (1, 1) ∈ F2

2 and z ∈ F7
2 of Example 3.10 are orthogonal to

themselves.

Exercises

3.2.1. Prove that for any two distinct points p, q ∈ Fn, there is a unique line that
contains both (cf. Proposition 1.12).

3.2.2. Let S ⊂ Fn be a subset. Prove that S⊥ is a linear subspace (cf. Lemma 1.25).

3.2.3. Prove Proposition 3.14.

3.2.4. (1) Let a, a′ ∈ Fn be two nonzero vectors and b, b′ ∈ F two constants. Show
that the hyperplanes

Ha,b = { v ∈ Fn : ⟨a, v⟩ = b } and Ha′,b′ = { v ∈ Fn : ⟨a′, v⟩ = b′ }
are equal if and only if there exists a nonzero λ ∈ F such that a′ = λa
and b′ = λb.

(2) Let a, a′, v, v′ ∈ Fn be vectors with v, v′ nonzero. Show that the lines

La,v = { a+ λv : λ ∈ F } and La′,v′ = { a′ + λv′ : λ ∈ F }
are equal if and only if we have a′ ∈ L and there exists a nonzero λ ∈ F
such that v′ = λv.

3.2.5. Let a1, . . . , at ∈ Fn be vectors and b1, . . . , bt ∈ F constants. Let V ⊂ Fn be
the subset

V = {x ∈ Fn : ⟨a1, x⟩ = b1, . . . , ⟨at, x⟩ = bt}.
Show that with the same addition and scalar multiplication as Fn, the set V
is a vector space if and only if b1 = . . . = bt = 0.

3.3. Intersections

The following result can be used, for example, to show that, with U and C(R) as
in Example 3.8, the intersection U ∩C(R) of all continuous periodic functions from
R to R is again a linear subspace.

Lemma 3.18. Let V be an F -vector space, and U1, U2 ⊂ V linear subspaces of V .
Then the intersection U1 ∩ U2 is again a linear subspace of V .
More generally, if (Ui)i∈I (with I ̸= ∅) is any family of linear subspaces of V , then
their intersection U =

⋂
i∈I Ui is again a linear subspace of V .

Proof. It is sufficient to prove the second statement (take I = {1, 2} to obtain
the first). We check the conditions.

(1) By assumption 0 ∈ Ui for all i ∈ I. So 0 ∈ U .

(2) Let x, y ∈ U . Then x, y ∈ Ui for all i ∈ I. Hence (since Ui is a subspace
by assumption) x+ y ∈ Ui for all i ∈ I. But this means x+ y ∈ U .
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(3) Let λ ∈ F , x ∈ U . Then x ∈ Ui for all i ∈ I. Hence (since Ui is
a subspace by assumption) λx ∈ Ui for all i ∈ I. This means that
λx ∈ U .

We conclude that U is indeed a linear subspace. □

Example 3.19. Consider the subspace C2(R) ⊂ Map(R,R) of all functions f
from R to R that are twice differentiable and for which the second derivative
f ′′ is continuous (see Example 3.8). Consider the sets

U = {f ∈ C2(R) : f ′′ = −f}
and

V = {f ∈ Map(R,R) : f(0) = 0}.
Since derivatives respect addition, we find that for all functions f, g ∈ U we
have

(f + g)′′ = f ′′ + g′′ = (−f) + (−g) = −(f + g),

so we obtain f + g ∈ U . Similarly, for any λ ∈ R and f ∈ U , we have λf ∈ U .
Since we also have 0 ∈ U , we find that the set U of solutions to the differential
equation f ′′ = −f is a subspace of C2(R). It contains, for example, the functions
sine, cosine, and their sum. By Example 3.7, the set V is also a linear subspace,
so by Lemma 3.18, the intersection U∩V is also a linear subspace of Map(R,R).
It is the set of solutions to the system of functional equations

f ′′ = −f and f(0) = 0.

The following proposition is a generalisation of Lemma 1.25 to all fields.

Proposition 3.20. Let n be a non-negative integer, and S ⊂ F n a subset. Then
S⊥ is a linear subspace of F n.

Proof. We use the identity (3.1). For each a ∈ S, the hyperplane a⊥ ⊂ F n

contains 0, so it is a subspace by Proposition 3.14. By Lemma 3.18 (with the
index set I equal to S), the intersection

⋂
a∈S a

⊥ is also a linear subspace. This
intersection equals S⊥ by (3.1). □

Note that in general, if U1 and U2 are linear subspaces, then the union U1 ∪ U2

is not (it is if and only if one of the two subspaces is contained in the other —
exercise!).

Example 3.21. Consider the subspaces

U1 = {(x, 0) ∈ R2 : x ∈ R}, U2 = {(0, x) ∈ R2 : x ∈ R}.
The union U = U1 ∪ U2 is not a subspace because the elements u1 = (1, 0) and
u2 = (0, 1) are both contained in U , but their sum u1 + u2 = (1, 1) is not.

Exercises

3.3.1. Suppose that U1 and U2 are linear subspaces of a vector space V . Show that
U1 ∪ U2 is a subspace of V if and only if U1 ⊂ U2 or U2 ⊂ U1.

3.3.2. Let H1, H2, H3 be hyperplanes in R3 given by the equations

⟨(1, 0, 1), v⟩ = 2, ⟨(−1, 2, 1), v⟩ = 0, ⟨(1, 1, 1), v⟩ = 3,

respectively.
(1) Which of these hyperplanes is a subspace of R3?
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(2) Show that the intersection H1 ∩H2 ∩H3 contains exactly one element.

3.3.3. Give an example of a vector space V with two subsets U1 and U2, such that
U1 and U2 are not subspaces of V , but their intersection U1 ∩ U2 is.

3.3.4. Let n be a positive integer and letM denote the set of all magic n×n squares,
that is, squares of n× n real numbers of which the n row sums, the n column
sums, and the two diagonal sums are all equal. Let P denote the set of all n2

positions in an n× n square.
(1) Show that M is a vector space over R with the position-wise addition and

scalar multiplication.
(2) Suppose p ∈ P is a position. Show that the set of magic squares with a 0

on position p is a subspace of M .
(3) Suppose S ⊂ P is a subset. Show that the set of magic squares with a 0

on position p for each p ∈ S, is a subspace of M .

3.4. Linear hulls, linear combinations, and generators

Given a set S of vectors in a vector space V , we want to understand the smallest
subspace of V that contains S. Let us look at a specific case first.

Example 3.22. Let V be a vector space over F , and let v1, v2 ∈ V be two
vectors. Suppose that W is any subspace of V that contains v1 and v2.
According to the definition of linear subspaces, all scalar multiples of v1 and v2,
and sums thereof are contained in W as well. This implies that every element
of the form λ1v1 + λ2v2, with λ1, λ2 ∈ F , is contained in W . So for the set

U = {λ1v1 + λ2v2 : λ1, λ2 ∈ F}
we have U ⊂ W . On the other hand, U is itself a linear subspace:

(1) 0 = 0 · v1 + 0 · v2 ∈ U ,
(2) (λ1v1 + λ2v2) + (µ1v1 + µ2v2) = (λ1 + µ1)v1 + (λ2 + µ2)v2 ∈ U ,
(3) λ(λ1v1 + λ2v2) = (λλ1)v1 + (λλ2)v2 ∈ U .

(Exercise: which of the vector space axioms have we used where?)
Therefore, U is the smallest linear subspace of V containing v1 and v2 in the
following sense: U is a subspace containing v1 and v2, and every subspace
W ⊂ V containing v1 and v2 contains U .

This observation generalises.

Definition 3.23. Let V be an F -vector space with t elements v1, v2, . . . , vt ∈ V.
The linear combination (or, more precisely, F -linear combination) of v1, v2, . . . , vt
with coefficients λ1, λ2, . . . , λt ∈ F is the element

v = λ1v1 + λ2v2 + · · ·+ λtvt.

If t = 0, then the only linear combination of no vectors is (by definition) 0 ∈ V .
If S ⊂ V is any (possibly infinite) subset, then an (F -)linear combination of S is
a linear combination of finitely many elements of S.

Definition 3.24. Let V be a vector space over F . If S is a subset of V , then
L(S) is the set of all linear combinations on S. If we want to indicate the field F
of scalars, we write LF (S). For finitely many elements v1, v2, . . . , vt ∈ V , we also
write L(v1, v2, . . . , vt) instead of L({v1, v2, . . . , vt}).
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Remark 3.25. The set L(v1, v2, . . . , vt) is defined as the set of all linear com-
binations on the set S = {v1, v2, . . . , vt}. It is true that this equals the set of all
linear combinations of v1, v2, . . . , vt, but this relies on two subtleties. First of
all, if some of the t vectors are equal, then the set S has fewer than t elements.
Nonetheless, a linear combination of v1, v2, . . . , vt is still a linear combination on
S, as we can combine terms: if vi = vj, then λivi + λjvj = (λi + λj)vi. Second,
the converse is also true. A linear combination on S may a priori not use all
t vectors, but it is still also a linear combination of all v1, v2, . . . , vt, as we can
just add coefficients zero for the vectors that were not used.

The linear combinations of one vector a ∈ V are exactly its scalar multiples, so
L(a) is the set {λa : λ ∈ F} of all scalar multiples of a. Note that this is consistent
with Notation 1.13.

Proposition 3.26. Let V be a vector space with t elements v1, v2, . . . , vt ∈ V.
Then the set L(v1, v2, . . . , vt) is a linear subspace of V. More generally, let S ⊂ V
be a subset. Then L(S) is a linear subspace of V.

Proof. We start with the first statement. Write U = L(v1, v2, . . . , vt). First of
all, we have 0 ∈ U , since 0 = 0v1 + 0v2 + · · ·+ 0vt (this even works for t = 0).
To check that U is closed under addition, let v = λ1v1 + λ2v2 + · · ·+ λtvt and
w = µ1v1 + µ2v2 + · · ·+ µtvt be two elements of U . Then

v + w = (λ1v1 + λ2v2 + · · ·+ λtvt) + (µ1v1 + µ2v2 + · · ·+ µtvt)

= (λ1 + µ1)v1 + (λ2 + µ2)v2 + · · ·+ (λt + µt)vt

is again a linear combination of v1, v2, . . . , vt, so v + w ∈ U . Also, for λ ∈ F ,
the element

λv = λ(λ1v1 + λ2v2 + · · ·+ λtvt)

= (λλ1)v1 + (λλ2)v2 + · · ·+ (λλt)vt

is a linear combination of v1, v2, . . . , vt, so λv ∈ U . We conclude that U is
indeed a linear subspace of V .

For the general case, the only possible problem is with checking that the set
of linear combinations on S is closed under addition, because two linear com-
binations might not be linear combinations of the same elements. For this, we
observe that if v is a linear combination on the finite subset I of S and w is a
linear combination on the finite subset J of S, then v and w can both be consid-
ered as linear combinations on the finite subset I ∪ J of S (just add coefficients
zero); now our argument above applies. □

For any subset S of a vector space V , the subspace L(S) is called the linear hull
or linear span of S, or the linear subspace generated by S. If L(S) = V , then we
say that S is a generating set for V or that S generates V, or that the elements
of S generate V. If V can be generated by a finite set S, then we say that V is
finitely generated.

Be aware that, besides L(S), there are various different notations for linear hulls
in the literature, for example Span(S) or ⟨S⟩ (which in LATEX is not written $<S>$,
but $\langle S \rangle$!).

Example 3.27. Take the three vectors

e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1)
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in R3. Then for every vector x = (x1, x2, x3) ∈ R3 we have x = x1e1+x2e2+x3e3,
so every element in R3 is a linear combination of e1, e2, e3. We conclude that R3

is contained in L(e1, e2, e3) and therefore L(e1, e2, e3) = R3, so the set {e1, e2, e3}
generates R3.

Definition 3.28. Let n be a positive integer. The standard generators of F n are

e1 = (1, 0, 0, . . . , 0),

e2 = (0, 1, 0, . . . , 0),

...

ei = (0, 0, . . . , 0, 1, 0, . . . , 0),

...

en = (0, 0, . . . , 0, 1),

with ei the vector in F n whose i-th entry equals 1 while all other entries equal 0.

For every vector x = (x1, x2, . . . , xn) ∈ F n we have x = x1e1+x2e2+ · · ·+xnen, so
x is a linear combination of e1, e2, . . . , en. Therefore, as in the previous example,
we find L(E) = F n, so the set E = {e1, e2, . . . , en} generates F n, thus explaining
the name standard generators.

Since every vector is a linear combination of itself (v = 1 · v), it is clear that L(S)
contains S for every subset S of any vector space. The following lemma shows
that L(S) is the smallest linear subspace containing S.

Lemma 3.29. Let V be an F -vector space and S a subset of V. Let U be any
subspace of V that contains S. Then we have L(S) ⊂ U .

Proof. Since U is a linear subspace that contains S, it also contains all scalar
multiples of elements in S, as well as sums thereof. Hence, U contains all linear
combinations on S, so we have L(S) ⊂ U . □

If U is a certain subspace of a vector space V, and we wish to show that U equals V ,
then, by Lemma 3.29, it suffices to show that U contains a generating set S for V .

Example 3.30. Consider the vectors

v1 = (1, 0, 3), v2 = (0, 1, 2), v3 = (0, 0, 1)

in R3, and set U = L(v1, v2, v3). We wonder whether v1, v2, and v3 generate R3,
that is, whether U = R3. This is obviously equivalent to the question whether
the inclusion R3 ⊂ U holds. By Lemma 3.29, this is the case if and only if
the standard generators e1, e2, e3 are contained in U . Indeed, they are linear
combinations of v1, v2, and v3, as we have

e1 = v1 − 3v3, e2 = v2 − 2v3, and e2 = v3.

We conclude that v1, v2, and v3 do indeed generate R3.

Example 3.31. Take V = R4 and consider S = {v1, v2, v3} with

v1 = (1, 0, 1, 0), v2 = (0, 1, 0, 1), v3 = (1, 1, 1, 1).

For a1 = (1, 0,−1, 0) and a2 = (0, 1, 0,−1), the hyperplanes

H1 = {x ∈ Rn : ⟨x, a1⟩ = 0}, and H2 = {x ∈ Rn : ⟨x, a2⟩ = 0}
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are subspaces (see Proposition 3.14) that both contain v1, v2, v3. So certainly
we have an inclusion L(v1, v2, v3) ⊂ H1 ∩H2 = {a1, a2}⊥.
Conversely, every element x = (x1, x2, x3, x4) in the intersection H1∩H2 satisfies
⟨x, a1⟩ = 0, so x1 = x3 and ⟨x, a2⟩ = 0, so x2 = x4, which implies x = x1v1+x2v2.
We conclude H1 ∩H2 ⊂ L(v1, v2), so we have

L(v1, v2, v3) ⊂ H1 ∩H2 ⊂ L(v1, v2) ⊂ L(v1, v2, v3).

As the first subspace equals the last, all these inclusions are equalities. We
deduce the equality L(S) = H1 ∩H2, so S generates the intersection H1 ∩H2.
In fact, we see that we do not need v3, as also {v1, v2} generates H1 ∩ H2.
In Section 8.3 we will see how to compute generators of intersections more
systematically.

Lemma 3.32. Let V be a vector space and S, T subsets of V satisfying T ⊂ L(S)
and S ⊂ L(T ). Then we have L(S) = L(T ).

Proof. Applying Lemma 3.29 to S and U = L(T ), we obtain L(S) ⊂ L(T ). By
symmetry we also have L(T ) ⊂ L(S), so we find L(S) = L(T ). □

In Proposition 3.20 we have seen that for any set S ⊂ F n, the set S⊥ is a linear
subspace. The following proposition states a few more properties of S⊥.

Proposition 3.33. Let n ≥ 0 be an integer, and S a subset of F n. Then the
following statements hold.

(1) For any subset T ⊂ S we have S⊥ ⊂ T⊥.
(2) We have S⊥ = L(S)⊥.
(3) We have L(S) ⊂ (S⊥)⊥.
(4) For any subset T ⊂ F n we have S⊥ ∩ T⊥ = (S ∪ T )⊥.

Proof. We leave (1), (3), and (4) as an exercise to the reader. To prove (2), note
that from S ⊂ L(S) and (1) we have L(S)⊥ ⊂ S⊥, so it suffices to prove the
opposite inclusion. Suppose we have x ∈ S⊥, so that ⟨s, x⟩ = 0 for all s ∈ S.
Now any element t ∈ L(S) is a linear combination of elements in S, so there
are elements s1, s2, . . . , sn ∈ S and scalars λ1, λ2, . . . , λn ∈ F such that we have
t = λ1s1 + · · ·+ λnsn, which implies

⟨t, x⟩ = ⟨λ1s1+· · ·+λnsn, x⟩ = λ1⟨s1, x⟩+· · ·+λn⟨sn, x⟩ = λ1 ·0+· · ·+λn ·0 = 0.

We conclude that we have x ∈ L(S)⊥. □

Remark 3.34. Later we will see that the inclusion L(S) ⊂ (S⊥)⊥ of Proposi-
tion 3.33 is in fact an equality, so that for every subspace U we have (U⊥)⊥ = U .
See Proposition 8.20 and Exercise 8.2.4.

We finish this section with the vector space of polynomial functions.

Example 3.35. Let F ⊂ C be a field. Inside the vector space F F of all functions
from F to F . we consider the power functions pn : x 7→ xn Their linear hull
L({pn : n ∈ Z≥0}) ⊂ F F is the linear subspace of polynomial functions from F
to F , i.e, functions that are of the form

x 7−→ anx
n + an−1x

n−1 + · · ·+ a1x+ a0
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with n ∈ Z≥0 and a0, a1, . . . , an ∈ F . By definition, the power functions pn
generate the subspace of polynomial functions, which we denote by P (F ). For
F = R, this subspace P (R) is contained in the subspace C(R) of continuous
functions.

Remark 3.36. Let F ⊂ C be a field. In Example 2.13 we defined polynomials
over F as formal sums. These are a priori not the same as polynomial functions,
but to any such polynomial

∑d
n=0 anx

n we can associate the polynomial function

that sends x0 ∈ F to
∑d

n=0 anx
n
0 . This gives a map

φ : F [x] → P (F ) ⊂ F F

that is clearly surjective. It is also injective, which follows from the theorem
that a nonzero polynomial over F can not have more zeroes than its degree (see
Exercise 11.3.8). Hence, there is a natural bijection between polynomials and
polynomial functions. Under this bijection, also their derivatives, defined for
polynomial functions in terms of the usual limits, and for abstract polynomials
by Remark 2.14, coincide, so the difference between polynomials and polynomial
functions will not cause any confusion over subfields of C. In fact, By abuse of
notation, the function φ(f) is often also denoted by f . In Appendix D, we also
define polynomial functions over general fields. In that context one should be
careful, as the map above need not be injective.

Exercises

3.4.1. Prove Proposition 3.33.

3.4.2. Do the vectors

(1, 0,−1), (2, 1, 1), and (1, 0, 1)

generate R3?

3.4.3. Do the vectors

(1, 2, 3), (4, 5, 6), and (7, 8, 9)

generate R3?

3.4.4. Let U ⊂ R4 be the subspace generated by the vectors

(1, 2, 3, 4), (5, 6, 7, 8), and (9, 10, 11, 12).

What is the minimum number of vectors needed to generate U? As always,
prove that your answer is correct.

3.4.5. Let X be a set. Consider the subspace F (X) of FX consisting of all functions
f : X → F that satisfy f(x) = 0 for all but finitely many x ∈ X (cf. Exercise
3.1.9). For every x ∈ X we define the function ex : X → F by

ex(z) =

{
1 if z = x,

0 otherwise.

Show that the set {ex : x ∈ X} generates F (X).

3.4.6. Does the equality L(I ∩ J) = L(I) ∩ L(J) hold for all vector spaces V and
subsets I and J of V ?

3.4.7. We say that a function f : R → R is even if f(−x) = f(x) for all x ∈ R, and
odd if f(−x) = −f(x) for all x ∈ R.
(1) Is the subset of RR consisting of all even functions a linear subspace?
(2) Is the subset of RR consisting of all odd functions a linear subspace?
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3.4.8. Let V be a vector space and S, T ⊂ V subsets. Show that the inclusion
L(S) ⊂ L(S ∪ T ) holds and that we have equality if and only if T ⊂ L(S).

3.4.9. Let V be a vector space over F , containing vectors v1, v2, . . . , vn ∈ V . Set
W = L(v1, v2, . . . , vn). Using Lemma 3.32, give short proofs of the following
equalities of subspaces.
(1) W = L(v′1, . . . , v

′
n) where for some fixed j and some nonzero scalar λ ∈ F

we have v′i = vi for i ̸= j and v′j = λvj (the j-th vector is scaled by a

nonzero factor λ).
(2) W = L(v′1, . . . , v

′
n) where for some fixed j, k with j ̸= k and some scalar

λ ∈ F we have v′i = vi for i ̸= k and v′k = vk + λvj (a scalar multiple of vj
is added to vk).

(3) W = L(v′1, . . . , v
′
n) where for some fixed j and k we set v′i = vi for i ̸= j, k

and v′j = vk and v′k = vj (the elements vj and vk are switched),

3.4.10. Let V be an F -vector space and S a subset of V. Show that we have

L(S) =
⋂

{U ⊂ V : U linear subspace of V and S ⊂ U} .

[Note that the notation in this proposition means the intersection of all elements
of the specified set: we intersect all linear subspaces containing S.]
[Note that in the extreme case S = ∅, we have to intersect all linear subspaces
of V , so the above reduces to the (correct) statement L(∅) = {0}.]

3.5. Sums of subspaces

We have seen that the intersection of linear subspaces is again a linear subspace,
but the union usually is not, see Example 3.21. However, it is very useful to have
a replacement for the union that has similar properties, but is a linear subspace.
Note that the union of two (or more) sets is the smallest set that contains both
(or all) of them. From this point of view, it is natural in the context of vector
spaces to study the smallest subspace containing two given subspaces, which is
the subspace generated by the union.

Definition 3.37. Let V be a vector space, U1, U2 ⊂ V two linear subspaces. The
sum of U1 and U2 is the linear subspace generated by U1 ∪ U2:

U1 + U2 = L(U1 ∪ U2) .

More generally, if (Ui)i∈I is a family of subspaces of V (I = ∅ is allowed here),
then their sum is again ∑

i∈I

Ui = L
(⋃
i∈I

Ui

)
.

We want a more explicit description of these sums.

Lemma 3.38. If U1 and U2 are linear subspaces of the vector space V , then we
have

U1 + U2 = {u1 + u2 : u1 ∈ U1, u2 ∈ U2} .
If (Ui)i∈I is a family of linear subspaces of V , then we have∑

i∈I

Ui =
{∑
j∈J

uj : J ⊂ I finite and uj ∈ Uj for all j ∈ J
}
.



64 3. SUBSPACES

Proof. For each equality, it is clear that the set on the right-hand side is con-
tained in the left-hand side (which is closed under addition). For the oppo-
site inclusions, it suffices by Lemma 3.29 (applied with S equal to the unions
U1 ∪ U2 and

⋃
i∈I Ui, respectively, which are obviously contained in the appro-

priate right-hand side) to show that the right-hand sides are linear subspaces.

We have 0 = 0+ 0 (and 0 =
∑

j∈∅ uj), so 0 is an element of the right-hand side
sets. Closure under scalar multiplication is easy to see. Indeed, for u1 ∈ U1 and
u2 ∈ U2, we have

λ(u1 + u2) = λu1 + λu2 ,

and we have λu1 ∈ U1, λu2 ∈ U2, because U1, U2 are linear subspaces; hence,
the element λ(u1+u2) is also contained the right-hand side of the first equality
of the lemma. Similarly, for every finite subset J ⊂ I and elements uj ∈ Uj for
each j ∈ J , we have

λ
∑
j∈J

uj =
∑
j∈J

λuj ,

and λuj ∈ Uj, since Uj is a linear subspace; hence, the element λ
∑

j∈J uj is
also contained in the right-hand side of the second equality.

Finally, for u1, u
′
1 ∈ U1 and u2, u

′
2 ∈ U2, we have

(u1 + u2) + (u′1 + u′2) = (u1 + u′1) + (u2 + u′2)

with u1 + u′1 ∈ U1, u2 + u′2 ∈ U2. And for J1, J2 finite subsets of I, uj ∈ Uj for
j ∈ J1, u

′
j ∈ Uj for j ∈ J2, we find(∑

j∈J1

uj

)
+
(∑
j∈J2

u′j

)
=

∑
j∈J1∪J2

vj ,

where we use vj = uj ∈ Uj if j ∈ J1 \ J2, while vj = u′j ∈ Uj if j ∈ J2 \ J1, and
vj = uj + u′j ∈ Uj if j ∈ J1 ∩ J2. This shows that the right-hand sides are also
closed under addition, which implies that they are indeed subspaces. □

Alternative proof. Clearly the right-hand side is contained in the left-hand side,
so it suffices to prove the opposite inclusions by showing that any linear combi-
nation of elements in the unions U1 ∪U2 and

⋃
i∈I Ui, respectively, is contained

in the appropriate right-hand side.

Suppose we have v = λ1w1 + · · · + λsws with wi ∈ U1 ∪ U2. Then after re-
ordering we may assume that for some non-negative integer r ≤ s we have
w1, . . . , wr ∈ U1 and wr+1, . . . , ws ∈ U2. Then for u1 = λ1w1 + · · ·+ λrwr ∈ U1

and u2 = λr+1wr+1 + · · ·+ λsws ∈ U2 we have v = u1 + u2, as required.

Suppose we have v = λ1w1 + · · ·+ λsws with wk ∈
⋃
i∈I Ui for each 1 ≤ k ≤ s.

Since the sum is finite, there is a finite subset J ⊂ I such that wk ∈
⋃
j∈J Uj for

each 1 ≤ k ≤ s. After collecting those elements contained in the same subspace
Uj together, we may write v as

v =
∑
j∈J

rj∑
k=1

λjkwjk

for scalars λjk and elements wjk ∈ Uj. Then for uj =
∑rj

k=1 λjkwjk ∈ Uj we
have v =

∑
j∈J uj, as required. □
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Example 3.39. The union U1 ∪ U2 of Example 3.21 contains the vectors
e1 = (1, 0) and e2 = (0, 1), so the sum U1 + U2 = L(U1 ∪ U2) contains
L(e1, e2) = R2 and we conclude U1 + U2 = R2.

Example 3.40. Let V be the subspace of Map(R,R) consisting of all continuous
functions from R to R. Set

U0 = {f ∈ V : f(0) = 0}, U1 = {f ∈ V : f(1) = 0}.
We now prove U0 + U1 = V . It suffices to show that every continuous function
f can be written as f = f0 + f1 where f0 and f1 are continuous functions
(depending on f) with f0(0) = f1(1) = 0. Indeed, if f(0) ̸= f(1), then we can
take5

f0 =
f(1)

f(1)− f(0)
(f − f(0)), f1 =

f(0)

f(0)− f(1)
(f − f(1)),

while in the case f(0) = f(1) = c we can take f0 and f1 that are given by

f0(x) = c(f(x) + x− c) + (f(x)− c), f1(x) = −c(f(x) + x− c− 1).

Note that in all cases we indeed have f0 ∈ U0 and f1 ∈ U1. This proves the
claim.

The following lemma shows that the sum of two subspaces is generated by the
union of any set of generators for one of the spaces and any set of generators for
the other.

Lemma 3.41. Suppose V is a vector space containing two subsets S and T . Then
the equality L(S) + L(T ) = L(S ∪ T ) holds.

Proof. Exercise. □

Definition 3.42. Let V be a vector space. Two linear subspaces U1, U2 ⊂ V are
said to be complementary (in V ) if U1 ∩ U2 = {0} and U1 + U2 = V .

Example 3.43. Take u = (1, 0) and u′ = (2, 1) in R2, and set U = L(u) and
U ′ = L(u′). We can write every (x, y) ∈ R2 as

(x, y) = (x− 2y, 0) + (2y, y) = (x− 2y) · u+ y · u′ ∈ U + U ′,

so U + U ′ = R2. Suppose v ∈ U ∩ U ′. Then there are λ, µ ∈ R with

(λ, 0) = λu = v = µu′ = (2µ, µ),

which implies µ = 0, so v = 0 and U ∩ U ′ = {0}. We conclude that U and U ′

are complementary subspaces.

Lemma 3.44. Let V be a vector space and U and U ′ subspaces of V . Then U
and U ′ are complementary subspaces of V if and only if for every v ∈ V there are
unique elements u ∈ U and u′ ∈ U ′ such that v = u+ u′.

Proof. First suppose U and U ′ are complementary subspaces. Let v ∈ V. Since
V = U + U ′, there certainly are u ∈ U and u′ ∈ U ′ such that v = u + u′. Now

5Knowing that we have f − f(a) ∈ Ua for a ∈ {0, 1}, we found the mys-
terious choices for f0 and f1 by looking for λ, µ ∈ R for which f equals
λ(f − f(0))+µ(f − f(1)) = (λ+µ)f − (λf(0)+µf(1)) for all f ; this yields two linear equations
λ+ µ = 1 and λf(0) + µf(1) = 0, which we can solve for λ and µ.
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assume that also v = w + w′ with w ∈ U and w′ ∈ U ′. Then u + u′ = w + w′,
so u− w = w′ − u′ ∈ U ∩ U ′, hence u− w = w′ − u′ = 0, and u = w, u′ = w′.

Conversely, suppose that for every v ∈ V there are unique u ∈ U , u′ ∈ U ′ such
that v = u+u′. Then certainly we have U +U ′ = V . Now suppose w ∈ U ∩U ′.
Then we can write w in two ways as w = u+u′ with u ∈ U and u′ ∈ U ′, namely
with u = w and u′ = 0, as well as with u = 0 and u′ = w. From uniqueness,
we find that these two are the same, so w = 0 and U ∩ U ′ = {0}. We conclude
that U and U ′ are complementary subspaces. □

As it stands, we do not yet know if every subspace U of a vector space V has a
complementary subspace in V. In Proposition 7.60 we will see that this is indeed
the case, at least when V is finitely generated. The next proposition shows that
it is true in an easy special case, namely when F is contained in R and U is the
subspace of F n generated by a nonzero element a ∈ F n.

Corollary 3.45. Suppose F is contained in R. Let n ≥ 0 be an integer and a ∈ F n

a nonzero element. Then the subspaces L(a) and

a⊥ = {x ∈ F n : ⟨a, x⟩ = 0 }
are complementary subspaces of F n.

Proof. Proposition 1.30 says that every v ∈ F n can be written uniquely as the
sum of an element v1 ∈ L(a) and an element v2 ∈ a⊥. Hence, by Lemma 3.44,
the spaces L(a) and a⊥ are complementary subspaces, which already finishes
the proof.

Alternatively, we first conclude only L(a) + a⊥ = F n from Proposition 1.30.
We also claim L(a) ∩ a⊥ = {0}. Indeed, suppose that w = λa ∈ L(a) is also
contained in a⊥. Then we have 0 = ⟨w, a⟩ = λ⟨a, a⟩. Since a is nonzero, we
have ⟨a, a⟩ ≠ 0, so we conclude λ = 0, which means w = 0. □

Warning 3.46. If U and U ′ are complementary subspaces of a vector space V ,
then they are not setwise complements of each other! First of all, they are not
disjoint, as we have U ∩ U ′ = {0} ≠ ∅. Second, we have U ∪ U ′ ̸= V unless one
one the subspaces is {0} and the other is V .

Exercises

3.5.1. Prove Lemma 3.41.

3.5.2. State and prove a version of Lemma 3.41 for an arbitrary collection of (Si)i∈I
of subsets.

3.5.3. Suppose U1, U2 ⊂ Fn are subspaces. Show that we have

(U1 + U2)
⊥ = U⊥

1 ∩ U⊥
2 .

3.5.4. Suppose V is a vector space with a subspace U ⊂ V . Suppose that U1, U2 ⊂ V
are subspaces of V that are contained in U . Show that the sum U1+U2 is also
contained in U .

3.5.5. Take u = (1, 0) and u′ = (α, 1) in R2, for any α ∈ R. Show that U = L(u)
and U ′ = L(u′) are complementary subspaces.

3.5.6. Let U+ and U− be the subspaces of RR of even and odd functions, respectively
(cf. Exercise 3.4.7).
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(1) Show that for any f ∈ RR, the functions f+ and f− given by

f+(x) =
f(x) + f(−x)

2
and f−(x) =

f(x)− f(−x)
2

are even and odd, respectively.
(2) Show that U+ and U− are complementary subspaces.

3.5.7. Are the subspaces U0 and U1 of Example 3.40 complementary subspaces?

3.5.8. True or false? For every subspaces U, V,W of a common vector space, we
have U ∩ (V +W ) = (U ∩ V ) + (U ∩W ). Prove it, or give a counterexample.

3.5.9. Let W be a vector space with subspaces U1, U2, V1, V2 satisfying

U1 ⊂ V1 and U2 ⊂ V2.

Suppose that U1 + U2 =W and V1 ∩ V2 = {0}.
(1) Show that V1 and V2 are complementary subspaces inW , and that U1 and

U2 are as well.
(2) Show that we have U1 = V1 and U2 = V2.

In the proof of Proposition 1.30 and Corollary 3.45, and the definition of reflection, we
used the fact that a is nonzero to conclude that we have ⟨a, a⟩ ̸= 0. The following
exercises show that, in these three cases, this is the only way in which we used that the
ground field is R. They give a generalisation to general fields.

3.5.10. Let n ≥ 0 be an integer, and a ∈ Fn an element with ⟨a, a⟩ ̸= 0. Show that
for every element v ∈ Fn there is a unique λ ∈ F such that for w = v − λa we

have ⟨a,w⟩ = 0. Moreover, this λ equals ⟨a,v⟩
⟨a,a⟩ ; we then have ⟨λa, λa⟩ = ⟨a,v⟩2

⟨a,a⟩

and w = v − λa satisfies ⟨w,w⟩ = ⟨v, v⟩ − ⟨a,v⟩2
⟨a,a⟩ .

3.5.11. Let n ≥ 0 be an integer, and a ∈ Fn an element with ⟨a, a⟩ ̸= 0. Show that
the subspaces L(a) and

a⊥ = {x ∈ Fn : ⟨a, x⟩ = 0 }
are complementary subspaces of Fn.

3.5.12. Let n ≥ 0 be an integer, and a ∈ Fn an element with ⟨a, a⟩ ≠ 0. Set

H = a⊥ = {x ∈ Fn : ⟨a, x⟩ = 0 }.
Then for any v ∈ Fn, we define the reflection of v in H to be

sH(v) = v − 2
⟨v, a⟩
⟨a, a⟩

a.

(1) Show that the reflection of sH(v) in H equals v.
(2) Show that for v, w ∈ Fn we have sH(v +w) = sH(v) + sH(w). (A similar

statement holds for the scalar multiplication instead of the sum; together,
this shows that reflections are linear maps, as defined in the next section.
See Example 4.16.)





CHAPTER 4

Linear maps

Recall that F is still a field (see the beginning of Chapter 2).

So far, we have defined the objects of our theory: vector spaces and their elements.
Now we want to look at relations between vector spaces. These are provided by
linear maps — maps between two vector spaces that preserve the linear structure.

4.1. Definition and examples

Among all maps between two vector spaces V and W , we want to single out those
that are ‘compatible with the linear structure.’

Definition 4.1. Let V and W be two F -vector spaces. A map f : V → W is
called an (F -)linear map or a homomorphism if

(1) for all v1, v2 ∈ V , we have f(v1 + v2) = f(v1) + f(v2), and

(2) for all λ ∈ F and all v ∈ V , we have f(λv) = λf(v).

The set of all linear maps from V to W is denoted by Hom(V,W ).

A bijective homomorphism is called an isomorphism. Two vector spaces V andW
are said to be isomorphic, written V ∼= W , if there exists an isomorphism between
them.

A linear map f : V → V is called an endomorphism of V ; if f is in addition
bijective, then it is called an automorphism of V. We recall (see Appendix A) that
if f : V → V is an endomorphism and n is a positive integer, then we write

fn = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n

for the composition of n times applying f . The first examples of linear maps are
given by the following proposition.

Proposition 4.2. Let n ≥ 0 be an integer. For every a ∈ F n, the function

F n → F, x 7→ ⟨a, x⟩
is a linear map.

Proof. This follows directly from Proposition 3.11. □

Obviously, the scalar product is in fact linear in both arguments, that is, if instead
of the first argument, we fix the second argument to be a ∈ F n, then also the map
F n → F, x 7→ ⟨x, a⟩ is linear. This is why we call the scalar product bilinear.

Here are some simple properties of linear maps.

69
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Lemma 4.3. Let U, V,W be vector spaces over a field F .

(1) If f : V → W is linear, then f(0) = 0.

(2) If f : V → W is an isomorphism, then the inverse map f−1 is also an
isomorphism.

(3) If f : U → V and g : V → W are linear maps, then g ◦ f : U → W is also
linear.

Proof.

(1) This follows from either one of the two properties of linear maps. Using
the first, we get

f(0) = f(0 + 0) = f(0) + f(0)

which by Lemma 2.16 implies f(0) = 0. Instead, we can also use the
second property, which gives

f(0) = f(0 · 0) = 0 · f(0) = 0 .

(Which of the zeros are scalars, which are vectors in V , in W?)

(2) The inverse map is certainly bijective; we have to show that it is linear.
So take w1, w2 ∈ W and set v1 = f−1(w1), v2 = f−1(w2). Then
f(v1) = w1, f(v2) = w2, hence f(v1 + v2) = w1 + w2. This means that

f−1(w1 + w2) = v1 + v2 = f−1(w1) + f−1(w2) .

The second property for being linear is checked in a similar way.

(3) Exercise.

□

Warning 4.4. Many people learn in high school that for all real numbers a, b, the
function f from R to R given by f(x) = ax+b is called linear. With our definition
of linear functions, this is only the case when b = 0! Indeed, from Lemma 4.3
we find that if f is linear, then b = f(0) = 0. For b = 0, it is easy to see that f is
indeed linear. (It also follows from Proposition 4.2 with n = 1.)

Lemma 4.5. Let f : V → W be a linear map of F -vector spaces.

(1) For all v, w ∈ V and λ, µ ∈ F , we have f(λv − µw) = λf(v)− µf(w).

(2) For all v1, v2, . . . , vn ∈ V and λ1, λ2, . . . , λn ∈ F we have

f(λ1v1 + · · ·+ λnvn) = λ1f(v1) + · · ·+ λnf(vn).

(3) For any subset S ⊂ V we have f(L(S)) = L(f(S)).

Proof. Exercise. □

There are two important linear subspaces associated to any linear map: its image
im(f) and its kernel, which is defined below.

Definition 4.6. Let f : V → W be a linear map. Then the kernel of f is defined
to be

ker(f) = {v ∈ V : f(v) = 0} .
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Lemma 4.7. Let f : V → W be a linear map.

(1) The kernel ker(f) is a linear subspace of V .

(2) The image im(f) is a linear subspace of W .

(3) The map f is injective if and only if ker(f) = {0}.

Proof.

(1) We have to check the three properties of subspaces for ker(f). By the
previous remark, f(0) = 0, so 0 ∈ ker(f). Now let v1, v2 ∈ ker(f).
Then f(v1) = f(v2) = 0, so f(v1 + v2) = f(v1) + f(v2) = 0 + 0 = 0,
and v1 + v2 ∈ ker(f). Finally, let λ be a scalar and v ∈ ker(f). Then
f(v) = 0, so f(λv) = λf(v) = λ · 0 = 0, and therefore λv ∈ ker(f). We
conclude that ker(f) is indeed a subspace.

(2) We check again the subspace properties. We have f(0) = 0 ∈ im(f).
If w1, w2 ∈ im(f), then there are v1, v2 ∈ V such that f(v1) = w1,
f(v2) = w2, hence w1 + w2 = f(v1 + v2) ∈ im(f). If λ is a scalar
and w ∈ im(f), then there is v ∈ V such that f(v) = w, hence
λw = f(λv) ∈ im(f). We conclude that im(f) is indeed a subspace.

(3) If f is injective, then there can be only one element of V that is
mapped to 0 ∈ W , and since we know that f(0) = 0, it follows that
ker(f) = {0}.
For the converse, assume that ker(f) = {0}, and let v1, v2 ∈ V be
such that f(v1) = f(v2). Then f(v1 − v2) = f(v1) − f(v2) = 0, so
v1 − v2 ∈ ker(f). By our assumption, this means that v1 − v2 = 0,
hence v1 = v2. This shows that f is indeed injective.

□

Remark 4.8. If you want to show that a certain subset U in a vector space V
is a linear subspace, it may be easier to find a linear map f : V → W such that
U = ker(f) than to check the properties directly.

Example 4.9. Let n ≥ 0 be an integer, and a ∈ F n an element. Then the
kernel of the map

F n → F, x 7→ ⟨a, x⟩
is the set a⊥.

The following lemma generalises the first two statements of Lemma 4.7.

Lemma 4.10. Let f : V → W be a linear map.

(1) If U ⊂ W is a linear subspace, then f−1(U) is a linear subspace of V ; it
contains ker(f).

(2) If U ⊂ V is a linear subspace, then f(U) is a linear subspace of W ; it is
contained in im(f).

Proof. We leave it as an exercise to generalise the proofs of the first two state-
ments of Lemma 4.7. □

It is time for some more examples of linear maps.
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Example 4.11. Let V be any vector space. Then the unique map f : V → {0}
to the zero space is linear. More generally, if W is another vector space, then
f : V → W , v 7→ 0, is linear. It is called the zero homomorphism; often it is
denoted by 0. Its kernel is all of V, its image is {0} ⊂ W .

Example 4.12. For any vector space V , the identity map idV is linear; it is
even an automorphism of V. Its kernel is trivial (= {0}); its image is all of V.

Example 4.13. If V = F n, then all the projection maps

πj : F
n → F, (x1, . . . , xn) 7→ xj

are linear. (In fact, one can argue that the vector space structure on F n is
defined in exactly such a way as to make these maps linear.) This map πj can
also be given by x 7→ ⟨x, ej⟩, where ej is the j-th standard generator of F n.
The image of πj is F , so πj is surjective; its kernel is e

⊥
j , which consists of all

vectors of which the j-th coordinate is 0.

Example 4.14. Let V be a vector space over F , and λ ∈ F an element. Then
the map

V → V, v 7→ λv

is a linear map that is called multiplication by λ. It is sometimes denoted by
[λ], or just λ. Clearly, for two elements λ, µ ∈ F , we have [λ] ◦ [µ] = [λµ]. If λ
is nonzero, then [λ] is an isomorphism, with inverse [λ−1].

Example 4.15. Take the vector a = (1, 1, 1) ∈ R3 and set

V = a⊥ = {(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0}.
Let ψ : V → R2 denote the map that sends (x1, x2, x3) to (x1, x2). Then clearly
ψ is linear. For every x = (x1, x2, x3) ∈ V in the kernel of ψ we have x1 = x2 = 0,
so from the definition of V we also get x3 = 0, and therefore x = 0. It follows
that ker(ψ) = {0}, so ψ is injective. The map ψ is also surjective, so ψ is an
isomorphism; its inverse sends (x1, x2) ∈ R2 to (x1, x2,−x1 − x2).

Example 4.16. Suppose V = Rn and a ∈ V is nonzero. Set H = a⊥. Then
the following maps from V to V are linear.

(1) The orthogonal projection πa : Rn → Rn onto L(a) given by

v 7→ ⟨v, a⟩
⟨a, a⟩

a

(see Definition 1.31). Indeed, linearity follows from the fact that the
scalar product with a is linear (see Proposition 4.2). Note that for the
a = ej, the j-th standard vector, and the projection map πj : Rn → R
on the j-th coordinate, we have

πej(v) = πj(v) · ej.
The kernel of πa is a⊥ and the image is L(a).

(2) The orthogonal projection πH = πa⊥ : Rn → Rn onto H given by

v 7→ v − ⟨v, a⟩
⟨a, a⟩

a = v − πa(v)
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(see Definition 1.31). Indeed, for checking addition, note that, by lin-
earity of πa, we have

πa⊥(v + w) = v + w − πa(v + w) = v − πa(v) + w − πa(w) = πa⊥(v) + πa⊥(w).

The scalar multiplication follows similarly. The kernel of πa⊥ is L(a)
and the image is a⊥.

(3) The reflection sH : Rn → Rn in the hyperplane H = a⊥ given by

v 7→ v − 2
⟨v, a⟩
⟨a, a⟩

a

(see Definition 1.53 and the identity in (1.11)). The linearity is proven
in the same way as for the projection ontoH = a⊥. The identity in (1.8)
shows that sH ◦ sH = idV , which implies that sH is an isomorphism.

Example 4.17. Let V be the vector space of 3× 3 magic squares (see Exam-
ple 2.7). Then the map r : V → V that rotates the square over 90 degrees is
linear. Another endomorphism is the map c : V → V that sends a square M to
the constant square in which all entries are equal to the middle square of M .
Check this for yourself! We leave it as an exercise to find the kernel and the
image of these linear maps.

Example 4.18. For any two vector spaces V1, V2 over F , the projection maps
V1 × V2 → V1 and V1 × V2 → V2 given by (v1, v2) 7→ v1 and (v1, v2) 7→ v2,
respectively, are linear, cf. Exercise 2.2.15.

Exercises

4.1.1. Finish the proof of Lemma 4.3.

4.1.2. Prove Lemma 4.5.

4.1.3. Finish the proof of Lemma 4.7.

4.1.4. Which of the following maps between vector spaces are linear?
(1) R3 → R2, (x, y, z) 7→ (x− 2y, z + 1),
(2) R3 → R3, (x, y, z) 7→ (x2, y2, z2),
(3) (†) C3 → C4, (x, y, z) 7→ (x+ 2y, x− 3z, y − z, x+ 2y + z),
(4) R3 → V, (x, y, z) 7→ xv1 + yv2 + zv3, for a vector space V over R with

v1, v2, v3 ∈ V ,
(5) P (R) → P (R), f 7→ f ′, where P (R) is the vector space of real polynomials

and f ′ is the derivative of f ,
(6) P → R2, f 7→ (f(2), f ′(0)).

4.1.5. Given the linear maps of Examples 4.17 and 4.18, what are their kernels and
images?

4.1.6. Let f : V →W be a linear map of vector spaces. Show that the following are
equivalent.
(1) The map f is surjective.
(2) For every subset S ⊂ V with L(S) = V we have L(f(S)) =W .
(3) There is a subset S ⊂ V with L(f(S)) =W .

4.1.7. Let ρ : R2 → R2 be rotation about the origin (0, 0) over an angle θ.
(1) Show that ρ is a linear map. [You may assume that ρ sends parallelograms

to parallelograms.]
(2) What are the images ρ((1, 0)) and ρ((0, 1))?
(3) Show that we have

ρ((x, y)) = (x cos θ − y sin θ, x sin θ + y cos θ).
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4.1.8. Show that the reflection s : R2 → R2 in the line given by y = −x is a linear
map. Give an explicit formula for s.

4.1.9. As before, let F [x] be the vector space of polynomials over F .
(1) Given an element a ∈ F , we define the evaluation map eva : F [x] → F

that sends a polynomial f =
∑d

i=0 cix
i to f(a) =

∑d
i=0 cia

i. Show that
eva is linear.

(2) Show that the map φ : F [x] → FF of Remark 3.36 and Exercise D.2.1 is
given by

f 7→ (a 7→ eva(f)),

and deduce that φ is linear.

4.1.10. Given the map

T : R2 → R2, (x, y) 7→ x(35 ,
4
5) + y(45 ,−

3
5)

and the vectors v1 = (2, 1) and v2 = (−1, 2).
(1) Show that T (v1) = v1 and T (v2) = −v2.
(2) Show that T equals the reflection in the line given by 2y − x = 0.

4.1.11. Give an explicit expression for the linear map s : R2 → R2 given by reflecting
in the line y = 3x.

4.2. Linear maps form a vector space

If X is any set, and W an F -vector space, then we can add any two functions
f, g : X → W point-wise, by defining the sum f + g to be given by

(f + g)(x) = f(x) + g(x)

for every x ∈ X. Note that the last plus sign denotes addition in W . We will see
that if X is itself a vector space over F , and f and g are linear maps, then the
sum f + g is linear as well. A similar statement holds for the point-wise scalar
multiplication. With the language that we have set up so far, we can phrase this
as follows.

Lemma 4.19. Let V and W be two F -vector spaces. Then the set Hom(V,W ) of
all linear maps V → W , with addition and scalar multiplication defined point-wise,
forms an F -vector space.

Proof. Using only the fact that W is a vector space, one checks that the vector
space axioms hold for the set of all maps V → W (see Exercise 2.2.12). Hence
it suffices to show that the linear maps form a linear subspace.

The zero map is a linear map, so it is contained in Hom(V,W ). If f, g : V → W
are two linear maps, we have to check that f+g is again linear. So let v1, v2 ∈ V
be elements; then we have

(f + g)(v1 + v2) = f(v1 + v2) + g(v1 + v2) = f(v1) + f(v2) + g(v1) + g(v2)

= f(v1) + g(v1) + f(v2) + g(v2) = (f + g)(v1) + (f + g)(v2) .

Similarly, if λ ∈ F and v ∈ V , then we have

(f + g)(λv) = f(λv)+ g(λv) = λf(v)+λg(v) = λ
(
f(v)+ g(v)

)
= λ · (f + g)(v) .

We conclude that f+g is indeed linear, so Hom(V,W ) is closed under addition.
Now let µ ∈ F , and let f : V → W be linear. We have to check that µf is again
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linear. So let v1, v2 ∈ V be elements; then we have

(µf)(v1 + v2) = µf(v1 + v2) = µ
(
f(v1) + f(v2)

)
= µf(v1) + µf(v2) = (µf)(v1) + (µf)(v2) .

Finally, let λ ∈ F and v ∈ V . Then

(µf)(λv) = µf(λv) = µ
(
λf(v)

)
= (µλ)f(v) = λ

(
µf(v)

)
= λ · (µf)(v) .

It follows that µf is indeed linear, so Hom(V,W ) is also closed under scalar
multiplication. It follows that Hom(V,W ) is indeed a linear subspace. □

Example 4.20. Let V = Map(R,R) be the vector space of functions from R
to R. For any a ∈ R, we let eva ∈ Hom(V,R) denote the evaluation map that
sends a function f ∈ V to f(a). Then for two real numbers a, b ∈ R, the map
eva+evb ∈ Hom(V,R) sends the function f to eva(f) + evb(f) = f(a) + f(b).

Example 4.21. Let f, g ∈ Hom(R3,R2) be given by

f
(
(x, y, z)

)
= (x− z, x+ 2y),

g
(
(x, y, z)

)
= (y + z, y − z).

Then the linear map h = f + g is given by

h
(
(x, y, z)

)
= (x+ y, x+ 3y − z).

Example 4.22. Let ρ : R2 → R2 be the rotation around 0 over an angle 2π/3.
Then ρ sends (x, y) ∈ R2 to

(−1
2
x− 1

2

√
3y, 1

2

√
3x− 1

2
y)

(see Exercise 4.1.7). The map ρ2 = ρ ◦ ρ is rotation over 4π/3, so we can use
Exercise 4.1.7 to easily obtain an explicit formula for that as well. Instead, we
use the above and compute

ρ2
(
(x, y)

)
= ρ

(
ρ(x)

)
= ρ

(
(−1

2
x− 1

2

√
3y, 1

2

√
3x− 1

2
y)
)

=
(
− 1

2
(−1

2
x− 1

2

√
3y)− 1

2

√
3(1

2

√
3x− 1

2
y),

1
2

√
3(−1

2
x− 1

2

√
3y)− 1

2
(1
2

√
3x− 1

2
y)
)

=
(
− 1

2
x+ 1

2

√
3y,−1

2

√
3x− 1

2
y
)
,

which is indeed what Exercise 4.1.7 would have given. Adding the two expres-
sions for ρ and ρ2, we find that the sum ρ + ρ2 sends a point p = (x, y) to
(−x,−y) = −p, so in fact, the map id+ρ+ ρ2 is the zero map. We could have
also seen this geometrically, as for each point p ∈ R2, the three points p, ρ(p),
and ρ(ρ(p)) are the vertices of an equilateral triangle with center 0, so their sum
is 0.

Example 4.23. Suppose V = Rn and a ∈ V is nonzero. Set H = a⊥. Let πa,
πH , and sH be the orthogonal projection onto L(a), the orthogonal projection
onto H, and the reflection in H, respectively, as in Example 4.16. Then the
linearity of the last two maps follows from the linearity of the first, as we have

πH = idV −πa, and sH = idV −2πa = 2πH − idV .

Note that this is in line with the fact that in Example 4.16 we used linearity of
πa to prove linearity of πH and sH .
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Example 4.24. Suppose V = Rn and a ∈ V is nonzero. Set H = a⊥ and
L = L(a). Let πa and πH be the orthogonal projection onto L(a) and H,
respectively. Then the map sL = idV −2πH = 2πa − idV is also linear. This
is reflection in the line L. In R3, it is the same as rotation around L over 180
degrees.

Example 4.25. Let M ⊂ R2 be the line of all points (x, y) ∈ R2 with x = y.
Then a = (1,−1) is a normal of M , and the reflection s in M sends the point
(x, y) ∈ R2 to (y, x). By the previous example, the orthogonal projection πa
onto L(a) satisfies s = id−2πa, so we have πa =

1
2
(id−s). This means that πa

sends (x, y) to
(
1
2
(x−y), 1

2
(y−x)

)
= 1

2
(x−y)·a. The projection πM onto the line

M satisfies id+s = 2πM . This means that πM sends (x, y) to
(
1
2
(x+y), 1

2
(x+y)

)
.

Draw pictures to convince yourself!

Example 4.26. If V is an F -vector space, and we multiply the identity idV by
the scalar λ, then we obtain the map [λ] that is multiplication by λ.

The following proposition shows that composition of linear maps respects addition
and scalar multiplication.

Proposition 4.27. Let U, V,W be vector spaces over F . Let f, f1, f2 ∈ Hom(U, V )
and g, g1, g2 ∈ Hom(V,W ) be linear maps. Let λ ∈ F be a scalar. Then we have

g ◦ (f1 + f2) = (g ◦ f1) + (g ◦ f2),
(g1 + g2) ◦ f = (g1 ◦ f) + (g2 ◦ f),

g ◦ (λf) = λ · (g ◦ f) = (λg) ◦ f.

Proof. Let u ∈ U be any element. To verify the first identity, we note that

(g ◦ (f1 + f2))(u) = g((f1 + f2)(u)) = g(f1(u) + f2(u)) = g(f1(u)) + g(f2(u))

= (g ◦ f1)(u) + (g ◦ f2)(u) = ((g ◦ f1) + (g ◦ f2))(u).
Note that for the first and fourth equality we used the definition of composition,
for the second and fifth equality we used the definition of addition of maps (to
V and W , respectively), and for the third equality we used linearity of g. This
proves the first identity, as it holds for all u ∈ U . For the second identity of the
proposition, we have

((g1 + g2) ◦ f)(u) = (g1 + g2)(f(u)) = g1(f(u)) + g2(f(u))

= (g1 ◦ f)(u) + (g2 ◦ f)(u) = ((g1 ◦ f) + (g2 ◦ f))(u),
where the first and third equality follow from the definition of composition, and
the second and fourth equality from the definition of addition of maps. Since
this holds for all u ∈ U , it proves the second identity. We leave the last two
identities as an exercise: only for one of the two, linearity of g is needed. □

Warning 4.28. Note that composition of functions is not commutative in general.
If V is a vector space and f, g ∈ Hom(V, V ) are two endomorphisms of V , then
we have

(f + g)2 = (f + g) ◦ (f + g) = f ◦ f + f ◦ g + g ◦ f + g ◦ g.
Since f ◦g may not be equal to g ◦f , we can in general not simplify the right-hand
side.



4.2. LINEAR MAPS FORM A VECTOR SPACE 77

Example 4.29. Let C∞(R) denote the set of all functions from R to R that
can be differentiated n times for every positive integer n. In other words, we set
C∞(R) =

⋂
n>0 Cn(R) with Cn(R) as in Example 3.8. Let D : C∞(R) → C∞(R)

be the linear map that sends a function f to its derivative f ′. Then for every in-
teger n > 0, the mapDn sends a function f to its n-th derivative f (n). The maps
id+D and id−D send a function f to f+f ′ and f−f ′, respectively. Of course,
we can work out easily what the composition (id+D)◦(id−D) does to a function
f , but with Proposition 4.27 we immediately find (id+D) ◦ (id−D) = id−D2,
so it sends f to f − f (2).

Example 4.30. Let V be a vector space and π : V → V an endomorphism.

(1) Suppose π2 = 0. Then for f = id+π and g = id−π we have

f ◦ g = g ◦ f = id−π2 = id,

so id+π and id−π are each other’s inverses, and therefore both bijec-
tive.
[A nonzero example is the map π : R2 → R2 that sends (x, y) to (0, x).]

(2) Suppose π2 = π (cf. Exercise 4.2.6). Then for π′ = id−π we have

π′2 = (id−π) ◦ (id−π) = id−π − π + π2 = id−π = π′.

[A nonzero example is V = Rn and, for some nonzero vector a ∈ V ,
the map π is the orthogonal projection onto the line L(a); then π′ is
the orthogonal projection on the hyperplane a⊥.]

Example 4.31. Let P (R) be the vector space of polynomial functions on R.
Then the following maps are linear.

(1) Evaluation: given a ∈ R, the map eva : P (R) → R, p 7→ p(a) is linear.
The kernel of eva consists of all polynomials having a zero at a; the
image is all of R.

(2) Differentiation: D : P (R) → P (R), p 7→ p′ is linear.
The kernel of D consists of the constant polynomials; the image of D
is P (R) (see below).

(3) Definite integration: given a < b, the map

Ia,b : P (R) −→ R , p 7−→
b∫

a

p(x) dx

is linear.

(4) Indefinite integration: given a ∈ R, the map

Ia : P (R) −→ P (R) , p 7−→
(
x 7→

x∫
a

p(t) dt
)

is linear. This map is injective; its image is the kernel of eva (see
below).

(5) Translation: given a ∈ R, the map

Ta : P (R) −→ P (R) , p 7−→
(
x 7→ p(x+ a)

)
is linear. This map is an isomorphism: T−1

a = T−a.
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The Fundamental Theorem of Calculus says that D◦Ia = idP and that for every
p ∈ P (R) we have (Ia,b ◦D)(p) = p(b)− p(a) and (Ia ◦D)(p) = p− p(a). This
can now be written as Ia,b ◦D = evb− eva and Ia ◦D = idP − eva.

The relation D ◦ Ia = idP implies that Ia is injective and that D is surjective.
This implies that eva ◦Ia = 0, hence im(Ia) ⊂ ker(eva). On the other hand, if
p ∈ ker(eva), then Ia(p

′) = p − p(a) = p, so p ∈ im(Ia). Therefore we have
shown that im(Ia) = ker(eva).

Let C ⊂ P (R) be the subspace of constant polynomials, and let Za ⊂ P (R)
be the subspace of polynomials vanishing at a ∈ R. Then C = ker(D) and
Za = ker(eva) = im(Ia), and C and Za are complementary subspaces. The map

D restricts to an isomorphism Za
∼→ P (R), and Ia restricts (on the target side)

to an isomorphism P (R) ∼→ Za (exercise!).

Exercises

4.2.1. Let V be the vector space of 3 × 3 magic squares (see Example 2.7). Let r
and c be the endomorphisms of Example 4.17. Show that we have idV+r

2 = 2c.

4.2.2. As in Example 4.22, we let ρ : R2 → R2 denote rotation around 0 over 2π/3.
Set f = ρ − id and g = ρ + 2 · id. [Suggestion: Draw some pictures of what
these linear maps f and g do.]
(1) Use Example 4.22 to show that f ◦ g = g ◦ f = −3 · id.
(2) Conclude that f and g are isomorphisms.

4.2.3. Let V ⊂ R3 be the plane

V = { (x, y, z) ∈ R3 : 2x− y + z = 0 }.
(1) Give an explicit expression for the reflection s : R3 → R3 in the plane V .

[Hint: first find the images of the standard generators e1, e2, e3.]
(2) Show that the subsets

U+ = {v ∈ R3 : s(v) = v} and U− = {v ∈ R3 : s(v) = −v}
are subspaces.

(3) Show U+ = V and U− = L(a) for some a ∈ R3.
(4) Show that U+ and U− are complementary subspaces.

4.2.4. This exercise generalises Exercises 3.5.6 and 4.2.3. Assume1 that in F we
have 2 ̸= 0, so that we can divide by 2. Let V be a vector space over F , and
let s : V → V be a linear map satisfying s(s(v)) = v for all v ∈ V (for example,
s : Rn → Rn is the reflection in some hyperplane). Set

V+ = { v ∈ V : s(v) = v } and V− = { v ∈ V : s(v) = −v }.
(1) Show that s is an isomorphism.
(2) Show that for every v ∈ V we have

v + s(v)

2
∈ V+ and

v − s(v)

2
∈ V−.

(3) Show that idV +s has kernel V− and image V+.
(4) Show that idV −s has kernel V+ and image V−.
(5) Show that V+ and V− are complementary subspaces in V .
(6) For what choice of s does Exercise 3.5.6 become a special case?

1For readers that assume F is contained in R or C (see beginning of Chapter 2), this as-
sumption holds automatically.
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4.2.5. Suppose V is a vector space with two complementary subspaces U and U ′,
cf. Definition 3.42. Then for every v ∈ V there are unique elements u ∈ U
and u′ ∈ U ′ with v = u + u′ by Lemma 3.44; let πU : V → V denote the map
that sends v to the corresponding element u. Note that πU also depends on U ′,
even though it is not referred to in the notation. We call πU the projection of
V onto U along U ′.
(1) Show that πU is linear.
(2) Show that πU has image U and kernel kerπU = U ′.
(3) Show that πU satisfies πU ◦ πU = πU .
(4) Show that πU is the unique endomorphism of V that is the identity on U

and 0 on U ′.
(5) Show that idV −πU is the projection of V onto U ′ along U .

4.2.6. Let V be a vector space and π : V → V an endomorphism that satisfies
π ◦ π = π. Set U = im(π) and U ′ = ker(π).
(1) Show that for every v ∈ V , we have v − π(v) ∈ U ′.
(2) Show that U and U ′ are complementary subspaces in V .
(3) Show that π is the projection of V onto U along U ′.
[For this reason, any endomorphism π satisfying π2 = π is often called a pro-
jection.]

4.2.7. Let V be the vector space of 3 × 3 magic squares, and let c : V → V be
the endomorphism of Example 4.17. Show that we have c2 = c, and use the
Exercise 4.2.6 to show that V contains two complementary subspaces, namely
the subspace of all constant squares and the subspace of all the magic squares
of which the row, column, and diagonal sums are 0.

4.2.8. Let V be a vector space and f : V → V an endomorphism. Suppose that f is
nilpotent, that is, there is a positive integer k such that fk = 0. Show that the
linear map id−f is an isomorphism.
[Hint: for the inverse, try something of the form

∑n
i=0 f

i for some n ≥ 1.]

4.3. Linear equations

Suppose m,n > 0 are integers and we have elements aij ∈ F for i ∈ {1, . . . ,m}
and j ∈ {1, . . . , n}. Consider the system

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

of m linear equations in n variables x1, . . . , xn over the field F . Let f : F n → Fm

be the map that sends x = (x1, . . . , xn) ∈ F n to the vector

(a11x1 + a12x2 + · · ·+ a1nxn,

a21x1 + a22x2 + · · ·+ a2nxn, . . .

am1x1 + am2x2 + · · ·+ amnxn) ∈ Fm,

and set b = (b1, b2, . . . , bm) ∈ Fm. Then we can rewrite the system of equations as
f(x) = b, to be solved for x ∈ F n. The solution set equals

{ x ∈ F n : f(x) = b } = f−1(b).

Since f is a linear map, we can use linear algebra to study these equations.
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Definition 4.32. Let f : V → W be a linear map between two F -vector spaces.
The equation

f(x) = 0 ,

to be solved for x ∈ V, is called a homogeneous linear equation. If V = F n and
W = Fm (withm > 1), we also speak of a homogeneous system of linear equations.
(Since as above, the equation consists of m separate equations in F , coming from
the coordinates of Fm.)

If b ∈ W \ {0}, then the equation

f(x) = b

(again to be solved for x ∈ V ) is called an inhomogeneous linear equation, or in
the case V = F n andW = Fm, an inhomogeneous system of linear equations. The
equation or system of equations is called consistent if it has a solution, that is, if
b ∈ im(f).

With the theory we have built so far, the following result is essentially trivial.

Theorem 4.33. Let f : V → W be a linear map between two F -vector spaces.

(1) The solution set of the homogeneous linear equation f(x) = 0 is the linear
subspace ker f ⊂ V.

(2) Let b ∈ W \ {0}. If the inhomogeneous linear equation f(x) = b is
consistent, and a ∈ V is a solution, then the set of all solutions is the set

(4.1) f−1(b) = { a+ z : z ∈ ker f }.

Proof.

(1) By definition, the solution set f−1(0) is exactly the kernel of f .

(2) Let x be any solution and z = x−a. Then f(z) = f(x)−f(a) = b−b = 0,
so z ∈ ker f and x = a+ z. This shows the inclusion ‘⊂’ in (4.1). Con-
versely, if x = a+ z for some z ∈ ker f , then

f(x) = f(a+ z) = f(a) + f(z) = b+ 0 = b,

which proves the other inclusion ‘⊃’.

□

Example 4.34. As before, let R[x] denote the vector space of all real polyno-
mials. Let a, b ∈ R be real numbers, and

X = { g ∈ R[x] : g(a) = b }
the set of all polynomials that take the value b at a. If we let eva : R[x] → R
denote the linear map that sends g to g(a), then X is the solution set of the
linear equation eva(g) = b in the variable g ∈ R[x], so we have X = ev−1

a (b).
As the constant polynomial b is a solution, Theorem 4.33, applied to f = eva,
yields the (trivial) fact that X = { g + b : g ∈ R[x], g(a) = 0 }.

Example 4.35. Consider the wave equation

∂2f

∂t2
= c2

∂2f

∂x2
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for f ∈ C2(R × [0, π]), with boundary conditions f(t, 0) = f(t, π) = 0 and
initial conditions f(0, x) = f0(x) and

∂f
∂t
(0, x) = 0. If we ignore the first initial

condition for a moment, we can consider this as a homogeneous linear equation,
where we let

V = {f ∈ C2(R×[0, π]) : ∀t ∈ R : f(t, 0) = f(t, π) = 0, ∀x ∈ ]0, π[ : ∂f
∂t
(0, x) = 0}

and W = C(R× [0, π]), and the linear map V → W is the wave operator

w : f 7−→ ∂2f

∂t2
− c2

∂2f

∂x2
.

We can find fairly easily a bunch of solutions using the trick of ‘separating the
variables’ — we look for solutions of the form f(t, x) = g(t)h(x). This leads to
an equation

1

c2
g′′(t)

g(t)
=
h′′(x)

h(x)
,

and the common value of both sides must be constant. The boundary conditions
then force h(x) = sin kx (up to scaling) for some k ≥ 1, and then g(t) = cos kct
(again up to scaling). Since we know that the solution set is a linear subspace,
we see that all linear combinations

f(t, x) =
n∑
k=1

ak cos kct sin kx

are solutions. Such a solution has

f(0, x) =
n∑
k=1

ak sin kx ,

so if f0 is of this form, we have found a (or the) solution to the original problem.
Otherwise, we have to use some input from Analysis, which tells us that we can
approximate f0 by linear combinations as above and that the corresponding
solutions will approximate the solution we are looking for.

Remark 4.36. Suppose f : V → W is a linear map of which you already know
it is an isomorphism with inverse g = f−1. Then for any b ∈ W , the (unique)
solution to the linear equation f(x) = b is of course just x = g(b).

Exercises

4.3.1. For any a, b, c ∈ R, we consider the system −x1 + x2 + x3 = a
2x1 + x2 − 2x3 = b
x1 + 2x2 − x3 = c

of linear equations in x = (x1, x2, x3).
(1) Show that for a = b = c = 0, the solution set equals

{λ(1, 0, 1) : λ ∈ R }.

(2) Describe the solution set for a = 1, b = 1, c = 2.
(3) Describe the solution set for a = 1, b = 0, c = 0.
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4.4. Characterising linear maps

In this section, we let n denote a non-negative integer, and we study the linear
maps with F n as domain. As before, we let e1, e2, . . . , en denote the standard
generators of F n.

In Proposition 4.2 we saw that for every a ∈ F n, the scalar product with a gives
a linear map from F n to F . The following proposition shows that all linear maps
from F n to F are of this form.

Proposition 4.37. Let f : F n → F be a linear map. Then there is a unique vector
a ∈ F n such that for all x ∈ F n we have

f(x) = ⟨a, x⟩.
Moreover, this vector a equals

(
f(e1), f(e2), . . . , f(en)

)
.

Proof. Suppose there exists such an element a and write a = (a1, a2, . . . , an).
Then for each i with 1 ≤ i ≤ n we have

f(ei) = ⟨a, ei⟩ = a1 · 0 + · · ·+ ai−1 · 0 + ai · 1 + ai+1 · 0 + · · ·+ an · 0 = ai.

We conclude that a =
(
f(e1), f(e2), . . . , f(en)

)
, so a is completely determined

by f and therefore unique, if it exists.

To show there is indeed an a as claimed, we take

a =
(
f(e1), f(e2), . . . , f(en)

)
(we have no choice by the above) and show it satisfies f(x) = ⟨a, x⟩ for all
x ∈ F n, as required. Indeed, if we write x = (x1, x2, . . . , xn), then we find

f(x) = f(x1 · e1 + · · ·+ xn · en) = x1 · f(e1) + · · ·+ xn · f(en) = ⟨x, a⟩ = ⟨a, x⟩.
□

Propositions 4.2 and 4.37 give a bijection between the vector space F n and the
vector space Hom(F n, F ) of linear maps from F n to F . The following proposition
generalises the codomain from F to a general vector space W : there is a bijection
between W n and the vector space Hom(F n,W ) of linear maps from F n to W
(see Remark 4.40). In Exercise 4.4.5 we will see that this bijection is in fact an
isomorphism.

Proposition 4.38. Let W be a vector space over F . Then for every sequence
(w1, w2, . . . , wn) of n vectors in W , there is a unique linear map φ : F n → W such
that for every i ∈ {1, . . . , n} we have φ(ei) = wi. Moreover, this map φ sends the
element (x1, . . . , xn) ∈ F n to x1w1 + · · ·+ xnwn.

Proof. Suppose that φ is a linear map such that for every i ∈ {1, . . . , n} we
have φ(ei) = wi . Then for x = (x1, x2, . . . , xn) ∈ F n we have

φ(x) = φ(x1e1 + · · ·+ xnen) = x1φ(e1) + · · ·+ xnφ(en) = x1w1 + · · ·+ xnwn,

so φ is completely determined on all x ∈ F n by the vectors w1, w2, . . . , wn and
therefore φ is unique, if it exists.

To show there is indeed a φ as claimed, we define the function φ : F n → W by

φ(x) = x1w1 + · · ·+ xnwn
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(we have no choice by the above). One easily checks that φ is linear. (Do this!)
For i with 1 ≤ i ≤ n, we have

φ(ei) = 0 · w1 + · · ·+ 0 · wi−1 + 1 · wi + 0 · wi+1 + · · ·+ 0 · wn = wi,

so φ indeed satisfies the requirements. □

By construction, the image of the map φ of Proposition 4.38 consists of all linear
combinations of w1, w2, . . . , wn, so it equals L(w1, . . . , wn); this implies that φ is
surjective if and only if the elements w1, w2, . . . , wn generate W .

Definition 4.39. For any F -vector spaceW , and a sequence C = (w1, w2, . . . , wn)
of n elements in W , we write φC for the linear map φ : F n → W associated to C
as in Proposition 4.38.

Remark 4.40. Suppose W = F . Then for any element a ∈ F n, the associated
map φa : F

n → F sends x ∈ F n to ⟨a, x⟩. Moreover, Proposition 4.37 is a
special case of Proposition 4.38, which becomes clear from the rephrasing of
these propositions in Exercises 4.4.5 and 4.4.4.

Exercises

4.4.1. For each of the problems 4.1.7, 4.1.8, 4.1.10, 4.1.11, and parts (3) and (4) of
problem 4.1.4, give a vector space W , an integer n, and a sequence C ∈ Wn

such that the described linear map is φC .

4.4.2. Let j ∈ {1, . . . , n} be an integer, and let πj : F
n → F be the projection on

the j-th coordinate (see Example 4.13).
(1) For which vector space W , integer m, and a sequence C ∈ Wm does πj

equal φC?
(2) For which element a ∈ Fn is πj given by πj(x) = ⟨a, x⟩ for all x ∈ Fn?

4.4.3. In this exercise we characterise linear maps of which the codomain is Fm.
For 1 ≤ i ≤ m, let πi : F

m → F denote the projection on the i-th coordinate,
as in Example 4.13. Let V be a vector space over F .
(1) Let f : V → Fm be any map. Show that the map f is linear if and only if

for every i, the composition πi ◦ f : V → F is linear.
(2) Conclude that for any linear maps f1, . . . , fm : V → F , the map

V → Fm, v 7→
(
f1(v), f2(v), . . . , fm(v)

)
is linear.

(3) Show that the associations above yield a bijection

Hom(V, Fm) → Hom(V, F )m.

(4) Show that this bijection is an isomorphism.

4.4.4. Prove that the map

Fn → Hom(Fn, F ), a 7→ (x 7→ ⟨a, x⟩)

is an isomorphism whose inverse sends the map f ∈ Hom(Fn, F ) to the se-
quence

(
f(e1), f(e2), . . . , f(en)

)
.

4.4.5. Let W be a vector space over F . Show that the map

Wn → Hom(Fn,W ), C 7→ φC

is an isomorphism whose inverse sends the map f ∈ Hom(Fn,W ) to the se-
quence

(
f(e1), f(e2), . . . , f(en)

)
.
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4.4.6. The scalar product on Fn is a map Fn×Fn → F , satisfying some conditions.
In this exercise, we will generalise this to FX for any set X. Note that if X is
finite, then FX and F (X) as in Exercise 3.1.9 are equal. In general, we have a
map

FX × F (X) → F, (f, g) 7→ ⟨f, g⟩ =
∑
x∈X

f(x)g(x),

where the sum contains only finitely many nonzero terms, because there are
only finitely many x ∈ X with g(x) ̸= 0.
(1) Show that this generalised scalar product satisfies the conditions of Propo-

sition 3.11.
(2) Show that there is an isomorphism

FX → Hom(F (X), F )

that sends a vector f ∈ FX to the linear map g 7→ ⟨f, g⟩.
4.4.7. This exercise generalises Proposition 4.38. Let X be a (not necessarily finite)

set. Consider the subspace F (X) of FX as in Exercise 3.1.9, and the elements ex
(for x ∈ X) as in Exercise 3.4.5. Let W be a vector space over F and let
C ∈ Map(X,W ) = WX be a function from X to W . Set wx = C(x) for each
x ∈ X.
(1) Show that there is a unique linear map φC : F (X) → W that satisfies

φC(ex) = wx for every x ∈ X and that this map is surjective if and only
if the set {wx : x ∈ X} generates W .

(2) Show that there is an isomorphism

WX → Hom(F (X),W )

that sends C ∈WX to φC .

*4.4.8. This exercise generalises several of the previous exercises. Let V and W be
vector spaces over F , and let X be any set. Let V (X) be as in Exercise 3.1.9.
(1) Show that the map

Hom(V,W )X → Hom(V (X),W )

f 7→
(
σ 7→

∑
x∈X

f(x)(σ(x))
)

is an isomorphism.
(2) Show that the map

Hom(V,W )X → Hom(V,WX)

f 7→
(
v 7→ (x 7→ f(x)(v))

)
is an isomorphism.

(3) Show how Exercises 4.4.3, 4.4.6, and 4.4.7 are special cases of this.

4.5. Isomorphisms

If f : V → W is a isomorphism, then the two vector spaces V and W can for all
practical purposes be identified through f . This is illustrated by the following
proposition.
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Proposition 4.41. Suppose φ : V → V ′ and ψ : W → W ′ are isomorphisms of
vector spaces. Suppose f : V → W is a linear map and set f ′ = ψ◦f◦φ−1 : V ′ → W ′.
Then the diagram

V
f //

φ
��

W

ψ
��

V ′ f ′ // W ′

commutes, φ restricts to an isomorphism ker f → ker f ′, and ψ restricts to an
isomorphism im f → im f ′.

Proof. Exercise. □

Example 4.42. Take the vector a = (1, 1, 1) ∈ R3 and set

V = a⊥ = {(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0}.
Let ψ : V → R2 be the isomorphism of Example 4.15 that sends (x1, x2, x3) to
(x1, x2). Its inverse ψ−1 sends (x1, x2) to (x1, x2,−x1 − x2). Let r : V → V be
the linear map that sends (x1, x2, x3) to (x2, x3, x1) and set r′ = ψ ◦ r ◦ ψ−1.
Then r′ : R2 → R2 sends the point (x1, x2) to (x2,−x1 − x2). When we identify
V with R2 through the map ψ, the map r corresponds with r′. For example,
just like we have r3 = idV , we also have r′3 = idR2 , which can easily be checked
directly as well.

Exercises

4.5.1. Let f : V → V be an endomorphism of a vectorspace V . Let σ : V → W be
a linear map. Suppose that f sends kerσ to itself, that is, f(kerσ) ⊂ kerσ.
Show that f induces a well-defined endomorphism

f̃ : imσ → imσ

that sends the element σ(z) ∈ imσ to σ(f(z)) for every z ∈ V .

4.5.2. Suppose we have a diagram

V
f //

φ
��

W

ψ
��

V ′ f ′ // W ′

of linear maps that commutes, that is, we have linear maps φ : V → V ′ and
ψ : W →W ′ and f : V →W and f ′ : V ′ →W ′ satisfying ψ ◦ f = f ′ ◦ φ.
(1) Show that φ restricts to a linear map φ : ker f → ker f ′.
(2) Show that ψ restricts to a linear map ψ : im f → im f ′.
(3) Show that if φ is injective, then so is φ.
(4) Show that if ψ is injective, then so is ψ.
(5) Show that if φ is surjective, then so is ψ.
(6) Show that if φ is surjective and ψ is injective, then φ is surjective.
(7) Give examples that show that neither of the two hypotheses can be left

out of the previous statement.
(8) Prove Proposition 4.41.

4.5.3. Let V be a vector space and σ : X → Y any map of sets. Define the map

σ∗ : V Y = Map(Y, V ) → Map(X,V ) = V X

by σ∗(f) = f ◦ σ.
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(1) Show that σ∗ is a linear map.
(2) Show that if σ is injective, then σ∗ is surjective.
(3) Show that if σ is surjective, then σ∗ is injective.
(4) Show that if σ is bijective, then σ∗ is an isomorphism.

4.5.4.
(1) Suppose α : V ′ → V is a linear map of vector spaces over F . Show that

for every vector space W over F there is a linear map

α∗ : Hom(V,W ) → Hom(V ′,W )

that sends f to f ◦ α.
(2) Suppose β : W → W ′ is a linear map of vector spaces over F . Show that

for every vector space V over F there is a linear map

β∗ : Hom(V,W ) → Hom(V,W ′)

that sends f to β ◦ f .
(3) Check that in Proposition 4.41 we have

f ′ = (ψ∗ ◦ (φ−1)∗)(f) = ((φ−1)∗ ◦ ψ∗)(f).

4.5.5. Suppose α, α1, α2 : V
′ → V and α′ : V ′′ → V ′ are linear maps of vector spaces

over F . Let W be a vector space over F . With the notation of Exercise 4.5.4,
show that we have the following.
(1) Show that (α ◦ α′)∗ = (α′)∗ ◦ α∗.
(2) Show that (α1 + α2)

∗ = α∗
1 + α∗

2.
(3) Show that (λα)∗ = λ · α∗ for any λ ∈ F .

4.5.6. Suppose β, β1, β2 : W → W ′ and β′ : W ′ → W ′′ are linear maps of vector
spaces over F . Let V be a vector space over F . With the notation of Exer-
cise 4.5.4, show that we have the following.
(1) Show that (β′ ◦ β)∗ = β′∗ ◦ β∗.
(2) Show that (β1 + β2)∗ = (β1)∗ + (β2)∗.
(3) Show that (λβ)∗ = λ · β∗ for any λ ∈ F .

4.5.7. Suppose φ : V → V ′ and ψ : W → W ′ are isomorphisms of vector spaces.
Show that the linear map

(φ−1)∗ ◦ ψ∗ : Hom(V,W ) → Hom(V ′,W ′),

which sends f to ψ ◦ f ◦ φ−1, is an isomorphism (see Proposition 4.41 and
Exercise 4.5.4).



CHAPTER 5

Matrices

For this chapter, let m and n denote non-negative integers. Unless explicitly men-
tioned otherwise, the standard generators e1, e2, . . . , en are the standard generators
of F n.

Before we give the definition of a matrix in Section 5.1, we give some motivation
for that definition. Let φ : F n → Fm be a linear map. By Proposition 4.38, this
map φ is uniquely determined by the images w1 = φ(e1), . . . , wn = φ(en) in F

m

of the n standard generators of F n. If C = (w1, . . . , wn) is the sequence of these
images, then φ equals φC as in Definition 4.39.

From a different viewpoint, we can interpret φ : F n → Fm as a sequence of m
linear maps φ1, φ2, . . . , φm : F n → F , one for each coordinate of Fm, so that φ is
given by (cf. Exercise 4.4.3)

x 7→
(
φ1(x), . . . , φm(x)

)
.

Each of the m maps φi : F
n → F is given by x 7→ ⟨vi, x⟩ for some vi ∈ F n (see

Proposition 4.37), so φ is determined by the m vectors v1, . . . , vm ∈ F n.

We will see in Proposition 5.2 that if we write the n vectors w1, . . . , wn ∈ Fm as
columns next to each other, then we obtain the same array of m×n elements of F
as when we write the m vectors v1, . . . , vm ∈ F n as rows underneath each other!

In other words, for every i ∈ {1, . . . ,m} and every j ∈ {1, . . . , n}, the i-th coordi-
nate of wj is equal to the j-th coordinate of vi; this element equals φi(ej) and it
is in the i-th row and the j-th column of the array just described. The map

A : {1, . . . ,m} × {1, . . . , n} → F

that sends (i, j) to this element φi(ej) is called a matrix (see Definition 5.1), often
written as the array

A(1, 1) A(1, 2) · · · A(1, n)
A(2, 1) A(2, 2) · · · A(2, n)

...
...

...
A(m, 1) A(m, 2) · · · A(m,n)

 =
(
A(i, j)

)
1≤i≤m,1≤j≤n

described above. By abuse of language, we will also refer to such an array as a
matrix.

87
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5.1. Definition of matrices

Definition 5.1. Let F be a field and m,n non-negative integers. An m × n
matrix over F is a function

A : {1, . . . ,m} × {1, . . . , n} → F,

often written as an array

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 = (aij)1≤i≤m,1≤j≤n

of entries or coefficients aij = A(i, j) ∈ F .

By abuse of language, we will often identify a matrix with its associated array and
vice versa.

For i ∈ {1, . . . ,m}, the vector (ai1, ai2, . . . , ain) is a row of A, which is an element
of F n, and for j ∈ {1, . . . , n}, the vector

a1j
a2j
...
amj


is called a column of A, which is an element of Fm, be it written vertically here.

If we denote the j-th column by wj (for 1 ≤ j ≤ n), then we also write A as

A =

 | | |
w1 w2 · · · wn
| | |


where the vertical lines above and below wj indicate that wj is a vector that makes
up the whole j-th column of the matrix. A similar notation can be used to indicate
which rows the matrix A consists of.

The set of all m × n matrices with entries in F is denoted by Mat(m × n, F ).
Note that as a boundary case, m = 0 or n = 0 (or both) is allowed; in this case
Mat(m× n, F ) has only one element, which is an empty matrix.

If m = n, we sometimes write Mat(n, F ) for Mat(n× n, F ). The matrix

I = In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = (δij)1≤i,j≤n .

is called the identity matrix.
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5.2. Matrix associated to a linear map

Proposition 5.2. Let φ : F n → Fm be a linear map. For 1 ≤ i ≤ m, let vi ∈ F n

be the vector for which the linear map φi = πi◦φ : F n → F is given by x 7→ ⟨vi, x⟩.
For 1 ≤ j ≤ n, set wj = φ(ej) ∈ Fm. Then the m× n matrix | | |

w1 w2 · · · wn
| | |


with w1, . . . , wn as columns equals the matrix

−v1−
−v2−

...
−vm−


with v1, . . . , vm as rows.

Proof. Consider any indices 1 ≤ i ≤ m and 1 ≤ j ≤ n. The entry in row i and
column j of the first matrix is the i-th coordinate of wj = φ(ej), so this entry
equals (πi ◦ φ)(ej) = φi(ej) = ⟨vi, ej⟩, which is the j-th coordinate of vi, and
thus the entry in row i and column j of the second matrix. The equality of the
two matrices follows. □

Remark 5.3. Note that if φ : F n → Fm is a linear map, then the linear map
φi = πi ◦ φ : F n → F used in Proposition 5.2 is the map obtained from φ by
only considering the i-th coordinate of the image in Fm.

Example 5.4. Let φ : R4 → R3 be given by

(x1, x2, x3, x4) 7→ (x1 + x2 − 3x3 +2x4,−2x1 +3x3 − 5x4, 7x1 +3x2 − 2x3 +6x4)

and for 1 ≤ j ≤ 4, set wj = φ(ej) ∈ R3. Then we have

w1 =

 1
−2
7

 , w2 =

1
0
3

 , w3 =

−3
3
−2

 , w4 =

 2
−5
6

 ,

where we have already conveniently written w1, w2, w3, w4 vertically. As in
Proposition 5.2, for 1 ≤ i ≤ 3, we let vi ∈ R4 denote the vector for which the
linear map φi = πi ◦ φ : R4 → R is given by x 7→ ⟨vi, x⟩. For i = 1 we have
φ1((x1, x2, x3, x4)) = x1 + x2 − 3x3 + 2x4, so v1 = (1, 1,−3, 2). Similarly, we
obtain

v1 = (1, 1,−3, 2),

v2 = (−2, 0, 3,−5),

v3 = (7, 3,−2, 6).

Indeed, we find | | | |
w1 w2 w3 w4

| | | |

 =

 1 1 −3 2
−2 0 3 −5
7 3 −2 6

 =

−v1−
−v2−
−v3−

 .
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For the rest of this section, let φ : F n → Fm be a linear map and let the vectors
v1, . . . , vm ∈ F n and w1, . . . , wn ∈ Fm be as in Proposition 5.2. Let

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 =

 | | |
w1 w2 · · · wn
| | |

 =


−v1−
−v2−

...
−vm−


be the matrix associated to φ as in Proposition 5.2. Then for every vector

x =


x1
x2
...
xn

 ∈ F n,

the image φ(x) can be written, by definition of v1, . . . , vm and w1, . . . , wn, as

φ(x) =


⟨v1, x⟩
⟨v2, x⟩

...
⟨vm, x⟩

 and φ(x) = x1w1 + . . .+ xnwn

(see Proposition 4.38). If we write out either expression, we obtain

(5.1) φ(x) =


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 .

Note that here we have written φ(x) vertically, just like we may write the columns
w1, . . . , wn vertically. This way the coordinates ⟨vi, x⟩ are written underneath
each other, analogous to how the rows vi are written underneath each other in the
matrix A. We will see later, in Remark 5.19, why in this context it is convenient
to also write x vertically.

5.3. The product of a matrix and a vector

In the previous section, we started with a linear map φ and saw that we may
associate a matrix to it. Conversely, we will see that every matrix defines a linear
map. Motivated by (5.1), we define the product of any matrix A ∈ Mat(m×n, F )
and a vector x ∈ F n as follows.

Definition 5.5. For any matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 ∈ Mat(m× n, F ) and vector x =


x1
x2
...
xn

 ∈ F n

we define the product Ax as

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn



x1
x2
...
xn

 =


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 .
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Note that here again, we have written x and Ax vertically.

Analogous to the previous section, if we let

vi = (ai1, ai2, . . . , ain)

be the i-th row of A (for 1 ≤ i ≤ m), then we can write Ax as

(5.2) Ax =


−v1−
−v2−

...
−vm−

 · x =


⟨v1, x⟩
⟨v2, x⟩

...
⟨vm, x⟩

 ,

so the entries of Ax are the scalar products of x with the row vectors of A. If we
let

wj =


a1j
a2j
...
amj


denote the j-th column of A (for 1 ≤ j ≤ n), then we can write Ax as

(5.3) Ax =

 | | |
w1 w2 · · · wn
| | |



x1
x2
...
xn

 = x1w1 + x2w2 + . . .+ xnwn,

so Ax is the linear combination of the column vectors of A with the entries of x
as coefficients. Note that Aej = wj.

Remark 5.6. Both points of view on the multiplication will prove useful: the
coordinates of Ax being the scalar products of x with the rows of A on one hand,
and Ax being a linear combination of the columns of A on the other hand.

Example 5.7. We have 3 2 1
−1 2 7
−3 5 −2

 2
−2
−1

 =

 3 · 2 + 2 · (−2) + 1 · (−1)
(−1) · 2 + 2 · (−2) + 7 · (−1)

(−3) · 2 + 5 · (−2) + (−2) · (−1)

 =

 1
−13
−14

 .

Verify that the result does indeed correspond with the three scalar products of
the vector (2,−2,−1) with the rows of the 3 × 3 matrix. Also verify that the
result equals the right linear combination of the columns.

Exercises

5.3.1. For the given matrix A and the vector x, determine Ax.
(1)

A =

 −2 −3 1
1 1 −2
0 1 1

 and x =

 −3
−4
2

 ,

(2)

A =

(
1 −3 2

−2 −4 2

)
and x =

 1
2

−1

 ,
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(3)

A =


4 3
3 −2

−3 −1
−1 1

 and x =

(
−2
3

)
.

5.4. Linear maps associated to matrices

Definition 5.8. To any matrix A ∈ Mat(m × n, F ) we associate the function
fA : F

n → Fm given by
fA(x) = Ax

for all x ∈ F n.

Lemma 5.9. Let A be an m × n matrix over F with columns w1, . . . , wn ∈ Fm.
Let fA : F

n → Fm be the function associated to A. Then we have fA(ej) = wj for
all 1 ≤ j ≤ n, and fA equals φC as in Definition 4.39 with C = (w1, . . . , wn).

Proof. For every x = (x1, . . . , xn) ∈ F n, we have

fA(x) = x1w1 + . . .+ xnwn = φC(x),

so we obtain fA = φC . In particular, we have fA(ej) = wj for all 1 ≤ j ≤ n. □

Note that Lemma 5.9 implies that for any m× n matrix A, the map fA is linear
and the j-th column of A equals fA(ej) for any j ∈ {1, . . . , n}. In fact, by Propo-
sition 4.38, the function fA : F

n → Fm is the unique linear map sending ej to the
j-th column of A.

Clearly, the linear map fI associated to the matrix I = In is the identity map
F n → F n.

Example 5.10. Let A ∈ Mat(3× 4,R) be the matrix3 2 0 −1
1 −2 5 −3
0 1 4 7

 .

Then the map fA sends
x1
x2
x3
x4

 ∈ R4 to

3x1 +2x2 −x4
x1 −2x2 +5x3 −3x4

x2 +4x3 +7x4

 ∈ R3.

Proposition 5.11. Let F be a field and m,n non-negative integers. Suppose
f : F n → Fm is a linear map. Then there is a unique matrix A ∈ Mat(m× n, F )
with f = fA.

Proof. Let A be the matrix associated to f as in Proposition 5.2, that is, define
wj = f(ej) for 1 ≤ j ≤ n, and let A be the matrix of which the j-th column
is wj for each j. Then fA(ej) = Aej = wj = f(ej) for all j, so f = fA by
Proposition 4.38. Furthermore, any m× n matrix A′ with fA′ = f has its j-th
column equal to A′ej = fA′(ej) = f(ej) = wj for all j, so A

′ = A. This finishes
the proof. □
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Example 5.12. Let ρ : R2 → R2 be the rotation about the origin (0, 0) over an
angle θ. From Exercise 4.1.7, we know that ρ is given by

ρ

((
x
y

))
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)
.

We conclude that ρ corresponds to the matrix(
cos θ − sin θ
sin θ cos θ

)
.

Example 5.13. Let s = sL : R2 → R2 be the reflection in the line L given by
y = 2x. Then s is linear and we can determine a 2 × 2 matrix A such that
s = fA. By Lemma 5.9, the columns of A are the images fA(e1) = s(e1) and
fA(e2) = s(e2). Note that the vector a = (2,−1) is a normal of L. For any

vector v ∈ R2, the reflection of v in L is s(v) = v − 2λa with λ = ⟨v,a⟩
⟨a,a⟩ (see

(1.11) and Figure 1.18, where H plays the role of our L). We find

s(e1) = e1 − 2 · 2
5
· a =

(
−3

5
4
5

)
and s(e2) = e2 − 2 · −1

5
· a =

(
4
5
3
5

)
,

so we get

A =

(
−3

5
4
5

4
5

3
5

)
.

Proposition 5.11 shows that the map

(5.4) Mat(m× n, F ) → Hom(F n, Fm), A 7→ fA

is a bijection. Therefore, one often identifies a matrix A with the linear map fA
that the matrix induces. In this way we may refer to the kernel and image of fA
as the kernel and image of A and we write kerA = ker fA and imA = im fA.

Exercises

5.4.1. For each of the linear maps of the form f : Fn → Fm of the exercises of
Section 4.1, give a matrix M such that f is given by

x 7→Mx.

5.4.2. Given the matrix

M =

 −4 −3 0 −3
2 2 −3 −1
0 −3 1 −1


and the linear map f : Rn → Rm, x 7→ Mx for the corresponding m and n.
What are m and n? Give vectors w1, . . . , wn such that f is also given by

f
(
(x1, x2, . . . , xn)

)
= x1w1 + · · ·+ xnwn.

5.4.3. Determine the matrix M for which fM : R3 → R3 is reflection in the plane
given by x+ 2y − z = 0.

5.4.4. Given the following linear maps Rn → Rm, determine a matrix A such that
the map is also given by x 7→ Ax.
(1) f : R3 → R4, (x, y, z) 7→ (3x+ 2y − z,−x− y + z, x− z, y + z),
(2) g : R3 → R3, (x, y, z) 7→ (x+ 2y − 3z, 2x− y + z, x+ y + z),
(3) h : R3 → R2, (x, y, z) 7→ x · (1, 2) + y · (2,−1) + z · (−1, 3),
(4) j : R2 → R3, v 7→ (⟨v, w1⟩, ⟨v, w2⟩, ⟨v, w3⟩), with w1 = (1,−1), w2 = (2, 3)

and w3 = (−2, 4).



94 5. MATRICES

5.5. Addition and multiplication of matrices

We know that Hom(F n, Fm) has the structure of a vector space (see Lemma 4.19).
We can ‘transport’ this structure to Mat(m × n, F ) using the identification (5.4)
of matrices and linear maps. The bijection (5.4) then becomes an isomorphism
(see Exercise 5.5.11).

Definition 5.14. For A,B ∈ Mat(m × n, F ), we define A + B to be the matrix
corresponding to the linear map fA + fB sending x to Ax + Bx. Similarly, for
λ ∈ F , we define λA to be the matrix corresponding to the linear map λfA sending
x to λ · Ax, so that fA+B = fA + fB and fλA = λfA.

It is a trivial verification to see that (aij)i,j + (bij)i,j = (aij + bij)i,j, that is,
that addition of matrices is done coefficient-wise. Similarly, we see easily that
λ · (aij)i,j = (λaij)i,j. With this addition and scalar multiplication, Mat(m×n, F )
becomes an F -vector space, and it is clear that it is ‘the same’ as (that is, iso-
morphic to) Fmn — the only difference is the arrangement of the coefficients in
an array instead of in a sequence.

By Lemma 4.3, the composition of two linear maps is again linear. How is this
reflected in terms of matrices?

Definition 5.15. Let A ∈ Mat(l × m,F ) and B ∈ Mat(m × n, F ). Then B
gives a linear map fB : F

n → Fm, and A gives a linear map fA : F
m → F l. We

define the product AB to be the matrix corresponding to the composite linear

map fA ◦ fB : F n fB−→ Fm fA−→ F l. So AB will be a matrix in Mat(l × n, F ).

Remark 5.16. Note that for the product AB to exist, the number of columns
of A has to equal the number of rows of B.

By Definition 5.15, the product AB satisfies fAB = fA ◦ fB, so we have

(5.5) (AB)x = fAB(x) = fA(fB(x)) = A(Bx)

for all x ∈ F n. To express AB in terms of A and B, we let v1, v2, . . . , vl denote
the rows of A and w1, w2, . . . , wn the columns of B. The relation (5.5) holds in
particular for x = ek, the k-th standard vector of F n. Note that (AB)ek and Bek
are the k-th column of AB and B, respectively. Since the latter is wk, we find
that the k-th column of AB equals

(AB)ek = A(Bek) = Awk =


⟨v1, wk⟩
⟨v2, wk⟩

...
⟨vl, wk⟩

 .

We conclude

AB =


−v1−
−v2−

...
−vl−


 | | |
w1 w2 · · · wn
| | |

 =


⟨v1, w1⟩ ⟨v1, w2⟩ · · · ⟨v1, wn⟩
⟨v2, w1⟩ ⟨v2, w2⟩ · · · ⟨v2, wn⟩

...
...

...
⟨vl, w1⟩ ⟨vl, w2⟩ · · · ⟨vl, wn⟩

 .

In other words, the (i, k)-th entry in the i-th row and the k-th column of the
product AB is the scalar product ⟨vi, wk⟩ of the i-th row of A and the k-th row
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of B. With

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

al1 al2 · · · alm

 and B =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

bm1 bm2 · · · bmn


we get

vi = (ai1, ai2, . . . , aim) and wk =


b1k
b2k
...
bmk

 ,

so in terms of the entries of A and B, the (i, k)-th entry cik of the product AB
equals

cik = ⟨vi, wk⟩ = ai1b1k + ai2b2k + · · ·+ aimbmk =
m∑
j=1

aijbjk .

If we write the matrix A on the left of AB and the matrix B above AB, then the
(i, k)-th entry cik of AB is the scalar product of the i-th row of A next to this
entry and the k-th column of B above the entry.

b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

bm1 bm2 · · · bmn

 = B(5.6)

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

al1 al2 · · · alm



c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
...

cl1 cl2 · · · cln

 = AB

Example 5.17. To compute the product AB for the matrices

A =

(
1 3 5 7
9 11 13 15

)
and B =


2 4 6
8 10 12
14 16 18
20 22 24

 ,

we write them (on scratch paper) diagonally with respect to each other.
2 4 6

8 10 12
14 16 18
20 22 24( 1 3 5 7 ) ( . 268 . )

9 11 13 15 . . .

The product AB is a matrix with as many rows as A and as many columns as
B, so it is a 2× 3 matrix. The (1, 2)-th entry of AB, for instance, is the scalar
product of the first row of A and the second column of B, which equals

⟨(1, 3, 5, 7), (4, 10, 16, 22)⟩ = 1 · 4 + 3 · 10 + 5 · 16 + 7 · 22 = 268.

The other entries are computed similarly and we find

AB =

(
236 268 300
588 684 780

)
.
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Remark 5.18. The identity matrices act as a multiplicative identity:

ImA = A = AIn for A ∈ Mat(m× n, F ).

Remark 5.19. Suppose A is an m × n matrix and x ∈ F n is a vector. If we
write x vertically and identify it with an n × 1 matrix, then the product A · x
of the matrix A and the vector x, as described in Section 5.3, corresponds with
the matrix multiplication described in this section (assuming we also identify
Ax with an m× 1 matrix). This is why in this context it is convenient to write
both x and Ax vertically.

Proposition 5.20. The matrix multiplication is associative: for A ∈ Mat(k×l, F )
and B ∈ Mat(l ×m,F ) and C ∈ Mat(m× n, F ), we have

A(BC) = (AB)C.

Proof. The left-hand side is the unique matrix associated to the composition
fA ◦ (fB ◦ fC), while the right-hand side is the unique matrix associated to the
composition (fA ◦ fB) ◦ fC . These composite maps are the same because of
associativity of composition. In other words, we have

fA(BC) = fA ◦ fBC = fA ◦ (fB ◦ fC) = (fA ◦ fB) ◦ fC = fAB ◦ fC = f(AB)C ,

so A(BC) = (AB)C by Proposition 5.11. □

Proposition 5.21. The matrix multiplication is distributive with respect to addi-
tion:

A(B + C) = AB + AC for A ∈ Mat(l ×m,F ), B,C ∈ Mat(m× n, F );

(A+B)C = AC +BC for A,B ∈ Mat(l ×m,F ), C ∈ Mat(m× n, F ).

Proof. Exercise. □

If A is an m × n matrix, then for both the product AB and the product BA
to exist, the matrix B has to be an n × m matrix. However, even if AB and
BA both exist, we do not necessarily have AB = BA. In other words, matrix
multiplication is not commutative in general. Furthermore, AB = 0 (where 0
denotes a zero matrix of suitable size) does not imply that A = 0 or B = 0. For a
counterexample (to both properties), consider (over a field of characteristic ̸= 2)

A =

(
1 1
0 0

)
and B =

(
0 1
0 1

)
.

Then

AB =

(
0 2
0 0

)
̸=

(
0 0
0 0

)
= BA .

Definition 5.22. A matrix A ∈ Mat(m × n, F ) is called invertible if the linear
map fA corresponding to A is an isomorphism. The matrix corresponding to the
inverse linear map f−1

A is called the inverse of A and is denoted A−1.

Note that the matrix associated to f−1
A is unique by Proposition 5.11, and we have

fA−1 = f−1
A . We will see in Exercise 6.3.5 and Corollary 8.9 that if the m × n

matrix A is invertible, then m = n, so A is in fact a square matrix.
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Lemma 5.23. Let A be an m × n matrix and B an n × m matrix over F . If
AB = Im, then fA : F

n → Fm is surjective and fB : F
m → F n is injective.

Proof. The composition fA ◦ fB = fAB = fIm is the identity and therefore both
injective and surjective. It follows that fA is surjective and fB is injective. □

Remark 5.24. If matrices A and B satisfy AB = Im as in Lemma 5.23, then
A is called a left inverse of B, and B is called a right inverse of A.

If A is an invertible m × n matrix, then we have AA−1 = Im and A−1A = In, so
A−1 is both a left and a right inverse of A. The following proposition shows that
A−1 is uniquely determined by this property.

Proposition 5.25. A matrix A ∈ Mat(m× n, F ) is invertible if and only if there
exist matrices B and C such that AB = Im and CA = In. Any such matrices (if
they both exist) satisfy B = C = A−1.

Proof. The “only if” part is obvious, as we can take B = C = A−1 if A is
invertible. For the “if”-part, suppose that there exist matrices B and C such
that AB = Im and CA = In. Then by Lemma 5.23, applied to both identi-
ties, the linear map fA : F

n → Fm is both injective and surjective, and there-
fore an isomorphism, so A is invertible. From fA ◦ fB = fAB = idFm and
fC ◦ fA = fCA = idFn , we conclude that fB and fC are the inverse of fA, so
B = C = A−1. □

Proposition 5.26. Suppose A and B are invertible matrices for which the product
AB exists. Then AB is also invertible, and (AB)−1 = B−1A−1. (Note the reversal
of the factors!)

Proof. Suppose A is an l×m matrix and B is an m×n matrix. Then AB is an
l × n matrix. Set M = B−1A−1. Then M(AB) = B−1A−1AB = B−1B = In.
We also have (AB)M = ABB−1A−1 = AA−1 = Il. Hence, M is indeed the
inverse of the matrix AB. □

Notation 5.27. Let A ∈ Mat(n, F ) be a square matrix. For any non-negative
integer k, we write Ak for the product A ·A · · ·A of k copies of A. If A is invertible
and k is a negative integer then Ak denotes the matrix (A−1)−k.

The usual rule Ak+l = Ak · Al holds for all integers k, l, as long as all these
powers are well defined (exercise). Note that because matrix multiplication is not
commutative, we do not have (AB)k = AkBk in general.

Exercises

5.5.1. If matrices A and B have a product AB that is invertible, does this imply
that A and B are invertible? Cf. Exercise 8.4.4.

5.5.2. Prove Proposition 5.21.

5.5.3. Let A ∈ Mat(n, F ) be a square matrix.
(1) Show that for any non-negative integers k, l we have Ak+l = Ak ·Al.
(2) Show that if A is invertible, the same holds for any integers k, l.
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(3) Show that for every non-negative integer k, we have

fAk = fA ◦ fA ◦ · · · ◦ fA︸ ︷︷ ︸
k

.

(4) Show that if A is invertible, the for every negative integer k, we have

fAk = f−1
A ◦ f−1

A ◦ · · · ◦ f−1
A︸ ︷︷ ︸

−k

.

5.5.4. Let ρ : R2 → R2 be rotation around 0 over an angle α, cf. Exercise 4.1.7. In
Example 5.12 we showed that the matrix

Aα =

(
cosα − sinα
sinα cosα

)
satisfies ρ(v) = Aαv for all v ∈ R2. Show that for all α, β ∈ R we have

cos(α+ β) = cosα cosβ − sinα sinβ,

sin(α+ β) = sinα cosβ + cosα sinβ.

5.5.5. For which i, j ∈ {1, . . . , 5} does the product of the real matrices Ai and Aj
exist and in which order?

A1 =

(
1 1 1

−1 −2 −1

)
, A2 =

(
2 −1 1 −4
3 −1 2 4

)

A3 =

 2 3 4
−1 0 2
3 2 1

 , A4 =

 −1 −3
2 −2
1 1

 , A5 =

(
1 −2

−3 2

)
.

Determine those products.

5.5.6. For each i ∈ {1, , . . . , 5}, we define the linear map fi by x 7→ Aix with Ai as
in Exercise 5.5.5.
(1) What are the domains and codomains of these functions?
(2) Which pairs of these maps can be composed and which product of the

matrices belongs to each possible composition?
(3) Is there an order in which you can compose all maps, and if so, which

product of matrices corresponds to this composition, and what are its
domain and codomain?

5.5.7. Take the linear maps f and g of Exercise 5.4.4 and call the corresponding
matrices A and B. In which order can you compose f and g? Write the
composition in the same manner that f and g are given by substituting one in
the other. Multiply the matrices A and B (in the appropriate order) and verify
that this product does indeed correspond with the composition of the linear
maps.

5.5.8. Let A ∈ Mat(l ×m,F ) and B ∈ Mat(m × n, F ) be matrices over F . Show
that the product AB ∈ Mat(l × n, F ) can be described as follows.
(1) The j-th column of AB is the linear combination of the columns of A with

the entries of the j-th column of B as coefficients.
(2) The i-th row of AB is the linear combination of the rows of B with the

entries of the i-th row of A as coefficients.

5.5.9. Suppose that A,B are matrices for which the product AB exists.
(1) Show that we have kerB ⊂ kerAB.
(2) Show that we have imAB ⊂ imA.

5.5.10. Give two matrices A and B that are not invertible, for which AB is an identity
matrix.

5.5.11. Let F be a field and m,n non-negative integers. Show that the map

Mat(m× n, F ) → Hom(Fn, Fm)
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of (5.4) that sends A to fA is an isomorphism. (The fact that this map is linear
is almost true by definition, as we defined the addition and scalar product of
matrices in terms of the addition and scalar product of the functions that are
associated to them.)

5.5.12. Let F be a field and m,n non-negative integers. Some of the previous two
sections can be summarized by the following diagram.

(Fn)m //

''

Mat(m× n, F )

��

(Fm)noo

ww
Hom(Fn, Fm)

Describe a natural isomorphism for each arrow, making the diagram commu-
tative.

5.5.13. (Infinite matrices) As defined, an m× n matrix over a field F is a map from
the set {1, 2, . . . ,m} × {1, 2, . . . , n} to F (sending (i, j) to the (i, j)-th entry of
the associated array in row i and column j). In general, for sets X and Y , we
define an X × Y matrix over F to be a map X × Y → F . In other words, we
set Mat(X × Y, F ) = Map(X × Y, F ).
(1) Show that for each M ∈ Mat(X × Y, F ), there is a linear map

fM : F (Y ) → FX , g 7→

x 7→
∑
y∈Y

M(x, y) · g(y)

 .

(2) Describe the map above both in terms of “row vectors” and “column
vectors” as in Section 5.1, cf. Exercise 4.4.6.

(3) Show that there is an isomorphism

Mat(X × Y, F ) → Hom(F (Y ), FX)

that sends a matrix M to the linear map fM .
Note that, for any set W , two infinite matrices N ∈ Mat(W × X,F ) and
M ∈ Mat(X × Y, F ) can, in general, not be multiplied together, just as the

maps F (Y ) → FX and F (X) → FW can not be composed.

5.6. Row space, column space, and transpose of a matrix

The following definition introduces the transpose A⊤ of a matrix A, which is the
matrix we get from A by a ‘reflection on the main diagonal.’ This associated
matrix occurs naturally in many applications, which can often be explained by
Exercise 5.6.1.

Definition 5.28. Let A = (aij) ∈ Mat(m×n, F ) be a matrix. The transpose of A
is the matrix

A⊤ = (aji)1≤j≤n,1≤i≤m ∈ Mat(n×m,F ) .

Example 5.29. For

A =

1 2 3 4
5 6 7 8
9 10 11 12


we have

A⊤ =


1 5 9
2 6 10
3 7 11
4 8 12

 .
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In the next chapter, we will prove various statements about the rows of matrices.
As the columns of A are the rows of A⊤, we will be able to use the transpose to
conclude the analogs of these statements for columns as well.

Proposition 5.30. Let F be a field, and l,m, n non-negative integers.

(1) For A,B ∈ Mat(m× n, F ) we have (A+B)⊤ = A⊤ +B⊤.
(2) For A ∈ Mat(m× n, F ) and λ ∈ F , we have (λA)⊤ = λ · A⊤.
(3) For A ∈ Mat(l×m,F ) and B ∈ Mat(m×n, F ), we have (AB)⊤ = B⊤A⊤

(note the reversal of factors!).
(4) If A ∈ Mat(m× n, F ) is invertible, then so is A⊤ and we have

(A⊤)−1 = (A−1)⊤.

Proof. The first two statements are obvious. For the third, let v1, . . . , vl be the
rows of A and w1, . . . , wn the columns of B. Then the product AB is the l× n
matrix whose (i, k)-th entry is ⟨vi, wk⟩. The rows of B⊤ are w1, . . . , wn and
the columns of A⊤ are v1, . . . , vl, so the (k, i)-th entry of the product B⊤A⊤

equals ⟨wk, vi⟩ = ⟨vi, wk⟩ as well. This shows that (AB)⊤ = B⊤A⊤. For a
more abstract proof, see Exercise 5.6.1. The fourth statement follows from the
third. □

Definition 5.31. The row space R(A) of an m× n matrix A ∈ Mat(m× n, F ) is
the subspace of F n that is generated by the row vectors of A; the column space
C(A) is the subspace of Fm generated by the column vectors of A.

Clearly we have R(A⊤) = C(A) and C(A⊤) = R(A) for every matrix A.

Proposition 5.32. Let A ∈ Mat(m× n, F ) be a matrix. Then we have

imA = C(A) ⊂ Fm,

kerA = (R(A))⊥ ⊂ F n,

im(A⊤) = R(A) ⊂ F n,

ker(A⊤) = (C(A))⊥ ⊂ Fm.

Proof. From (5.3), we see that the image imA consists of all linear combinations
of the columns of A, which proves the first equality.

For the second, let v1, . . . , vm be the rows of A. Then R(A) = L(v1, . . . , vm).
The map fA : F

n → Fm is then given by fA(x) = (⟨v1, x⟩, . . . , ⟨vm, x⟩) for all
x ∈ F n (here we have written fA(x) normally instead of vertically). Thus, for
every x ∈ F n we have fA(x) = 0 if and only if ⟨vi, x⟩ = 0 for all 1 ≤ i ≤ m, so
if and only if x is contained in

{v1, . . . , vm}⊥ = L(v1, . . . , vm)
⊥ = (R(A))⊥

(see Proposition 3.33(2)). We conclude kerA = (R(A))⊥, as stated.

The last equations follow by applying the first two to A⊤. □

Remark 5.33. Let U ⊂ F n be a subspace of F n. We can use Proposi-
tion 5.32 to reinterpret U⊥. Let U be generated by the vectors v1, v2, . . . , vm.
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Let f : F n → Fm be the linear map given by

f(x) =


⟨v1, x⟩
⟨v2, x⟩

...
⟨vm, x⟩

 .

Then the kernel of f equals U⊥. The map f is also given by x 7→ Mx, where
M is the m× n matrix whose i-th row vector is vi for all i ≤ m.

Remark 5.34. We have expressed the product AB of matrices A and B in
terms of the scalar products of the rows of A and the columns of B. Conversely,
we can interpret the scalar product as product of matrices. Suppose we have
vectors

a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)

in F n. We can think of a and b as n× 1 matrices (implicitly using that F n and
Mat(n × 1, F ) are isomorphic). Then the transpose a⊤ is a 1 × n matrix and
the matrix product

a⊤ · b =
(
a1 a2 . . . an

)
·


b1
b2
...
bn

 = (a1b1 + · · ·+ anbn)

is the 1× 1 matrix whose single entry equals the scalar product ⟨a, b⟩.

Remark 5.35. The vector space F n is isomorphic to both Mat(n× 1, F ) and
Mat(1×n, F ). In this book, as in Remark 5.34, if we implicitly identify a vector
x ∈ F n with a matrix, it will be identified with an n × 1 matrix, that is, we
then write x vertically.

Exercises

5.6.1. Let F be a field and m,n non-negative integers. For each k ∈ {m,n}, let
φk : F

k → Hom(F k, F ) denote the isomorphism that sends the vector a ∈ F k

to the linear map (x 7→ ⟨a, x⟩) (see Propositions 4.2 and 4.37 and Exer-
cise 4.4.4). To each linear map f ∈ Hom(Fn, Fm), we associate the linear
map f∗ : Hom(Fm, F ) → Hom(Fn, F ) that sends α to the composition α ◦ f
(see Exercise 4.5.3), and the linear map f⊤ = φ−1

n ◦ f∗ ◦ φm : Fm → Fn. (The
notation f⊤ used in this exercise is not standard.)

Hom(Fm, F )
f∗ // Hom(Fn, F )

Fm

φm

OO

f⊤
// Fn

φn

OO

Let A be an m× n matrix with rows v1, . . . , vm, and let fA : F
n → Fm be the

associated linear map. Let j ∈ {1, . . . ,m}.
(1) Show that φm sends the j-th standard generator ej to the projection map

πj : F
m → F onto the j-th coordinate.

(2) Show that f∗A ◦ φm sends ej to the map Fn → F that sends x ∈ Fn to
⟨vj , x⟩.

(3) Show that f⊤A sends ej to vj .
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(4) Show that f⊤A is the map associated to the transpose A⊤ of A, that is,

f⊤A = fA⊤ .
(5) Use Exercise 4.5.5 to prove Proposition 5.30.

5.6.2. Suppose M ∈ Mat(m×n, F ) is a matrix and x ∈ Fn and y ∈ Fm are vectors.
Show that we have

⟨Mx, y⟩ = ⟨x,M⊤y⟩.
5.6.3. For

a =


1
2
3
4

 and b =


−2
1
4
3


compute the matrix products (a⊤) · b and a · (b⊤).



CHAPTER 6

Computations with matrices

Matrices are very suitable for doing computations. Many applications require the
understanding of the kernel of some matrix A. For example, the system

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

of linear equations from the beginning of Section 4.3 can be written as Ax = b
with

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 ∈ Mat(m× n, F ) and b =


b1
b2
...
bm

 ∈ Fm

and the vector

x =


x1
x2
...
xn


of unknowns. The map f : F n → Fm that was described in the beginning of
Section 4.3 is the map fA : F

n → Fm that sends x to Ax. The solution set equals

{ x ∈ F n : Ax = b } = f−1
A (b),

and if a ∈ F n satisfies A · a = b, then by Theorem 4.33 this set equals

{ a+ z : z ∈ kerA }.
In patricular, for b = 0, the solution set equals kerA.

If we replace A by a matrix A′ that has the same row space, that is, R(A) = R(A′),
then by Proposition 5.32 we also have kerA = kerA′. Our goal is to choose A′

of a special form (the row echelon form of Section 6.2) that makes it easy to
compute the kernel of A′ (and thus the kernel of A). Exercise 3.4.9 gives us three
operations that we can use on the rows of A to get from A to A′ in small steps
without changing the row space. These are described in Section 6.1.

As in the previous chapter, we let m and n denote non-negative integers.

6.1. Elementary row and column operations

The main tool for computations with matrices are the so-called ‘elementary row
and column operations,’ described in Definition 6.2. We first give a motiva-
tion/analogue in terms of systems of linear equations.

103
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Example 6.1. Consider the system − x2 + x3 = 0
2x1 + 4x2 − 6x3 = 0
3x1 − x2 − 2x3 = 0

of linear equations over R. To solve the system, we first choose an equation
that involves x1 in order to express x1 in terms of the other variables, say the
second equation. It yields x1 = −2x2 + 3x3. We use this to eliminate the
variable x1 from the other equations, either by substituting −2x2 + 3x3 for x1,
or, equivalently, adding a multiple of the expression 2x1 + 4x2 − 6x3 from the
second equation to the other equations, where the multiple is chosen such that
the variable x1 cancels out. By doing this, the first equation stays the same, that
is, −x2+x3 = 0, while the third gives −7x2+7x3 = 0. These last two equations
are equivalent, but if we had not realised that, we could use the first of these
two to eliminate x2 from the the second: this would give 0 = 0, showing that
the second is indeed trivially satisfied when the first one is. A careful reader
checks that this shows not only that any solution of the original system is also
a solution of the system{

x1 + 2x2 − 3x3 = 0
x2 − x3 = 0

but also the other way around: every solution to this system is also a solution to
the original system. From the second system we can easily describe all solutions.
If x = (x1, x2, x3) is a solution, then the second equation allows us to express
x2 in terms of x3, that is, x2 = x3, while the first equation lets us express x1
in terms of x2 and x3, namely x1 = −2x2 + 3x3 = −2x3 + 3x3 = x3, so we get
x = (x3, x3, x3) = x3 · (1, 1, 1). Hence the solution set is generated by (1, 1, 1).

If we write

A =

0 −1 1
2 4 −6
3 −1 −2

 and x =

x1x2
x3

 ,

then the original system is equivalent to the homogeneous linear equationAx = 0,
so the solution set is kerA. The second system is equivalent to the equation
A′x = 0 with

A′ =

1 2 −3
0 1 −1
0 0 0

 .

The steps we took to get from the original system to the second, can be phrased
in terms of matrices as follows. First switch the first two rows of A, so that the
first row has a nonzero element in the first column. Then multiply the (new)
first row by 1

2
, so that this nonzero element becomes 1. After this, subtract

appropriate multiples of the first row from the other rows, so that the other
rows have a 0 in the first column. This corresponds to eliminating x1 from the
other equations. After these steps, we obtain the matrix1 2 −3

0 −1 1
0 −7 7

 .

We then leave the first row as is, and choose one of the other rows that has
a nonzero element in the second column, say the second row. We scale it so
that its first nonzero element is 1, and then subtract appropriate multiples of
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it from the rows below it (only the third row remains) in order to create zeros
in the second column of those rows. After doing this, we do indeed obtain the
matrix A′.

Note that also finding the solution set can be done as easily as above, as the
shape of A′ makes it easy to determine generators for its kernel as follows. The
nonzero rows have a 1 as their first nonzero coordinate, and from bottom to
top, each nonzero row can be used to express the coordinate corresponding
to the column that contains this 1, in terms of the later coordinates. So for
x = (x1, x2, x3) ∈ kerA′ we find again x2 = x3 and x1 = −2x2 + 3x3 = x3.

The example above uses so-called Gaussian elimination to solve a system of linear
equations. In Section 8.5 we will see how to do this in general. In terms of matrices,
we used three elementary operations that we now define.

Definition 6.2. Let A be a matrix with entries in a field F . We say that we
perform an elementary row operation on A, if we

(1) multiply a row of A by some λ ∈ F \ {0}, or
(2) add a scalar multiple of a row of A to another (not the same) row of A,

or

(3) interchange two rows of A.

We call two matrices A and A′ row equivalent if A′ can be obtained from A by a
sequence of elementary row operations.

Note that the third type of operation is redundant, since it can be achieved by a
sequence of operations of the first two types (exercise).

Let F be a field and m a positive integer. Let Eij be the m×m matrix over F of
which the only nonzero entry is a 1 in row i and column j. For 1 ≤ i, j ≤ m with
i ̸= j and λ ∈ F , we define the elementary m×m matrices

Li(λ) = Im + (λ− 1)Eii,

Mij(λ) = Im + λEij,

Nij = Im + Eij + Eji − Eii − Ejj.

One easily verifies that if A is an m×n matrix, then multiplying the i-th row of A
by λ amounts to replacing A by Li(λ) ·A, while adding λ times the j-th row of A
to the i-th row of A amounts to replacing A by Mij(λ) ·A and switching the i-th
and the j-th row amounts to replacing A by Nij · A.

The elementary matrices are invertible, which corresponds to the fact that all
elementary row operations are invertible by an elementary row operation of the
same type. Indeed, we have

Li(λ) · Li(λ−1) = Im, Mij(λ) ·Mij(−λ) = Im, and N2
ij = Im.

This implies that row equivalence is indeed an equivalence.

We define elementary column operations and column equivalence in a similar way,
replacing the word ‘row’ by ‘column’ each time it appears. While each row op-
eration on a matrix A ∈ Mat(m × n, F ) corresponds to multiplying A by an
elementary m×m matrix M from the left, yielding MA, each column operation
corresponds to multiplying A by an elementary n × n matrix N from the right,
yielding AN .
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The following proposition shows that the elementary row operations do not change
the row space and the kernel of a matrix.

Proposition 6.3. If A and A′ are row equivalent matrices, then we have

R(A) = R(A′) and kerA = kerA′.

Proof. Exercise 6.1.1. □

Proposition 6.4. Suppose A and A′ are row equivalent m× n matrices. If A′ is
obtained from A by a certain sequence of elementary row operations, then there is
an invertible m×m matrix B, depending only on the sequence, such that A′ = BA.
Similarly, if A and A′ are column equivalent, then there is an invertible n×n ma-
trix C such that A′ = AC.

Proof. Let A ∈ Mat(m×n, F ). Let B1, B2, . . . , Br be the elementary matrices
corresponding to the row operations we have performed (in that order) on A to
obtain A′, then

A′ = Br

(
Br−1 · · ·

(
B2(B1A)

)
· · ·

)
= (BrBr−1 · · ·B2B1)A ,

and B = BrBr−1 · · ·B2B1 is invertible as it is a product of invertible matrices.
The statement on column operations is proved in the same way, or by applying
the result on row operations to the transpose A⊤. □

Proposition 6.5. Suppose A ∈ Mat(m × n, F ) is a matrix. Let A′ be a matrix
obtained from A by applying a sequence of elementary row and column operations.
Then the following are true.

(1) If the sequence contains only row operations, then there is an isomorphism
ψ : Fm → Fm, depending only on the sequence, with fA′ = ψ ◦ fA.

(2) If the sequence contains only column operations, then there is an isomor-
phism φ : F n → F n, depending only on the sequence, with fA′ = fA ◦ φ.

(3) There exist an isomorphism φ : F n → F n, depending only on the subse-
quence of column operations, and an isomorphism ψ : Fm → Fm, depend-
ing only on the subsequence of row operations, with fA′ = ψ ◦ fA ◦ φ, so
that the diagram

F n fA // Fm

ψ
��

F n

fA′
//

φ

OO

Fm

is commutative.

Proof. Exercise. □

Corollary 6.6. Let A and A′ be row equivalent matrices. Then fA is injective if
and only if fA′ is injective, and fA is surjective if and only if fA′ is surjective.

Proof. By Proposition 6.5 there is an isomorphism ψ with fA′ = ψ ◦fA. Indeed,
the composition is surjective or injective if and only if fA is, cf. Proposition 4.41.

□
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Exercises

6.1.1. (1) Let v1, v2, . . . , vm ∈ Rn be m vectors and consider the m × n matrix A
whose rows are these vectors. Let A′ be a matrix that is obtained from A
by an elementary row operation. Show that for the rows v′1, v

′
2, . . . , v

′
m of

A′ we have L(v1, . . . , vm) = L(v′1, . . . , v
′
m) (cf. Exercise 3.4.9).

(2) Prove Proposition 6.3 (use Proposition 5.32).

6.1.2. Show that column equivalent matrices have the same column space, cf. Propo-
sition 6.3.

6.1.3. In the following sequence of matrices, each is obtained from the previous by
one or two elementary row operations. Find, for each 1 ≤ i ≤ 9, a matrix
Bi such that Ai = BiAi−1. Also find a matrix B such that A9 = BA0. You
may write B as a product of other matrices without actually performing the
multiplication.

A0 =


2 5 4 −3 1
1 3 −2 2 1
0 4 −1 0 3
−1 2 2 3 1

 A1 =


1 3 −2 2 1
2 5 4 −3 1
0 4 −1 0 3
−1 2 2 3 1



A2 =


1 3 −2 2 1
0 −1 8 −7 −1
0 4 −1 0 3
0 5 0 5 2

 A3 =


1 3 −2 2 1
0 −1 8 −7 −1
0 0 31 −28 −1
0 0 40 −30 −3



A4 =


1 3 −2 2 1
0 −1 8 −7 −1
0 0 31 −28 −1
0 0 9 −2 −2

 A5 =


1 3 −2 2 1
0 −1 8 −7 −1
0 0 4 −22 5
0 0 9 −2 −2



A6 =


1 3 −2 2 1
0 −1 8 −7 −1
0 0 4 −22 5
0 0 1 42 −12

 A7 =


1 3 −2 2 1
0 −1 8 −7 −1
0 0 1 42 −12
0 0 4 −22 5



A8 =


1 3 −2 2 1
0 −1 8 −7 −1
0 0 1 42 −12
0 0 0 −190 53

 A9 =


1 3 −2 2 1
0 1 −8 7 1
0 0 1 42 −12
0 0 0 190 −53


6.1.4. Show that row operations commute with column operations. In other words,

if A is a matrix and A′ is the matrix obtained from A by first applying a
certain row operation and then a certain column operation, then applying the
two operations in the opposite order to A yields the same matrix A′.

6.1.5. Prove Proposition 6.5.

6.1.6. Is Corollary 6.6 also true for column equivalent matrices A and A′? What
about matrices A and A′ that can be obtained from each other by a sequence
of row or column operations?

6.2. Row echelon form

If we want to find generators for the kernel of an m×n matrix A or, equivalently,
its associated linear map fA : F

n → Fm, then according to Proposition 6.3 we may
replace A by any row equivalent matrix.
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Example 6.7. We want generators for the kernel of the real matrix

A =

−1 2 1 1
1 −1 1 0
2 −3 0 1

 .

We leave it to the reader to check that A is row equivalent to the matrix

A′ =

1 0 3 0
0 1 2 0
0 0 0 1

 .

(Start by multiplying the first row of A by −1 to obtain v1 = (1,−2,−1,−1) as
first row and subtract v1 and 2v1 from the second and third row, respectively.)
Hence kerA = kerA′ by Proposition 6.3. Suppose x = (x1, x2, x3, x4) ∈ kerA′.
Then we have

A′x =

1 0 3 0
0 1 2 0
0 0 0 1

 ·


x1
x2
x3
x4

 =

x1 + 3x3
x2 + 2x3

x4

 =

0
0
0

 .

This yields three equations, namely

x1 + 3x3 = 0,

x2 + 2x3 = 0,

x4 = 0.

It follows (using these equations from bottom to top) that x4 = 0 and x2 = −2x3
and x1 = −3x3, so x = x3 · (−3,−2, 1, 0). Hence, the vector (−3,−2, 1, 0)
generates the kernels of A′ and A.

The matrix A′ of Example 6.1 and the matrix A′ of Example 6.7 have a shape
that makes it easy to find generators for their kernels. Indeed, for x ∈ R3 or
x ∈ R4 (for Example 6.1 and 6.7, respectively), each of the rows of A′ gives a
linear equation in the coordinates of x; the shape of A′ allows us to use the i-th
row (if it is nonzero) to express one of the coordinates, say xji , in terms of other
coordinates, while the equations associated to all lower rows do not involve this
coordinate xji .

This description of the shape of the two matrices A′ of Example 6.1 and Exam-
ple 6.7 shows that they are in row echelon form, as defined in Definition 6.8. In
this section we will explain how to find, for any matrix A, a matrix in row echelon
form that is row equivalent to A. In the next section we will see in full generality
how to obtain generators for the kernel from the row echelon form.

Definition 6.8. A matrix is said to be in row echelon form when its nonzero rows
(if they exist) are on top and its zero rows (if they exist) on the bottom and,
moreover, the first nonzero entry in each nonzero row, the so-called pivot of that
row, is farther to the right than the pivots in the rows above.1

Example 6.9. The matrix A9 of Exercise 6.1.3 is in row echelon form. The
following real matrices are all in row echelon form as well, with the last one

1Some books require the pivots to be equal to 1 for a matrix to be in row echelon form. We
do not require this.
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describing the most general shape with all pivots equal to 1.
1 4 −2 4 3
0 2 7 2 5
0 0 0 1 −1
0 0 0 0 0



1 4 −2 4
0 5 7 2
0 0 3 1
0 0 0 −1
0 0 0 0



0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0


1
2
...
r

r + 1
...
m



0 · · · 0 1 ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗
0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗ ∗ ∗ · · · ∗

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0


j1 j2 . . . jr

To make the matrix A = (aij)i,j in most general shape with all pivots equal to 1
more precise, note that there are integers 0 ≤ r ≤ m and 1 ≤ j1 < j2 < · · · < jr ≤ n
where r is the number of nonzero rows and, for each 1 ≤ i ≤ r, the number ji
denotes the column of the pivot in row i, so that we have aij = 0 if i > r or (i ≤ r
and j < ji), and we have aiji = 1 for 1 ≤ i ≤ r.

Proposition 6.11 shows how every matrix can be brought into row echelon form
by a sequence of elementary row operations, following the ideas of Example 6.1.
The following example demonstrates all the required steps.

Example 6.10. Consider the matrix

A =


0 0 −2 4 3 −3
0 1 0 2 2 −3
0 2 3 −2 0 −1
0 2 0 4 0 −10

 .

The first column has no nonzero entries, so we look at the next column. We
pick a row in which the second column contains a nonzero element, say the last
row. We switch that row with the first to obtain the matrix

R4

R2

R3

R1


0 2 0 4 0 −10
0 1 0 2 2 −3
0 2 3 −2 0 −1
0 0 −2 4 3 −3

 .

Note that we have indicated how the rows of this matrix depend on the rows of
the previous matrix. We now scale the first row to make its pivot equal to 1,
that is, we multiply it by 1

2
. This yields

1
2
R1

R2

R3

R4


0 1 0 2 0 −5
0 1 0 2 2 −3
0 2 3 −2 0 −1
0 0 −2 4 3 −3

 .
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To make the entries under the pivot in the first row zero, we subtract the first
row from the second row and twice the first row from the third row. This gives

R1

R2 −R1

R3 − 2R1

R4


0 1 0 2 0 −5
0 0 0 0 2 2
0 0 3 −6 0 9
0 0 −2 4 3 −3

 .

We now leave this first row as is. We proceed to the next (third) column, and
choose a row in which the corresponding element is nonzero, say the third row.
We switch it with the second row to obtain

R1

R3

R2

R4


0 1 0 2 0 −5
0 0 3 −6 0 9
0 0 0 0 2 2
0 0 −2 4 3 −3

 .

We scale the new second row such that its pivot becomes 1, that is, we multiply
it by 1

3
, which yields

1
3
R2


0 1 0 2 0 −5
0 0 1 −2 0 3
0 0 0 0 2 2
0 0 −2 4 3 −3

 .

Note that we no longer indicate it if a row is unchanged from the previous
matrix. To make the entries under this pivot zero, we add twice the second row
to the last row. This gives

R4 + 2R2


0 1 0 2 0 −5
0 0 1 −2 0 3
0 0 0 0 2 2
0 0 0 0 3 3

 .

We leave the second row as is, and proceed with the next column. This column
has no nonzero elements in the remaining two rows, so we immediately continue
with the next (fifth) column. The third row already contains a nonzero element
in the fifth column, so we just scale this row to make the pivot 1, that is, we
multiply it by 1

2
, and we obtain

1
2
R3


0 1 0 2 0 −5
0 0 1 −2 0 3
0 0 0 0 1 1
0 0 0 0 3 3

 .

To make the entries under this third pivot zero, we subtract three times the
third row from the last and get

R4 − 3R3


0 1 0 2 0 −5
0 0 1 −2 0 3
0 0 0 0 1 1
0 0 0 0 0 0

 = A′.

Since the remaining rows (only the fourth is left) are all zero, we are done.
Indeed, A′ is in row echelon form.

The following procedure describes precisely how to bring a matrix into row echelon
form in general. The input is a matrix A and the output is a matrix in row echelon
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form that is row equivalent to A. This algorithm is the key to most computations
with matrices. It makes all pivots equal to 1.

Proposition 6.11 (Row Echelon Form Algorithm). Let A ∈ Mat(m× n, F )
be a matrix. The following procedure applies successive elementary row operations
to A and transforms it into a matrix A′ in row echelon form.

1. Set A′ = A, r = 0 and j0 = 0. Write A′ = (a′ij)i,j.

2. [At this point, a′ij = 0 if (i > r and j ≤ jr) or (1 ≤ i ≤ r and 1 ≤ j < ji).
Also, a′iji = 1 for 1 ≤ i ≤ r.]

If the (r + 1)st up to the m-th rows of A′ are zero, then stop.

3. Find the smallest j such that there is some a′ij ̸= 0 with r < i ≤ m. Replace r
by r + 1, set jr = j, and interchange the r-th and the i-th row of A′ if r ̸= i.
Note that jr > jr−1.

4. Multiply the r-th row of A′ by (a′rjr)
−1.

5. For each i = r + 1, . . . ,m, add −a′ijr times the r-th row of A′ to the i-th row
of A′.

6. Go to Step 2.

Proof. The only changes that are done to A′ are elementary row operations
of the third, first and second kinds in steps 3, 4 and 5, respectively. Since in
each pass through the loop, r increases, and we have to stop when r = m, the
procedure certainly terminates. We have to show that when it stops, A′ is in
row echelon form.

We check that the claim made at the beginning of step 2 is always correct. It is
trivially satisfied when we reach step 2 for the first time. We now assume it is
correct when we are in step 2 and show that it is again true when we come back
to step 2. Since the first r rows are not changed in the loop, the part of the
statement referring to them is not affected. In step 3, we increase r and find jr
(for the new r) such that a′ij = 0 if i ≥ r and j < jr. By our assumption, we
must have jr > jr−1. The following actions in steps 3 and 4 have the effect of
producing an entry with value 1 at position (r, jr). In step 5, we achieve that
a′ijr = 0 for i > r. So a′ij = 0 when (i > r and j ≤ jr) and when (i = r and
j < jr). This shows that the condition in step 2 is again satisfied.

So at the end of the algorithm, the statement in step 2 is true. Also, we have
seen that 0 < j1 < j2 < · · · < jr, hence A

′ has row echelon form when the
procedure is finished. □

Example 6.12. Consider the following real matrix.

A =

1 2 3
4 5 6
7 8 9


Let us bring it into row echelon form.

Since the upper left entry is nonzero, we have j1 = 1. We subtract 4 times the
first row from the second and 7 times the first row from the third. This leads
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to

A′ =

1 2 3
0 −3 −6
0 −6 −12

 .

Now we divide the second row by −3 and then add 6 times the new second row
to the third. This gives

A′′ =

1 2 3
0 1 2
0 0 0

 ,

which is in row echelon form.

Example 6.13. In Examples 6.1, 6.7, and 6.10, the matrix A′ is a matrix in
row echelon form that is row equivalent to A.

Remark 6.14. The row space of A in Example 6.12 is spanned by its three
rows. By Proposition 6.3, the row spaces of A and A′′ are the same, so this space
is also spanned by the two nonzero rows of A′′. We will see in the next chapter
that the space can not be generated by fewer elements. More generally, the
number of nonzero rows in a matrix in row echelon form is the minimal number
of vectors needed to span its row space (see Theorem 7.47 and Proposition 8.14).

Example 6.15 (Avoiding denominators). The algorithm above may introduce
more denominators than needed. For instance, it transforms the matrix(

22 5
9 2

)
in two rounds as (

22 5
9 2

)
⇝

(
1 5

22
0 − 1

22

)
⇝

(
1 5

22
0 1

)
.

Instead of immediately dividing the first row by 22, we could first subtract a
multiple of the second row from the first. We can continue to decrease the num-
bers in the first column by adding multiples of one row to the other. Eventually
we end up with a 1 in the column, or, in general, with the greatest common
divisor of the numbers involved.(

22 5
9 2

)
⇝

R1 − 2R2

R2

(
4 1
9 2

)
⇝

R1

R2 − 2R1

(
4 1
1 0

)
⇝

R2

R1

(
1 0
4 1

)
⇝

R1

R2 − 4R1

(
1 0
0 1

)
.

We see that the 2× 2 identity matrix is also a row echelon form for the original
matrix.

Note that in Example 6.15 we indicated the row operations by writing on the
left of each row of a matrix, the linear combination of the rows of the previous
matrix that this row is equal to. This is necessary, because we do not follow the
deterministic algorithm.

If you like living on the edge and taking risks, then you could write down the result
of several row operations as one step, as long as you make sure it is the result
of doing the operations one after another, not at the same time. For example,
by applying the appropriate sequence of switching two rows, you can get any
permutation of the rows. (Can you prove this?) You can also take one row vi
and add multiples of it to various other rows, as long as you keep vi as a row
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in the new matrix. That way you only make steps that are reversible, either by
permuting the rows back, or by subtracting the appropriate multiples of vi from
the other rows.

Warning 6.16. Make sure you do not accidentally perform two operations at the
same time! If you start with the matrix

A =

(
1 2
3 5

)
and add the first row to the second, while at the same time adding the second row
to the first, you end up with (

4 7
4 7

)
which clearly does not have the same row space as A, so something has gone
wrong. If you do it right, and first add the first row to the second, and then the
second row to the first, we get

A =

(
1 2
3 5

)
⇝

R1

R2 +R1

(
1 2
4 7

)
⇝

R1 +R2

R2

(
5 9
4 7

)
.

What do you get if you perform these two operations in the opposite order?

We give one more example, where we avoid denominators all the way, except for
the last step.

Example 6.17.
3 5 2 2
1 3 −4 3
2 −2 5 −1
−1 3 1 −3

⇝
R2

R1

R3

R4


1 3 −4 3
3 5 2 2
2 −2 5 −1
−1 3 1 −3



⇝

R1

R2 − 3R1

R3 − 2R1

R4 +R1


1 3 −4 3
0 −4 14 −7
0 −8 13 −7
0 6 −3 0

⇝
R1

R2

R3

R4 +R2


1 3 −4 3
0 −4 14 −7
0 −8 13 −7
0 2 11 −7



⇝

R1

R4

R3

R2


1 3 −4 3
0 2 11 −7
0 −8 13 −7
0 −4 14 −7

⇝
R1

R2

R3 + 4R2

R4 + 2R2


1 3 −4 3
0 2 11 −7
0 0 57 −35
0 0 36 −21



⇝

R1

R2

R3 −R4

R4


1 3 −4 3
0 2 11 −7
0 0 21 −14
0 0 36 −21

⇝
R1

R2

R3

R4 −R3


1 3 −4 3
0 2 11 −7
0 0 21 −14
0 0 15 −7



⇝

R1

R2

R3 −R4

R4


1 3 −4 3
0 2 11 −7
0 0 6 −7
0 0 15 −7

⇝
R1

R2

R3

R4 − 2R3


1 3 −4 3
0 2 11 −7
0 0 6 −7
0 0 3 7



⇝

R1

R2

R4

R3


1 3 −4 3
0 2 11 −7
0 0 3 7
0 0 6 −7

⇝
R1

R2

R3

R4 − 2R3


1 3 −4 3
0 2 11 −7
0 0 3 7
0 0 0 −21


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⇝

R1
1
2
R2

1
3
R3

− 1
21
R4


1 3 −4 3
0 1 11

2
−7

2
0 0 1 7

3
0 0 0 1


Exercises

6.2.1. Find a row echelon form for each of the matrices in Exercise 5.5.5.

6.3. Generators for the kernel

If we want to compute generators for the kernel of a matrix A ∈ Mat(m× n, F ),
then, according to Proposition 6.3, we may replace A by any row equivalent matrix.
In particular, it suffices to understand how to determine generators for the kernel
of matrices in row echelon form. We start with an example.

Example 6.18. Suppose M is the matrix (over R)
1 2 −1 0 2 1 −3

0 0 1 −1 2 −1 2

0 0 0 0 1 1 1

0 0 0 0 0 0 0

 ,

which is already in row echelon form with its pivots circled. Let v1, v2, v3 denote
its nonzero rows, which generate the row space R(M). Suppose the vector
x = (x1, x2, x3, x4, x5, x6, x7) is contained in

kerM = R(M)⊥ = {x ∈ R7 : ⟨vi, x⟩ = 0 for i = 1, 2, 3}.
Then the coordinates x1, x3, x5, which belong to the columns with a pivot,
are uniquely determined by the coordinates x2, x4, x6, x7, which belong to the
columns without a pivot. Indeed, starting with the lowest nonzero row, the
equation ⟨v3, x⟩ = 0 gives x5 + x6 + x7 = 0, so

x5 = −x6 − x7.

The equation ⟨v2, x⟩ = 0 then gives x3 − x4 + 2x5 − x6 + 2x7, so

x3 = x4 − 2(−x6 − x7) + x6 − 2x7 = x4 + 3x6.

Finally, the equation ⟨v1, x⟩ = 0 gives

x1 = −2x2 + (x4 + 3x6)− 2(−x6 − x7)− x6 + 3x7 = −2x2 + x4 + 4x6 + 5x7.

Moreover, any choice for the values x2, x4, x6, x7, with these corresponding val-
ues for x1, x3, x5, does indeed give an element of the kernel kerM , as the equa-
tions ⟨vi, x⟩ = 0 for 1 ≤ i ≤ 3 are automatically satisfied. With q = x2, r = x4,
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s = x6, and t = x7, we may write

x =



x1
x2
x3
x4
x5
x6
x7


=



−2q + r + 4s+ 5t
q

r + 3s
r

−s− t
s
t


= q



−2
1
0
0
0
0
0


+ r



1
0
1
1
0
0
0


+ s



4
0
3
0
−1
1
0


+ t



5
0
0
0
−1
0
1


= qw2 + rw4 + sw6 + tw7,

where

w2 =



−2

1

0

0

0

0

0


, w4 =



1

0

1

1

0

0

0


, w6 =



4

0

3

0

−1

1

0


, w7 =



5

0

0

0

−1

0

1


.

This shows that the kernel kerM is generated by w2, w4, w6, w7, that is, we
have kerM = L(w2, w4, w6, w7). In each wk, we circled the coordinates that
correspond to the columns of M with a pivot. Note that the non-circled coor-
dinates in each wk are all 0, except for one, the k-th coordinate, which equals 1.
Conversely, for each of the columns of M without pivot, there is exactly one wk
with 1 for the (non-circled) coordinate corresponding to that column and 0 for
all other coordinates belonging to a column without a pivot.

This could also be used to find w2, w4, w6, w7 directly: choose any column with-
out a pivot, say the k-th, and set the k-th coordinate of a vector w ∈ R7 equal
to 1, then set all other coordinates corresponding to columns without pivot
equal to 0, and compute the remaining coordinates. For instance, for the sixth
column, which has no pivot, we get a vector w of which the sixth entry is 1,
and all other entries corresponding to columns without pivots are 0, that is,

w =



∗
0
∗
0
∗
1
0


.

The entries that correspond to columns with a pivot (so the first, third, and
fifth) can now be computed using the equations ⟨vi, w⟩ = 0, starting with i = 3
and going down to i = 1. We find w = w6 in this example.

The following proposition states that we can find generators for the kernel of any
matrix in row echelon form in the same manner. In Proposition 7.22 we will see
that the generators constructed in Proposition 6.19 actually form a so-called basis
of the kernel.
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Proposition 6.19. Let A ∈ Mat(m× n, F ) be a matrix in row echelon form with
r nonzero rows and let j1 < j2 < . . . < jr be the indices of the columns with a
pivot. Then for each 1 ≤ k ≤ n with k ̸∈ {j1, j2, . . . , jr}, there is a unique vector
wk ∈ kerA such that

(1) the k-th entry of wk equals 1, and
(2) the l-th entry of wk equals 0 for all 1 ≤ l ≤ n with l ̸∈ {k, j1, j2, . . . , jr}.

Furthermore, the l-th entry of wk equals 0 for all l with k < l ≤ n, and the n− r
vectors wk (for 1 ≤ k ≤ n with k ̸∈ {j1, j2, . . . , jr}) generate the kernel kerA.

Proof. The proof is completely analogous to Example 6.18 and is left to the
reader. □

We can now also check efficiently whether the map associated to a matrix is
injective.

Proposition 6.20. Let A ∈ Mat(m × n, F ) be a matrix and A′ a row equivalent
matrix in row echelon form. Then the associated map fA : F

n → Fm is injective
if and only if A′ has n nonzero rows or, equivalently, if and only if each column
of A′ contains a pivot.

Proof. By Proposition 6.6, the map fA is injective if and only if fA′ is injective,
so it suffices to do the case A = A′. By Lemma 4.7, the map fA is injective if and
only if the kernel ker fA = kerA is zero, which, according to Proposition 6.19,
happens if and only if each of the n columns of A has a pivot, so if and only if
there are exactly n nonzero rows. □

The following proposition explains which columns in a row echelon form of a
matrix contain pivots.

Proposition 6.21. Suppose A and A′ are row equivalent m × n matrices with
A′ in row echelon form. Then for every k ∈ {1, . . . , n}, the k-th column of A′

contains a pivot if and only if the k-th column of A is not a linear combination of
the previous columns of A.

Proof. Let F be a field that A and A′ are matrices over. Suppose the column
vectors of an m × n matrix B over F are denoted by v1, v2, . . . , vn. Then the
k-th column vk of B is a linear combination of the previous columns if and only
if there are λ1, . . . , λk−1 such that vk = λ1v1 + · · ·+λk−1vk−1, that is, such that
the element

(−λ1,−λ2, . . . ,−λk−1, 1, 0, . . . , 0︸ ︷︷ ︸
n−k

)

is contained in the kernel of B. As A and A′ have the same kernel by Proposi-
tion 6.3, the k-th column of A is a linear combination of the previous columns
of A if and only if the k-th column of A′ is a linear combination of the previous
columns of A′. Thus, we have reduced to the case A = A′.

Let v1, v2, . . . , vn denote the columns of A. If the k-th column vk has a pivot,
say in the i-th row, then the previous columns v1, . . . , vk−1 have a 0 on that
row, so clearly vk is not a linear combination of v1, . . . , vk−1. For the converse,
if the k-th column does not contain a pivot, then by Proposition 6.19 there is
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an element wk ∈ kerA whose k-th entry equals 1 and whose l-th entry equals 0
for k < l ≤ n. By the above, that implies that vk is indeed a linear combination
of v1, v2, . . . , vk−1. □

Exercises

6.3.1. Prove Proposition 6.19.

6.3.2. Give generators for the kernels of each of the matrices in Exercise 5.5.5.

6.3.3. Give generators for the kernel of the matrix A in Example 6.10.

6.3.4. † Determine a row echelon form for the following matrices over C and give
generators for their kernels.(

2 + i 1 1 + i
2 1− 3i 3− 5i

)  3 0 3
2 3 0
3 3 1


 −1 0 0 1 2

2 1 −1 0 2
0 0 0 −1 0




1 0 −1 0
0 2 2 −2
2 3 1 0

−2 0 2 1


6.3.5. Let A ∈ Mat(m× n, F ) be a matrix and fA : F

n → Fm the associated linear
map.
(1) Show that if fA is injective, then m ≥ n.
(2) Show that if A is invertible, then m = n (cf. Corollary 8.9).

6.3.6. Consider the real matrix

A =
1

7
·


5 −4 −2 2
−4 −1 −4 4
−2 −4 5 2
2 4 2 5

 .

The map fA : R4 → R4 is the reflection in a hyperplane H ⊂ R4. Determine H.

6.4. Reduced row echelon form

While the row echelon form of a matrix is not unique, we will see that the reduced
row echelon form below is (see Corollary 6.25).

Definition 6.22. A matrix A = (aij) ∈ Mat(m× n, F ) is in reduced row echelon
form, if it is in row echelon form and in addition all pivots equal 1 and we have
aijk = 0 for all 1 ≤ k ≤ r and i ̸= k. This means that the entries above the pivots
are zero as well.

A =



0 · · · 0 1 ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗ 0 ∗ · · · ∗

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0


It is clear that every matrix can be transformed into reduced row echelon form by
a sequence of elementary row operations — we only have to change Step 5 of the
algorithm to



118 6. COMPUTATIONS WITH MATRICES

5. For each i = 1, . . . , r − 1, r + 1, . . . ,m, add −a′ijr times the r-th row of A′ to
the i-th row of A′.

Proposition 6.23. Suppose that A ∈ Mat(m × n, F ) is a matrix in reduced row
echelon form. Then the nonzero rows of A are uniquely determined by the row
space R(A).

Proof. Let r be the number of nonzero rows of A and let j1 < j2 < . . . < jr be
the numbers of the columns with a pivot. Let v1, v2, . . . , vr be the nonzero rows
of A. Then the j1-th, j2-th, . . . , jr-th entries of the linear combination

λ1v1 + λ2v2 + · · ·+ λrvr

are exactly the coefficients λ1, λ2, . . . , λr. This implies that the nonzero vector in
R(A) with the most starting zeros is obtained by taking λ1 = . . . = λr−1 = 0, so
the vector vr is the unique nonzero vector in R(A) with the most starting zeros
of which the first nonzero entry equals 1. Thus the row space R(A) determines
vr and jr uniquely. Similarly, vr−1 is the unique nonzero vector in R(A) with the
most starting zeros of which the jr-th entry equals 0 and the first nonzero entry
equals 1. This also uniquely determines jr−1. By (downward) induction, vi is
the unique nonzero vector in R(A) with the most starting zeros of which the
ji+1-th, . . . , jr-th entries equal 0 and the first nonzero entry, the ji-th, equals 1.
This process yields exactly the r nonzero rows of A and no more, as there are
no nonzero vectors in R(A) of which the j1-th, j2-th, . . . , jr-th entries are zero.
This means that also r is determined uniquely by R(A). □

Corollary 6.24. Let A,A′ ∈ Mat(m× n, F ) be two matrices. Then the following
statements are equivalent.

(1) The matrices A and A′ are row equivalent.
(2) The row spaces R(A) and R(A′) are equal.
(3) For any matrices B and B′ in reduced row echelon form that are row

equivalent to A and A′, respectively, we have B = B′.

Proof. If A and A′ are row equivalent, then the row spaces R(A) and R(A′)
are the same by Proposition 6.3, which proves (1) ⇒ (2). For (2) ⇒ (3),
suppose that the row spaces R(A) and R(A′) are equal. Let B and B′ be any
matrices in reduced row echelon form with B and B′ row equivalent to A and
A′, respectively. By Proposition 6.3 we have R(B) = R(A) and R(B′) = R(A′),
so we conclude R(B) = R(B′). Therefore, by Proposition 6.23, the nonzero
rows of B and B′ coincide, and as the matrices have the same size, they also
have the same number of zero rows. This yields B = B′. The implication (3)
⇒ (1) follows from the fact that if B = B′ is row equivalent to both A and A′,
then A and A′ are row equivalent. □

Corollary 6.25. The reduced row echelon form is unique in the sense that if a
matrix A is row equivalent to two matrices B,B′ that are both in reduced row
echelon form, then B = B′.

Proof. This follows from Corollary 6.24 by taking A = A′. □

In other words, the m× n matrices in reduced row echelon form give a complete
system of representatives of the row equivalence classes.
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Remark 6.26. It follows from Corollary 6.25 that the number r of nonzero rows
in the reduced row echelon form of a matrix A is an invariant of A. It equals
the number of nonzero rows in any row echelon form of A. We will see later
that this number r equals the so-called rank of the matrix A, cf. Section 8.2.

The computation of generators of the kernel of a matrix A is easier when A is
in reduced row echelon form. The reduced row echelon form for the matrix M of
Example 6.18, for instance, is

1 2 0 −1 0 −4 −5

0 0 1 −1 0 −3 0

0 0 0 0 1 1 1

0 0 0 0 0 0 0

 .

The circled entries of w6 of Example 6.18 are exactly the negatives of the elements
−4,−3, 1 in the nonzero rows and the sixth column. A similar statement holds for
the other generators w2, w4, and w7. In terms of Proposition 6.19, with A = (aij)i,j
in reduced row echelon form: if 1 ≤ k ≤ n and k ̸∈ {j1, j2, . . . , jr}, then the l-th
entry of wk is given by Proposition 6.19 for l ̸∈ {j1, j2, . . . , jr}, while the ji-th entry
of wk is −aik for 1 ≤ i ≤ r; this yields wk = ek −

∑r
i=1 aikeji . This is summarized

in the next proposition.

As for Proposition 6.19, we will see in Proposition 7.22 that the generators con-
structed in Proposition 6.27 actually form a so-called basis of the kernel.

Proposition 6.27. If A = (aij) ∈ Mat(m× n, F ) is a matrix in reduced row ech-
elon form with r nonzero rows and pivots in the columns numbered j1 < . . . < jr,
then the kernel ker(A) is generated by the n− r elements

wk = ek −
∑
1≤i≤r
ji<k

aikeji , for k ∈ {1, . . . , n} \ {j1, . . . , jr} ,

where e1, . . . , en are the standard generators of F n.

Proof. We leave it as an exercise to show that this follows from Proposition 6.19.
□

Proposition 6.27 gives a very efficient way of computing the kernel of a matrix.
First bring it into reduced row echelon form using elementary row operations,
and then write down generators for the kernel according to the given recipe, one
generator for each column without pivot.

Exercises

6.4.1. Redo Exercises 6.3.2 and 6.3.4 using the reduced row echelon form.





CHAPTER 7

Linear independence and dimension

7.1. Linear independence

This section, like all others, has a large overlap with Stoll’s notes [S], in particular
with its chapter 6, which in turn follows essentially Chapter 3 in Jänich’s book [J].

In the context of looking at linear hulls, it is a natural question whether we really
need all the given vectors in order to generate their linear hull. Also (maybe in
order to reduce waste. . . ), it is interesting to consider minimal generating sets.
These questions lead to the notions of linear independence and basis.

Definition 7.1. Let V be an F -vector space, and v1, v2, . . . , vn ∈ V. We say that
v1, v2, . . . , vn are linearly independent, if for all λ1, λ2, . . . , λn ∈ F , the equality

λ1v1 + λ2v2 + · · ·+ λnvn = 0

implies λ1 = λ2 = · · · = λn = 0. (“The zero vector cannot be written as a
nontrivial linear combination of v1, . . . , vn.”)

In a similar way we can define linear independence for arbitrary collections of
elements of V. If I is any index set (not necessarily finite) and for each i ∈ I
we have an element vi ∈ V , then we write the collection of all these elements
as (vi)i∈I . The element i is called the index or label of vi. Elements may occur
multiple times, so for i, j ∈ I with i ̸= j, we may have vi = vj. For a more precise
definition of (labeled) collections, see Appendix C.

Definition 7.2. A collection (vi)i∈I of elements in V is linearly independent if for
every finite subset S ⊂ I, the finite collection (vi)i∈S is linearly independent, that
is, for all (finite) collections (λi)i∈S of scalars in F , the equality

∑
i∈S λivi = 0

implies λi = 0 for all i ∈ S.

Note that for finite index sets I = {1, 2, . . . , n}, Definitions 7.1 and 7.2 are equiv-
alent, so we have no conflicting definitions. As a special case, the empty sequence
or empty collection of vectors is considered to be linearly independent.

If we want to refer to the field of scalars F , we say that the given vectors are
F -linearly independent or linearly independent over F .

If v1, v2, . . . , vn (resp., (vi)i∈I) are not linearly independent, then we say that they
are linearly dependent. An equation of the form λ1v1 + λ2v2 + · · · + λnvn = 0 is
called a linear relation among the elements v1, . . . , vn; if the scalars λ1, λ2, . . . , λn
are all zero, then we call it the trivial relation, otherwise a nontrivial relation.

Example 7.3. Let V be any vector space. If a collection (vi)i∈I of elements
of V contains the element 0V ∈ V , then the collection is linearly dependent.
Furthermore, if there are i, j ∈ I with i ̸= j and vi = vj, then the collection is
linearly dependent as well.

121
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Example 7.4. Let V be a vector space over a field F . Then for any v ∈ V , the
one-element sequence v is linearly independent if and only if v ̸= 0. Any two
elements v1, v2 ∈ V are linearly dependent if and only if there are s, t ∈ F , not
both 0, such that sv1 + tv2 = 0. This is the case if and only if v1 is a multiple
of v2 or v2 is a multiple of v1 (or both), because s ̸= 0 implies v1 = − t

s
v2, while

t ̸= 0 implies v2 = − s
t
v1.

Example 7.5. For an easy example that the field of scalars matters in the con-
text of linear independence, consider 1, i ∈ C, where C can be considered as a
real or as a complex vector space. We then have that 1 and i are R-linearly inde-
pendent (essentially by definition of C — 0 = 0 ·1+0 · i, and this representation
is unique), whereas they are C-linearly dependent — i · 1 + (−1) · i = 0.

Example 7.6. The vectors

v1 = (1, 2, 3, 4), v2 = (5, 6, 7, 8), v3 = (9, 10, 11, 12)

in R4 are linearly dependent, as we have a linear relation v1 − 2v2 + v3 = 0.

Example 7.7. Let F be a field and V = F [x] be the vector space of all poly-
nomials in the variable x over F (see Example 2.13 and Appendix D). For each
n ∈ Z≥0 we have the monomial xn. The collection (xn)n∈Z≥0

is linearly indepen-

dent, because any finite subcollection is contained in (1, x, x2, . . . , xd) for some
d ∈ Z≥0 and any relation

adx
d + ad−1x

d−1 + · · ·+ a1x+ a0 = 0

(as polynomials) implies ad = ad−1 = . . . = a1 = a0 = 0.

Example 7.8. In C(R), the functions

x 7−→ 1 , x 7−→ sinx , x 7−→ cosx , x 7−→ sin2 x , x 7−→ cos2 x

are linearly dependent, since 1− sin2 x− cos2 x = 0 for all x ∈ R.
On the other hand,

x 7−→ 1 , x 7−→ sinx , x 7−→ cosx

are linearly independent. To see this, assume that λ + µ sinx + ν cosx = 0 for
all x ∈ R. Plugging in x = 0, we obtain λ+ν = 0. For x = π, we get λ−ν = 0,
which together imply λ = ν = 0. Then taking x = π/2 shows that µ = 0 as
well.

Example 7.9. Consider the vectors

w1 = (1, 1, 1), w2 = (1, 2, 4), w3 = (1, 3, 9)

in R3 and suppose we have λ1w1 + λ2w2 + λ3w3 = 0. Then we have

λ1 + λ2 + λ3 = 0,

λ1 + 2λ2 + 3λ3 = 0,

λ1 + 4λ2 + 9λ3 = 0.

These equations imply λ1 = λ2 = λ3 = 0 (exercise), so w1, w2, and w3 are
linearly independent.

Recall from Definition 4.39 that for any sequence C = (w1, . . . , wn) of n elements
in a vector space W over a field F , we have a unique linear map φC : F

n → W
that sends the j-th standard vector ej to wj; the map φC sends (a1, . . . , an) ∈ F n

to a1w1 + · · ·+ anwn.
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Proposition 7.10. Suppose that W is a vector space over the field F and suppose
that C = (w1, w2, . . . , wn) a sequence of n vectors in W . Then the elements
w1, w2, . . . , wn are linearly independent if and only if kerφC = {0}.

Proof. The kernel of φC consists of all the n-tuples (λ1, . . . , λn) that satisfy
λ1w1 + · · · + λnwn = 0, so indeed, we have kerφC = {0} if and only if the
elements w1, w2, . . . , wn are linearly independent. □

In fact, the proof shows that the nontrivial linear relations on w1, . . . , wn corre-
spond exactly with the nonzero elements of the kernel of φC . A statement similar
to Proposition 7.10 holds for arbitrary collections (Exercise 7.1.9). For W = Fm,
we have the following corollary.

Corollary 7.11. Let F be a field and m a non-negative integer. Then any vectors
w1, w2, . . . , wn ∈ Fm are linearly independent if and only if the m× n matrix that
has w1, w2, . . . , wn as columns has kernel {0}.

Proof. The linear map F n → Fm that sends ej to wj ∈ Fm corresponds to
the described matrix by Lemma 5.9 and Proposition 5.11, so this follows from
Proposition 7.10. □

Example 7.12. Let w1, w2, w3 ∈ R3 be as in Example 7.9. Then the map
R3 → R3 that sends ej to wj corresponds to the matrix1 1 1

1 2 3
1 4 9


that has w1, w2, w3 as columns. It is easily checked that the kernel of this matrix
is zero, so it follows again that the vectors w1, w2, w3 are linear independent.
If we add the vector w4 = (1, 4, 16), then the vectors w1, w2, w3, w4 are linearly
independent if and only if the matrix1 1 1 1

1 2 3 4
1 4 9 16


has kernel zero. Its reduced row echelon form is1 0 0 1

0 1 0 −3
0 0 1 3


so the kernel is spanned by (−1, 3,−3, 1) and we find the linear relation

−w1 + 3w2 − 3w3 + w4 = 0.

We conclude that the vectors w1, w2, w3, w4 are linearly dependent. Of course,
we could have already concluded that from the fact that the matrix with
w1, w2, w3, w4 as columns has more columns than rows, so not every column
in the reduced row echelon form could have a pivot, cf. Proposition 6.20.

Lemma 7.13. Let f : V → W be a linear map of vector spaces. Then any vectors
v1, v2, . . . , vn ∈ V are linearly independent if their images f(v1), f(v2), . . . , f(vn)
are. If f is injective, then the converse holds as well.
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Proof. Take any sequence C = (v1, v2, . . . , vn) of vectors in V. Then, by Propo-
sition 7.10, the map φC : F

n → V sending ej to vj for 1 ≤ j ≤ n is injective
if and only if v1, v2, . . . , vn are linearly independent. Similarly, the composi-
tion f ◦ φC : F n → W , which sends ej to f(vj), is injective if and only if
f(v1), f(v2), . . . , f(vn) are linearly independent. Therefore, the first statement
follows from the fact that if f ◦ φC is injective, then so is φC . The second
statement follows from the fact that if f is injective, then φC is injective if and
only if the composition f ◦ φC is. □

Alternative proof. Take any vectors v1, v2, . . . , vn ∈ V . Any nontrivial relation
λ1v1 + · · ·+ λnvn = 0 implies a nontrivial relation

λ1f(v1) + · · ·+ λnf(vn) = f(λ1v1 + · · ·+ λnvn) = f(0) = 0,

so if the elements v1, v2, . . . , vn are linearly dependent, then so are the elements
f(v1), f(v2), . . . , f(vn). This is equivalent to the first statement.

Suppose that f is injective. Take linearly independent vectors v1, . . . , vn ∈ V .
Any linear relation

λ1f(v1) + · · ·+ λnf(vn) = 0

implies f(v) = 0 with v = λ1v1+ · · ·+λnvn, so v ∈ ker f = {0} and thus v = 0.
Since v1, . . . , vn are linearly independent, this implies λ1 = . . . = λn = 0, which
implies that the elements f(v1), . . . , f(vn) are linearly independent as well. This
proves the second statement. □

From the finite case, it follows immediately that Lemma 7.13 holds for arbitrary
collections as well (exercise).

Example 7.14. Let V = R[x] be the vector space of all real polynomials,
containing the elements f1 = x3 − x − 3, f2 = x2 + 4, and f3 = x2 + x + 1.
These polynomials all lie in the subspace R[x]3 of all polynomials of degree at
most 3, so to check for linear independence, we may check it within R[x]3. This
is obvious, but it also follows from Lemma 7.13, with f taken to be the inclusion
R[x]3 → R[x] sending any polynomial p to itself.

The linear map c : R[x]3 → R4 that sends any polynomial a3x
3+a2x

2+a1x+a0
to the sequence (a0, a1, a2, a3) of its coefficients is injective (in fact, an isomor-
phism), so by Lemma 7.13, the polynomials f1, f2, and f3 are linearly indepen-
dent if and only if c(f1), c(f2), and c(f3) are. The matrix that has these vectors
as columns is

M =


−3 4 1
−1 0 1
0 1 1
1 0 0

 ,

which is easily checked to have zero kernel, so c(f1), c(f2), and c(f3) are linearly
independent by Corollary 7.11, and therefore, so are f1, f2, and f3.

Note that if we had looked for explicit λ1, λ2, λ3 with λ1f1 + λ2f2 + λ3f3 = 0,
then collecting similar powers of x gives

(−3λ1 + 4λ2 + λ3) + (−λ1 + λ3)x+ (λ2 + λ3)x
2 + λ1x

3 = 0.
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Each of the coefficients has to equal 0, which gives four equations, expressed by
the equation

M ·

λ1λ2
λ3

 = 0

for the same matrix M . As we have seen before, we have kerM = {0}, so the
only solution is λ1 = λ2 = λ3 = 0, and we conclude again that f1, f2, and f3 are
linearly independent.

Proposition 7.15. Let V be a vector space.

(1) For any vectors v1, v2, . . . , vn ∈ V, the following statements are equivalent.
(a) The vectors v1, v2, . . . , vn are linearly dependent.
(b) One of the vectors is a linear combination of the previous ones, that

is, there is a j ∈ {1, 2, . . . , n} with vj ∈ L(v1, . . . , vj−1).
(c) One of the vectors is a linear combination of the others, that is, there

is a j ∈ {1, 2, . . . , n} with vj ∈ L(v1, . . . , vj−1, vj+1, . . . , vn).
(2) An infinite sequence v1, v2, v3, . . . of vectors in V is linearly dependent if

and only if one of the vectors is a linear combination of the previous ones.
(3) Suppose I is any index set. Then a collection (vi)i∈I of vectors in V is

linearly dependent if and only if one of the vectors is a linear combination
of (finitely many of) the others.

Proof. We start with (1). Let us first assume that v1, v2, . . . , vn are linearly
dependent. Then there are scalars λ1, λ2, . . . , λn, not all zero, such that

λ1v1 + λ2v2 + · · ·+ λnvn = 0 .

Let j be the largest index such that λj ̸= 0. Then

vj = −λ−1
j (λ1v1 + · · ·+ λj−1vj−1) ∈ L(v1, . . . , vj−1) .

This proves the implication (a) ⇒ (b). The implication (b) ⇒ (c) is trivial. For
the implication (c) ⇒ (a), assume that vj is a linear combination of the others:

vj = λ1v1 + · · ·+ λj−1vj−1 + λj+1vj+1 + . . .+ λnvn

for some λ1, λ2, . . . , λj−1, λj+1, . . . , λn. Then

λ1v1 + · · ·+ λj−1vj−1 − vj + λj+1vj+1 + . . .+ λnvn = 0 ,

so the given vectors are linearly dependent. This proves part (1).

For (2) and (3), we recall that a collection (vi)i∈I is linearly dependent if and
only if for some finite subset S ⊂ I, the finite subcollection (vi)i∈S is linearly
dependent. For part (2) we finish the proof by noting that for every finite set
S, there is an integer n such that we have S ⊂ {1, 2 . . . , n}, so we can apply
the equivalence (a) ⇔ (b) of part (1). For part (3) we can just number the
elements of S by 1, 2, . . . , n = |S|, and then apply the equivalence (a) ⇔ (c) of
part (1). □

Example 7.16. Consider the real polynomials

f1 = 1, f2 = x+ 2, f3 = x2 − 2x+ 3, f4 = 2x4 − 2x2 + 5

inside the real vector space R[x] (cf. Example 2.13 and Appendix D). The
degree of each polynomial is higher than the degree of all the previous ones,
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so none of the polynomials is a linear combination of the previous ones and we
conclude by Proposition 7.15 that the polynomials are linearly independent.

Example 7.17. Take the vectors

v1 = (1, 2, 1,−1, 2, 1, 0),

v2 = (0, 1, 1, 0,−1,−2, 3),

v3 = (0, 0, 0, 3, 3,−1, 2),

v4 = (0, 0, 0, 0, 0, 6, 4)

in Q7. We consider them in opposite order, so v4, v3, v2, v1. Then for each
vector, the first coordinate that is nonzero (namely the sixth, fourth, second,
and first coordinate respectively), is zero for all previous vectors. This implies
that no vector is a linear combination of the previous ones, so the vectors are
linearly independent by Proposition 7.15.

Exercises

7.1.1. Which of the following sequences of vectors in R3 are linearly independent?
(1)

(
(1, 2, 3), (2, 1,−1), (−1, 1, 1)

)
,

(2)
(
(1, 3, 2), (1, 1, 1), (−1, 3, 1)

)
.

7.1.2. Are the real polynomials 3, x−1, x2−3x+2, x4−3x+13, x7−x+14 linearly
independent?

7.1.3. Are the complex polynomials x7 − 2x + 1, 5x2, 2x4 − 5x3, x, x6 − 3x linearly
independent?

7.1.4. Are the vectors

v1 = (1, 4, 2, 3, 5),

v2 = (−1, 7, 2, 3, 6),

v3 = (4, 2, 3,−3, 4),

v4 = (2,−3, 1, 4, 2),

v5 = (6, 5, 3,−2,−4),

v6 = (1,−7, 3, 2, 5)

in R5 linearly independent? (Hint: do not start a huge computation)

7.1.5. Phrase and prove a version of part (2) of Proposition 7.15 for any collection
of vectors indexed by a totally ordered set I.

7.1.6. Let V be a vector space, I an index set, and (vi)i∈I a collection of elements
of V . Let j ∈ I be an index and suppose that the subcollection (vi)i∈I\{j} is
linearly independent. Prove that the whole collection (vi)i∈I is linearly inde-
pendent if and only if we have

vj ̸∈ L
(
vi)i∈I\{j}

)
.

7.1.7. Let V = Map(R,R) be the vector space of all functions from R to R. Let I
denote the set of all closed intervals [a, b] in R. For each interval I ∈ I, we let
hI denote the function given by

hI(x) =

{
1 if x ∈ I,

0 if x ̸∈ I.

Is the collection
(
hI

)
I∈I linearly independent?
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7.1.8. Let n > 0 be an integer and a0, . . . , an ∈ R real numbers. Let f0, . . . , fn ∈ C(R)
be continuous functions that satisfy

fi(aj) =

{
1 if j ≤ i,

0 otherwise.

Show that the functions f0, f1, . . . , fn are linearly independent.

7.1.9. Suppose W is a vector space over a field F , containing a (possibly infinite)

collection (wi)i∈I of elements. Let φ : F (I) → W be the unique linear map
sending the standard vector ei to wi for all i ∈ I (see Exercise 4.4.7).
(1) Show that the collection (wi)i∈I is linearly independent if and only if φ is

injective. This is a generalisation of Proposition 7.10.
(2) Show that the collection (wi)i∈I generates W if and only if φ is surjective.

This is a reformulation of Exercise 4.4.7.

7.1.10. State and prove a generalisation of Lemma 7.13 for arbitrary collections of
vectors.

7.2. Bases

Definition 7.18. Let V be a vector space. A basis is a collection (vi)i∈I of vectors
in V that is linearly independent and generates V, that is, V = L

(
(vi)i∈I

)
.

In particular, a finite sequence (v1, v2, . . . , vn) of elements of V is a basis for V if
and only if v1, v2, . . . , vn are linearly independent, and they generate V . We also
say that the elements v1, v2, . . . , vn form a basis for V .

Note that the elements of a basis (v1, v2, . . . , vn) have a specific order. Also in the
general case of arbitrary labeled collections, a basis (vi)i∈I has a similar structure:
for each index i ∈ I, we know which element is the i-th element.

Remark 7.19. Technically, we have not defined the notation L
(
(vi)i∈I

)
used

in Definition 7.18, as we only defined the span of sets and finite sequences in
Definition 3.24, not of (labeled) collections. Of course, though, the notation
L
(
(vi)i∈I

)
stands for the set of all linear combinations of finite subcollections

(vi)i∈S with S ⊂ I finite. This equals the span of the set {vi : i ∈ I} of elements
in the collection (cf. Remark 3.25).

Example 7.20. The most basic example of a basis is the canonical basis or
standard basis of F n. This is E = (e1, e2, . . . , en), where

e1 = (1, 0, 0, . . . , 0, 0)

e2 = (0, 1, 0, . . . , 0, 0)

...
...

en = (0, 0, 0, . . . , 0, 1) .

The standard generators e1, . . . , en are therefore also called standard basis vec-
tors.

Example 7.21. Let X be a finite set and F a field. For each x ∈ X, we define
the function fx : X → F that sends x to 1 and every other element of X to 0.
Then the collection (fx)x∈X is a basis for the vector space FX . Compare this
to the previous example. See Exercise 7.2.5 for infinite sets.
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Proposition 7.22 (Basis of row space and kernel). Let A ∈ Mat(m× n, F )
be a matrix in row echelon form with r nonzero rows. Then these r rows form a
basis for the row space R(A). The n− r elements wk (for all 1 ≤ k ≤ n for which
the k-th column contains no pivot) of Proposition 6.19 (or Proposition 6.27 if A
is in reduced row echelon form) form a basis of the kernel of A.

Proof. Consider the r nonzero rows from bottom to top. Then, just as in
Example 7.17, for each row, the first coordinate that is nonzero, is zero for all
previous rows. This implies that no row is a linear combination of the previous
ones, so the vectors are linearly independent by Proposition 7.15. These r rows
generate the row space by definition, so they form a basis for R(A).

For each k with 1 ≤ k ≤ n, for which the k-th column of A contains no pivot,
the element wk has a 1 on the k-th coordinate, where all the other n − r − 1
elements have a 0. This implies that none of the wk is a linear combination of
the others, so by Proposition 7.15, these n−r elements are linearly independent.
They generate the kernel by Proposition 6.19 (or 6.27), so they form a basis for
kerA. □

Remark 7.23 (Basis of U and U⊥ using rows). We can use Proposition 7.22
to find a basis of a subspace U of F n generated by elements v1, v2, . . . , vm. First
we let A denote the m × n matrix of which the rows are v1, v2, . . . , vm. Then
we apply a sequence of elementary row operations to A to obtain a matrix A′

that is in row echelon form. Since the row spaces R(A) and R(A′) are equal
by Proposition 6.3, the nonzero rows of A′ form a basis for R(A′) = R(A) = U
by Proposition 7.22. Moreover, the subspace U⊥ equals kerA = kerA′ by
Propositions 5.32 and 6.3, so Proposition 7.22 also gives a basis for U⊥.

Remark 7.23 puts generators of a subspace U ⊂ F n as rows in a matrix in order to
find a basis for U and U⊥. In Proposition 7.26 we will describe a method to find
a basis for U that puts generators of U as columns in a matrix. We first phrase a
useful lemma.

Lemma 7.24. Suppose V is a vector space with elements v1, v2, . . . , vn ∈ V . Let
I ⊂ {1, 2, . . . , n} be the set of all i for which vi is not a linear combination of
v1, . . . , vi−1. Then the collection (vi)i∈I is a basis for L(v1, v2, . . . , vn).

Proof. Set U = L
(
(vi)i∈I

)
⊂ L(v1, v2, . . . , vn). By induction we show that

L(v1, v2, . . . , vj) ⊂ U for all integers 0 ≤ j ≤ n. For j = 0 this is trivial, as we
have L(v1, v2, . . . , vj) = L(∅) = {0}. For 0 < j ≤ n we have two cases. In the
case j ∈ I we clearly have vj ∈ U . For j ̸∈ I, the vector vj is by definition a
linear combination of v1, . . . , vj−1, so we have vj ∈ L(v1, . . . , vj−1) ⊂ U by the
induction hypothesis. For j = n we obtain U = L(v1, v2, . . . , vn). It remains to
show that the collection (vi)i∈I is linearly independent, which follows from part
(1) or from Proposition 7.15. □
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Example 7.25. Consider the matrix

A =


1 1 2 1 3 4 0
0 1 −1 2 1 2 0
0 0 0 1 0 2 −3
0 0 0 0 0 1 1
0 0 0 0 0 0 0

 ,

which is in row echelon form. By Proposition 6.21, the columns with a pivot,
that is, the first, second, fourth, and sixth, are exactly the columns that are
not a linear combination of the previous columns of A. From Lemma 7.24 we
conclude that these four columns form a basis for the column space C(A) of A.

We can combine Proposition 6.21 and Lemma 7.24 to make a method to determine
a basis for the column space of a matrix.

Proposition 7.26 (Basis of column space). Let A be an m × n matrix over
a field F with columns w1, . . . , wn. Let A′ be a matrix in row echelon form that
is row equivalent to A. Let I ⊂ {1, . . . , n} be the set of all indices of columns
of A′ with a pivot. Then the collection (wi)i∈I is a basis for the column space
C(A) = L(w1, . . . , wn) of A.

Proof. By Proposition 6.21, the collection (wi)i∈I consists of those columns wi
of A that are not a linear combination of the previous columns of A. By
Lemma 7.24, this implies that this collection (wi)i∈I is a basis for the space
L(w1, . . . , wn) = C(A). □

Remark 7.27 (Basis of U using columns). We can use Proposition 7.26 to
determine a basis of a subspace U of Fm generated by elements w1, w2, . . . , wn.
First we let A denote the m×n matrix of which the columns are w1, w2, . . . , wn.
Then we apply a sequence of elementary row operations to A to obtain a matrix
A′ that is in row echelon form, and we let I denote the set of all indices i with
1 ≤ i ≤ n for which the i-th column of A′ contains a pivot. Then the collection
(wi)i∈I is a basis for U = C(A).

An advantage of this method is that the basis we find consists entirely of vectors
that we started with.

A summary of the idea behind this is the following. Note that row operations
may change the column space, but the kernel is preserved, which means that
linear relations among the columns of a matrix B are preserved among the
columns of a row equivalent matrix B′ (and vice versa). If B′ is a matrix in
row echelon form, the existence of linear relations can be read off easily from
the pivots.
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Example 7.28. Let us determine a basis for the subspace U ⊂ R4 generated
by

v1 = (1, 0, 2,−1),

v2 = (0, 1, 0, 2),

v3 = (1, 2, 2, 3),

v4 = (1,−1, 0, 1),

v5 = (0, 3, 2, 2).

The 4×5 matrix B with these vectors as columns has reduced row echelon form
1 0 1 0 1
0 1 2 0 2
0 0 0 1 −1
0 0 0 0 0

 .

The pivots are contained in columns 1, 2, and 4, so the first, second, and fourth
column of B form a basis (v1, v2, v4) for U . From the reduced row echelon form
we can also read off the linear relations v3 = v1 + 2v2 and v5 = v1 + 2v2 − v4,
which correspond to the generators (1, 2,−1, 0, 0) and (1, 2, 0,−1,−1) of the
kernel (cf. Proposition 6.19 or 6.27).

Recall from Definition 4.39, as in the previous section, that for any sequence
C = (w1, . . . , wn) of n elements in a vector space W over a field F , we have a
unique linear map φC : F

n → W that sends the j-th standard vector ej to wj; the
map φC sends (a1, . . . , an) ∈ F n to a1w1 + · · ·+ anwn.

Proposition 7.29. Let W be a vector space over the field F and C = (w1, . . . , wn)
a sequence of n vectors in W . Then C is a basis for W if and only if the map
φC : F

n → W is an isomorphism.

Proof. The map φC is injective if and only if w1, . . . , wn are linearly independent
by Proposition 7.10. The map φC is surjective if and only if w1, . . . , wn generate
W (see the remark below Proposition 4.38). The statement follows. □

A statement similar to Proposition 7.29 holds for arbitrary collections (Exer-
cise 7.2.6).

From Proposition 7.15 above, we see that the elements of a basis for V form a
minimal generating set of V in the sense that we cannot leave out some element
and still have a generating set. Lemma 7.30 states a consequence that makes bases
special among all generating sets.

Lemma 7.30. Suppose V is an F -vector space. Then a sequence (v1, v2, . . . , vn)
of elements in V is a basis for V if and only if for every v ∈ V , there are unique
scalars λ1, λ2, . . . , λn ∈ F such that

v = λ1v1 + λ2v2 + · · ·+ λnvn .

Proof. Set C = (v1, v2, . . . , vn). Then by Proposition 7.29, the sequence C is
basis for V if and only if φC is an isomorphism. On the other hand, φC is
surjective if and only if for every v ∈ V , there are scalars λ1, λ2, . . . , λn ∈ F
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such that
v = λ1v1 + λ2v2 + · · ·+ λnvn,

and φC is injective if and only if such scalars are unique, if they exist. It follows
that φC is bijective if and only if there are unique scalars satisfying the given
equation. This proves the lemma. □

Alternative proof. Suppose that the sequence (v1, v2, . . . , vn) is a basis for V .
The existence of (λ1, λ2, . . . , λn) ∈ F n such that

v = λ1v1 + λ2v2 + · · ·+ λnvn

follows from the fact that v1, v2, . . . , vn generate V.

To show uniqueness, assume that (µ1, µ2, . . . , µn) ∈ F n also satisfy

v = µ1v1 + µ2v2 + · · ·+ µnvn .

Taking the difference, we obtain

0 = (λ1 − µ1)v1 + (λ2 − µ2)v2 + · · ·+ (λn − µn)vn .

Since v1, v2, . . . , vn are linearly independent, it follows that

λ1 − µ1 = λ2 − µ2 = · · · = λn − µn = 0 ,

that is, (λ1, . . . , λn) = (µ1, . . . , µn). This shows that the sequence (λ1, . . . , λn)
was indeed unique. The converse is left as an exercise. □

A statement similar to Lemma 7.30 holds for arbitrary collections (Exercise 7.2.7).

Proposition 7.31. Let V and W be vector spaces, f : V → W a linear map, and
let v1, . . . , vn ∈ V be vectors that generate V . Then

(1) f is surjective if and only if L(f(v1), . . . , f(vn)) = W .

Assume that v1, . . . , vn form a basis for V . Then

(2) f is injective if and only if f(v1), . . . , f(vn) are linearly independent,

(3) f is an isomorphism if and only if f(v1), . . . , f(vn) is a basis of W.

Proof. Set C = (v1, v2, . . . , vn) and D = (f(v1), f(v2), . . . , f(vn)). Then the
linear maps φC : F

n → V and φD : F n → W are related by φD = f ◦φC . Since
the elements v1, . . . , vn ∈ V generate V , the map φC is surjective. We conclude
that f is surjective if and only if φD is surjective, which is the case if and only
if L(f(v1), . . . , f(vn)) = W . This proves (1). For (2), we note that φC is an
isomorphism, because C is a basis for V . We conclude that f is injective if
and only if φD is injective, which is the case if and only if f(v1), . . . , f(vn) are
linearly independent. Statement (3) follows from (1) and (2). □

Just as for Lemma 7.30, we can also give an alternative proof straight from the
definitions of ‘generating’ and ‘linearly independent’, without making use of the
maps φC and φD. We leave this to the reader.

The following corollary follows directly from part (3) of Proposition 7.31 and
implies that if f : V → W is an isomorphism, then v1, v2, . . . , vn ∈ V form a basis
for V if and only if their images f(v1), f(v2), . . . , f(vn) form a basis for W .
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Corollary 7.32. Let f : V → W be a linear map of vector spaces and v1, v2, . . . , vn
elements of V . Then any two of the following three statements together imply the
third.

(1) The map f is an isomorphism.
(2) The elements v1, v2, . . . , vn form a basis for V .
(3) The elements f(v1), f(v2), . . . , f(vn) form a basis for W .

Proof. If (2) holds, then (1) and (3) are equivalent by part (3) of Proposi-
tion 7.31. This proves the implications (1) + (2) ⇒ (3) and (2) + (3) ⇒ (1).
Applying the first of these implications to f−1, we deduce the remaining impli-
cation (1) + (3) ⇒ (2). □

Lemma 7.30, Proposition 7.31, and Corollary 7.32 also hold for arbitrary collec-
tions (see Exercises 7.2.2, 7.2.10, and 7.2.11).

Exercises

7.2.1. Determine a basis for the subspaces of Rn generated by
(1) v1 = (1, 3), v2 = (2, 1), v3 = (1, 1),
(2) v1 = (1, 3, 1), v2 = (2, 1, 2), v3 = (1, 1, 1),
(3) v1 = (1, 3, 1), v2 = (3, 1, 3), v3 = (1, 1, 1),
(4) v1 = (1, 2, 3), v2 = (4, 5, 6), v3 = (7, 8, 9),
(5) v1 = (1, 2, 3, 4), v2 = (4, 3, 2, 1), v3 = (1,−1, 1,−1),

7.2.2. Finish the alternative proof of Lemma 7.30.

7.2.3. For each of the matrices of Exercise 6.3.4, select some columns that form a
basis for the column space of that matrix.

7.2.4. Consider the real polynomials

f1 = x2 + 1,

f2 = x3 − x2 + x,

f3 = x4 + x− 7,

f4 = x4 − 6,

f5 = x3 + 2,

f6 = x2 + x.

and the vectorspace U ⊂ R[x] they generate. Select some polynomials that
form a basis for U .

7.2.5. This exercise generalises Example 7.21. Let X be any set and F a field. For
each x ∈ X, we define the function fx : X → F that sends x to 1 and every
other element of X to 0.
(1) Give an example where the collection (fx)x∈X is not a basis for FX .

(2) Show that the collection (fx)x∈X is a basis of the vector space F (X).

7.2.6. State and prove a generalisation of Proposition 7.29 for arbitrary collections
of vectors, cf. Exercises 4.4.7 and 7.1.9.

7.2.7. State and prove an analog of Lemma 7.30 for arbitrary collections (vi)i∈I of
vectors in V .

7.2.8. (1) Use Proposition 4.38 to prove the following generalisation of Proposi-
tion 4.38 itself: “Let V and W be vector spaces over a field F , and let
B = (v1, v2, . . . , vn) be a basis for V . Then for every sequence w1, . . . , wn of
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vectors inW there is a unique linear map f : V →W such that f(vj) = wj
for all j ∈ {1, . . . , n}.”

(2) Also state and prove an analog for arbitrary collections (vi)i∈I (basis for
V ) and (wi)i∈I (general elements in W ).

7.2.9. (1) Prove a version of Lemma 7.24 for infinite sequences v1, v2, v3, . . ..
(2) What about sequences (vi)i∈Z = . . . , v−1, v0, v1, . . . that are infinite in

both directions, with the hypothesis that I consist of all i ∈ Z for which
vi is not a linear combination of the previous elements?

The last exercises relate linear independence and generating on one hand to injec-
tivity and surjectivity on the other. They are related to Lemmas 7.13, Proposi-
tion 7.31, and Corollary 7.32. Some parts require the existence of a basis. Appen-
dix E shows that using Zorn’s Lemma one can indeed prove that all vector spaces
have a basis (cf. Warning 7.52). In these exercises, however, we will include it as
an explicit hypothesis whenever it is needed.

7.2.10. State and prove an analog of Proposition 7.31 for an arbitrary collection
(vi)i∈I of vectors in V (also follows from Exercises 7.2.12, 7.2.13, and 7.2.14).

7.2.11. State and prove an analog of Corollary 7.32 for arbitrary collections (vi)i∈I
of vectors in V .

7.2.12. Let f : V →W be a linear map. Show that the following are equivalent.
(1) The map f is injective.
(2) For every non-negative integer n and every sequence v1, . . . , vn ∈ V of

linearly independent vectors, the images f(v1), . . . , f(vn) are linearly in-
dependent in W .

(3) For every collection (vi)i∈I of linearly independent vectors in V , the col-
lection (f(vi))i∈I of images is linearly independent in W .

Show that if V has a (not necessarily finite) basis, then these statements are
also equivalent to the following.
(4) For all bases (vi)i∈I for V , the collection (f(vi))i∈I of images is linearly

independent in W .
(5) There exists a basis (vi)i∈I for V for which the collection (f(vi))i∈I of

images is linearly independent in W .

7.2.13. Let f : V →W be a linear map. Show that the following are equivalent.
(1) The map f is surjective.
(2) For every collection (vi)i∈I of vectors that generates the space V, the

collection (f(vi))i∈I of their images generates W .
(3) There is a collection (vi)i∈I of vectors in V for which the collection (f(vi))i∈I

of their images generates W .
Explain why the analog for finite sequences is missing among these statements
by giving an example of a linear map f : V → W that is not surjective, but
such that for all sequences v1, v2, . . . , vn of elements in V that generate V , the
images f(v1), f(v2), . . . , f(vn) generate W .

7.2.14. Let f : V → W be a linear map and assume V has a (not necessarily finite)
basis. Then the following are equivalent.
(1) The map f is an isomorphism.
(2) For every basis (vi)i∈I for V, the collection (f(vi))i∈I is a basis for W .
(3) There exists a basis (vi)i∈I for V for which the collection (f(vi))i∈I is a

basis for W .

7.3. The basis extension theorem and dimension

Proposition 7.29 says that if v1, v2, . . . , vn form a basis for a vector space V , then
V is isomorphic to the standard vector space F n, so we can express everything
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in V in terms of F n. Since we seem to know “everything” about a vector space
as soon as we know a basis, it makes sense to use bases to measure the “size”
of vector spaces. In order for this to make sense, we need to know that any two
bases of a given vector space have the same size. The key to this (and many other
important results) is the following.

Theorem 7.33 (Basis Extension Theorem). Let V be a vector space, and let
v1, . . . , vr, w1, . . . , ws ∈ V be vectors such that v1, . . . , vr are linearly independent
and V = L(v1, . . . , vr, w1, . . . , ws). Let I ⊂ {1, . . . , s} be the set of indices i for
which wi is not a linear combination of v1, . . . , vr, w1, . . . , wi−1. Then v1, v2, . . . , vr
and (wi)i∈I together form a basis for V .

Proof. Because v1, v2, . . . , vr are linearly independent, none of them are linear
combinations of the other r − 1 of them. Hence, this follows immediately from
applying Lemma 7.24 to the elements v1, v2, . . . , vr, w1, w2, . . . , ws. □

The Basis Extension Theorem says that if we have a bunch of vectors that is
‘too small’ (v1, . . . , vr linearly independent, but not necessarily generating) and
a larger bunch of vectors that is ‘too large’ (v1, . . . , vr, w1, . . . , ws generating but
not necessarily linearly independent), then there is a basis in between: by adding
suitably chosen vectors from w1, . . . , ws, we can extend v1, . . . , vr to a basis of V.

As we saw in its proof, Theorem 7.33 is nothing but a special case of Lemma 7.24,
namely the case in which we already know that the first r vectors v1, . . . , vr are
linearly independent. In a different direction, Proposition 7.26 is a specialisation
of Lemma 7.24 as well, namely where we take V = Fm (and Proposition 6.21
was used to define the set I more explicitly in terms of the columns that contain
pivots). The following common specialisation is an explicit version of the Basis
Extension Theorem for Fm.

Corollary 7.34. Let v1, . . . , vr, w1, . . . , ws ∈ Fm be elements such that v1, . . . , vr
are linearly independent and set V = L(v1, . . . , vr, w1, . . . , ws). Let A be the matrix
with columns v1, . . . , vr, w1, . . . , ws, let A

′ be the reduced row echelon form of A,
and let I be the set of all indices 1 ≤ i ≤ s for which the (r + i)-th column of A′

has a pivot. Then v1, v2, . . . , vr and (wi)i∈I together form a basis for V .

Proof. By Proposition 6.21, the collection (wi)i∈I consists exactly of those columns
wi of A that are not a linear combination of the previous columns of A. By
Theorem 7.33, this implies the desired conclusion. □

Example 7.35. Consider the vectors

v1 = (1, 1, 2) and v2 = (−1, 2, 4)

in R3. We will extend (v1, v2) to a basis for R3. Clearly, the vectors v1, v2, e1, e2, e3
together generate R3, because the standard generators e1, e2, e3 already gener-
ate R3 by themselves. We apply Corollary 7.34 and find that the matrix with
v1, v2, e1, e2, e3 as columns has reduced row echelon form1 0 2

3
0 1

6
0 1 −1

3
0 1

6
0 0 0 1 −1

2

 .

The pivots are in columns 1,2, and 4. Hence, the corresponding vectors v1, v2, e2
form a basis for R3.
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Example 7.36. Consider the real polynomials f1 = x2 − 1, f2 = x3 − x, and
f3 = x3 − 2x2 − x + 1 in the vector space R[x]3 of polynomials of degree at
most 3. It is easy to check that these polynomials are linearly independent. On
the other hand, the monomials 1, x, x2, x3 generate R[x]3, so certainly

f1, f2, f3, 1, x, x
2, x3

generate R[x]3. By the Basis Extension Theorem we can extend f1, f2, f3 to a
basis by adding suitably chosen monomials. The monomials 1 = f2−2f1−f3 and
x2 = f2−f1−f3 are already contained in L(f1, f2, f3), so adding either of those
to f1, f2, f3 would cause nontrivial linear relations. The element x, however,
is not contained in L(f1, f2, f3), because f1, f2, f3, x are linearly independent
(check this). We have

1 = f2 − 2f1 − f3, x2 = f2 − f1 − f3, and x3 = f2 + x,

so the generators 1, x, x2, x3 of R[x]3 are contained in L(f1, f2, f3, x), and there-
fore L(f1, f2, f3, x) = R[x]3, so f1, f2, f3, x generate R[x]3 and form a basis for
R[x]3. We could have also added x3 to f1, f2, f3 to obtain a basis.

Example 7.37. Let us revisit the previous example. The linear map

φ : R4 → R[x]3, (a0, a1, a2, a3) 7→ a3x
3 + a2x

2 + a1x+ a0

is an isomorphism, so φ and φ−1 send linearly independent vectors to linearly
independent vectors (Lemma 7.13) and bases to bases (Corollary 7.32). Setting
vi = φ−1(fi) for i = 1, 2, 3 and wj = φ−1(xj) for j = 0, 1, 2, 3, we get wj = ej
and

v1 =


−1
0
1
0

 , v2 =


0
−1
0
1

 , and v3 =


1
−1
−2
1

 .

We wish to extend v1, v2, v3 to a basis of R4 by adding suitably chosen elements
from {e1, e2, e3, e4}. In order to do so, we use Proposition 7.26 and Remark 7.27
and put the seven vectors as columns in a matrix

A =


−1 0 1 1 0 0 0
0 −1 −1 0 1 0 0
1 0 −2 0 0 1 0
0 1 1 0 0 0 1

 ,

of which the reduced row echelon form equals
1 0 0 2 0 −1 0
0 1 0 1 0 1 1
0 0 1 −1 0 −1 0
0 0 0 0 1 0 1

 .

The pivots in the latter matrix are contained in columns 1, 2, 3, and 5, so by
Proposition 7.26 and Remark 7.27, the corresponding columns v1, v2, v3, e2 of A
form a basis for C(A) = R4. After applying φ, we find that (f1, f2, f3, x) is a
basis for R[x]3, which is exactly the basis we had found before.

Note that it was not a coincidence that the first three columns of the matrix in
row echelon form contained a pivot, because we already knew that the elements
v1, v2, v3 are linearly independent, so none of these is a linear combination of
the previous, cf. Proposition 6.21.
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The Basis Extension Theorem implies another important statement, namely the
Exchange Lemma. It says that if we have two finite bases of a vector space, then
we can trade any vector of our choice in the first basis for a vector in the second
basis in such a way as to still have a basis.

Lemma 7.38 (Exchange Lemma). If v1, . . . , vn and w1, . . . , wm are two bases
of a vector space V, then for each i ∈ {1, 2, . . . , n} there is some j ∈ {1, 2, . . . ,m}
such that v1, . . . , vi−1, wj, vi+1, . . . , vn is again a basis of V.

Proof. Fix i ∈ {1, . . . , n} and set U = L(v1, . . . , vi−1, vi+1, . . . , vn). As v1, . . . , vn
are linearly independent, we have vi ̸∈ U by the equivalence (a) ⇔ (c) of
Proposition 7.15, so U ⊊ V . This implies that there is some j ∈ {1, . . . ,m} such
that wj /∈ U (if we had wj ∈ U for all j, then we would have V ⊂ U). Choose
such a j. Then by the equivalence (a) ⇔ (b) of Proposition 7.15, the vectors
v1, . . . , vi−1, vi+1, . . . , vn, wj are linearly independent. We claim that they form
a basis. Indeed, suppose they did not. Then by the Basis Extension Theorem
applied to these n linearly independent vectors and the additional vector vi
(which together generate V ), the elements v1, . . . , vi−1, vi+1, . . . , vn, wj, vi must
form a basis. However, the vectors in this latter sequence are not linearly
independent, since wj is a linear combination of v1, . . . , vn (another application
of Proposition 7.15). This proves the claim. □

Theorem 7.39. If v1, v2, . . . , vn and w1, w2, . . . , wm are two bases of a vector
space V, then n = m.

Proof. Assume, without loss of generality, that n > m. By repeatedly applying
the Exchange Lemma, we can successively replace v1, v2, . . . , vn by some wj and
still have a basis. Since there are more v’s than w’s, the resulting sequence must
have repetitions and therefore cannot be linearly independent, contradiction.

□

Theorem 7.39 implies that the following definition makes sense.

Definition 7.40. If a vector space V over a field F has a basis (v1, v2, . . . , vn),
then n ≥ 0 is called the dimension of V , written n = dimV = dimF V, and we say
that V is finite-dimensional. If V does not have a finite basis, then we write
dimV = ∞ and we say that V is infinite-dimensional.

Example 7.41. The empty sequence is a basis of the zero space, so dim {0} = 0.

Example 7.42. The canonical basis of F n has length n, so dimF n = n.

Example 7.43. Any line L in F n that contains 0 is equal to L(a) for some
nonzero a ∈ F n. The element a forms a basis for L = L(a), so dimL = 1.

Example 7.44. Let F be a field. The vector space F [x] of all polynomials in the
variable x with coefficients in F contains polynomials of arbitrarily high degree.
The polynomials in any finite sequence f1, f2, . . . , fr have bounded degree, so
they can not generate F [x]. This shows that no finite sequence of polynomials
can form a basis for F [x], so dimF [x] = ∞.
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Example 7.45. Let F be a field and d ≥ 0 an integer. Then the monomials
1, x, x2, . . . , xd form a basis for the vector space F [x]d of all polynomials of
degree at most d (check this!), so dimF [x]d = d+ 1.

Example 7.46. Let A be an m × n matrix with row echelon form A′ and let
r be the number of pivots in A′, that is, the number of nonzero rows of A′.
Then by Propositions 6.3 and 7.22 we have dimR(A) = dimR(A′) = r and
dimker(A) = dimker(A′) = n− r, and thus dimR(A) + dimker(A) = n.1

Theorem 7.47. Let V be a vector space containing elements v1, . . . , vr. Then the
following statements hold.

(1) If v1, v2, . . . , vr are linearly independent, then we have r ≤ dimV with
equality if and only if (v1, . . . , vr) is a basis for V .

(2) If v1, v2, . . . , vr generate V , then we have dimV ≤ r with equality if and
only if (v1, . . . , vr) is a basis for V .

(3) If r = dimV , then v1, . . . , vr are linearly independent if and only if they
generate V .

Proof. For (1), we are done if dimV = ∞, so we assume that dimV is finite-
dimensional, say dimV = s with a basis w1, w2, . . . , ws for V . We apply the
Basis Extension Theorem to the sequences v1, . . . , vr and w1, . . . , ws. As we
have

V = L(w1, . . . , ws) = L(v1, . . . , vr, w1, . . . , ws),

we can extend v1, . . . , vr to a basis of length s. We immediately conclude
r ≤ s = dimV and equality holds if and only if (v1, . . . , vr) needs no extension,
that is, it is already a basis.

For (2), we apply the Basis Extension Theorem to the empty sequence and the
sequence v1, . . . , vr. The empty sequence can be extended to a basis by adding
suitably chosen elements from v1, . . . , vr. As no element occurs doubly in such
a basis (or it would not be linearly independent), the basis contains at most r
elements, so dimV ≤ r.

If the inequality dimV ≤ r is an equality, then each vi is included in the basis,
as otherwise some element would occur doubly. This shows that v1, . . . , vr are
linearly independent, so (v1, . . . , vr) is a basis for V . Conversely, if (v1, . . . , vr)
is a basis for V , then we have dimV = r. Statement (3) follows from (1)
and (2). □

Remark 7.48. Theorem 7.47(2) shows that if V is a finitely generated vector
space, then V has a finite basis and a finite dimension.

Note that Theorem 7.47 yields a quite strong existence statement: if V is a vector
space of dimension dimV = n, then part (1) of Theorem 7.47 guarantees the
existence of a nontrivial linear relation among any r elements v1, v2, . . . , vr ∈ V
whenever r > n without the need to do any computation. This is very useful in
many applications. On the other hand, it is quite a different matter to actually
find such a relation: the proof is non-constructive and we usually need some
computational method to exhibit an explicit relation.

1This argument uses the row echelon form and Proposition 7.22, which relies on Proposi-
tion 6.19, which tells us how to compute generators of the kernel. This proof can therefore be
considered ‘computational’, which is the type of proofs we avoid as much as possible in this
book. A computation-free proof will be given in Theorem 8.12.
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Part (1) of Theorem 7.47 tells us that in a vector space of (finite) dimension n,
the length of a linearly independent sequence of vectors is bounded by n. We can
use this to show in another way that dimF [x] = ∞ (see Example 7.44).

Example 7.49. Let F be a field. In Example 7.44 we showed that the vec-
tor space F [x] of all polynomials in the variable x with coefficients in F is
infinite-dimensional by showing that it can not be generated by finitely many
polynomials. Using Theorem 7.47 we can give a new argument using linear
independence. The space F [x] contains the monomials 1, x, x2, x3, x4, . . ., which
are linearly independent, see Example 7.7. This means that we can find ar-
bitrarily many linearly independent elements in F [x], so F [x] can not have a
finite basis by Theorem 7.47(1). We conclude, again, dimF [x] = ∞. Note that
since F [x] = L({xn : n ∈ Z≥0}), we have shown that the collection (xn)n∈Z≥0

is
a basis of F [x].

With a little more effort, we can also show that the subspace P (R) of RR of real
polynomial functions does not have a finite basis either. Note that this follows
from Example 7.49 if we use the fact that the bijection φ : R[x] → P (R) from
Remark 3.36 is an isomorphism, which in turn follows from the fact that φ is linear,
as we have seen in Exercise 4.1.9. However, for the fact that φ is injective we used
Exercise 11.3.8 from a later chapter, while the following example is independent
of that.

Example 7.50. Let us consider again the linear subspace P (R) of polynomial
functions in C(R) (the vector space of continuous functions on R), compare
Example 3.35.

P (R) = {f ∈ C(R) : ∃n ∈ Z≥0 ∃a0, . . . , an ∈ R ∀x ∈ R : f(x) = anx
n+· · ·+a1x+a0}

Denote as before by fn the n-th power function: fn(x) = xn. We claim that the
collection (f0, f1, f2, . . . ) = (fn)n∈Z≥0

is linearly independent. Recall that this
means that the only way of writing zero (that is, the zero function) as a finite
linear combination of the fj is with all coefficients equal to zero. If we let n
be the largest number such that fn occurs in the linear combination, then it is
clear that we can write the linear combination as

λ0f0 + λ1f1 + · · ·+ λnfn = 0 .

We have to show that this is only possible when λ0 = λ1 = · · · = λn = 0.

Note that our assumption means that

λnx
n + · · ·+ λ1x+ λ0 = 0 for all x ∈ R.

There are various ways to proceed from here. For example, we can make use
of the fact that a polynomial of degree n ≥ 0 can have at most n zeros in R.
This is the theorem that we used without proof in Remark 3.36. Since there are
infinitely many real numbers, the polynomial above has infinitely many zeros,
hence it must be the zero polynomial.

Another possibility is to use induction on n (which, by the way, is implicit in
the proof above: it is used in proving the statement on zeros of polynomials).
Let us do this in detail. The claim we want to prove is

∀n ∈ Z≥0 ∀λ0, . . . , λn ∈ R :
((

∀x ∈ R : λnx
n+· · ·+λ0 = 0

)
=⇒ λ0 = · · · = λn = 0

)
.

We now have to establish the induction base: the claim holds for n = 0. This
is easy — let λ0 ∈ R and assume that for all x ∈ R, λ0 = 0 (the function is
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constant here: it does not depend on x). Since there are real numbers, this
implies λ0 = 0.

Next, and this is usually the hard part, we have to do the induction step. We
assume that the claim holds for a given n (this is the induction hypothesis) and
deduce that it then also holds for n + 1. To prove the statement for n + 1, we
have to consider coefficients λ0, . . . , λn+1 ∈ R such that for all x ∈ R,

f(x) = λn+1x
n+1 + λnx

n + · · ·+ λ1x+ λ0 = 0 .

Now we want to use the induction hypothesis, so we have to reduce this to a
statement involving a polynomial of degree at most n. One way of doing that
is to borrow some knowledge from Analysis about differentiation. This tells us
that the derivative of f is zero again, and that it is a polynomial function of
degree ≤ n:

0 = f ′(x) = (n+ 1)λn+1x
n + nλnx

n−1 + · · ·+ λ1 .

Now we can apply the induction hypothesis to this polynomial function; it tells
us that (n + 1)λn+1 = nλn = · · · = λ1 = 0, hence λ1 = · · · = λn = λn+1 = 0.
So f(x) = λ0 is in fact constant, which finally implies λ0 = 0 as well (by our
reasoning for the induction base).

This completes the induction step and therefore the whole proof of the fact
that the collection (fn)n∈Z≥0

is linearly independent. From Proposition 7.47 we
conclude dimP (R) = ∞.

Note that since P (R) = L({fn : n ∈ Z≥0}), we have shown that the collection
(fn)n∈Z≥0

is a basis for P (R).

Example 7.51. We have inclusions

P (R) ⊂ C∞(R) =
∞⋂
n=0

Cn(R) ⊂ · · · ⊂ C2(R) ⊂ C1(R) ⊂ C(R) ⊂ RR .

Since P (R) contains arbitrarily long sequences of linearly independent functions,
so do all these spaces and therefore they are all infinite-dimensional.

Warning 7.52. In Examples 7.49 and 7.50 we actually found infinite bases for
F [x] and P (R) ⊂ RR, but for example for RR, it is a priori not at all clear that
there even exists a collection C of functions in RR that is linearly independent and
generates the whole vector space RR. Using Zorn’s Lemma, one can indeed show
that all vector spaces do have a basis (see Appendix E), but, with the exception
of Appendix E, we will not assume this in this book. By definition, the claim
dimV = ∞ only means that there is no finite basis, and does not directly state
that there would exist an infinite basis.

The following proposition also justifies the word infinite-dimensional for those
vector spaces that are not finite-dimensional.



140 7. LINEAR INDEPENDENCE AND DIMENSION

Proposition 7.53. Let V be a vector space. Then the following statements are
equivalent.

(1) We have dimV = ∞.
(2) The space V is not finitely generated.
(3) Every sequence v1, . . . , vn of n linearly independent elements in V can

be extended to a sequence v1, . . . vn, vn+1, . . . , vr of linearly independent
vectors in V of arbitrary length r ≥ n.

Proof. The implication (1) ⇒ (2) follows from part (2) of Theorem 7.47: if V
were finitely generated, it would have finite dimension. For the implication (2)
⇒ (3), assume that V is not finitely generated. Let v1, . . . , vn ∈ V be linearly
independent vectors and set U = L(v1, . . . , vn). As these n vectors do not
generate V , we have U ⊊ V , so there is an element vn+1 ∈ V with vn+1 ̸∈ U .
By Proposition 7.15, the vectors v1, . . . , vn, vn+1 are linearly independent. By
induction to r, we can extend v1, . . . , vn to a sequence v1, . . . vn, vn+1, . . . , vr of
linearly independent vectors in V of arbitrary length r ≥ n, which proves the
implication (2) ⇒ (3). For the final implication (3) ⇒ (1), we assume that (3)
holds. This implies that we can extend the empty sequence to a sequence of r
linearly independent vectors in V for every r > 0. If the dimension of V were
finite, then for r = dimV + 1 we would get a contradiction with part (1) of
Theorem 7.47. Hence, we conclude dimV = ∞. □

Exercises

7.3.1. Show that the real polynomials f1 = x2+2, f2 = 2x2−3, and f3 = x3+x−1
are linearly independent and extend them to a basis for the space R[x]4 of all
real polynomials of degree at most 4. In other words, give polynomials f4, . . . , ft
for a certain t, such that (f1, . . . , ft) is a basis for R[x]4.

7.3.2. Redo Exercise 7.1.4 using Theorem 7.47.

7.3.3. Let V ⊂ R4 be the hyperplane V = a⊥ with a = (1, 1, 1, 1).
(1) What is the dimension of V ?
(2) Show that the vectors v1 = (2,−3,−1, 2) and v2 = (−1, 3, 2,−4) are

linearly independent and contained in V .
(3) Extend (v1, v2) to a basis for V .

7.3.4. Let V be a finite-dimensional vector space and S ⊂ V a subset that gener-
ates V .
(1) Show that there is a finite subset of S that generates V .
(2) Show that there is a finite subset of S of which the elements form a basis

of V .

7.3.5. Let V be a vector space. Suppose there is an integer m such that for all
linearly independent v1, v2, . . . , vr ∈ V we have r ≤ m. Prove that we have
dimV ≤ m.

7.3.6. This exercise gives three alternative definitions for the dimension of a vector
space. Let V be a vector space.
(1) Show that dimV equals the supremum (possibly ∞) of the set of all inte-

gers r for which there exists a sequence

{0} = V0 ⊊ V1 ⊊ V2 ⊊ . . . ⊊ Vr−1 ⊊ Vr = V

of subspaces of V , each properly contained in the previous.
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(2) Show that dimV equals the supremum (possibly ∞) of the set of all inte-
gers r for which there exists a sequence

v1, v2, . . . , vr

of linearly independent elements in V (note that r = 0 is contained in this
set).

(3) Show that dimV equals the infimum (possibly∞) of the set of all integers r
for which there exists a sequence

v1, v2, . . . , vr

of elements that generate V (the infimum of the empty set is ∞).

The Basis Extension Theorem as stated in Theorem 7.33 uses r linearly indepen-
dent elements and s extra elements to generate V . The General Basis Extension
Theorem E.1 of Appendix E also deals with infinite collections. It is proved using
Zorn’s Lemma. In the exercises below, we prove some partial generalisations that
do not require Zorn’s Lemma.

7.3.7. Let V be a vector space and (vj)j∈J a (not necessarily finite) linearly indepen-
dent collection of elements in V , labeled by an index set J . Prove the following
statements.
(1) Let (w1, w2, . . . , ws) be a sequence of elements of V such that (vj)j∈J

and (w1, w2, . . . , ws) together generate V . Let I ⊂ {1, 2, . . . , s} be the
set of indices i for which wi is not a linear combination of (vj)j∈J and
(w1, w2, . . . , wi−1). Then (vj)j∈J and (wi)i∈I together form a basis for V .

(2) Let (wi)i∈Z≥1
be an infinite sequence of elements of V such that (vj)j∈J

and (wi)i∈Z≥1
together generate V . Let I ⊂ Z≥1 be the set of indices i

for which wi is not a linear combination of (vj)j∈J and (w1, w2, . . . , wi−1).
Then (vj)j∈J and (wi)i∈I together form a basis for V .

7.3.8. Let V be a vector space with a basis B.
(1) Let v ∈ V be nonzero. Show that we can replace some element of B by v

to obtain a basis B′ of V that contains v.
(2) Let v1, v2, . . . , vn ∈ V be linearly independent. Show that we can re-

place n elements of B by v1, . . . , vn to obtain a basis B′ of V that contains
v1, . . . , vn.

7.4. Dimensions of subspaces

In the following proposition, and thereafter, we use the usual convention that
n <∞ for n ∈ Z≥0.

The following result shows that our intuition that dimension is a measure for the
‘size’ of a vector space is not too far off: larger spaces have larger dimension.

Lemma 7.54. Let U be a linear subspace of the vector space V . Then we have
dimU ≤ dimV . If dimV is finite, then we have equality if and only if U = V .

Note that in the case that dimV is finite, the statement also implies the existence
of a finite basis of U .

Proof. There is nothing to show if dimV = ∞. So let us assume dimV = n
for some integer n. If u1, . . . , ur ∈ U are linearly independent, then r ≤ n by
Theorem 7.47(1). From Proposition 7.53, applied to U , we conclude that the
dimension of U is not infinite, say dimU = m. Applying the same argument to
a basis (u1, . . . , um) for U gives m ≤ n, so dimU ≤ dimV .
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To prove the second part, first assume U ̸= V and consider a basis B of U .
It can be extended to a basis for V by the Basis Extension Theorem 7.33.
Since B does not generate V , at least one element has to be added, which implies
dimU < dimV . Conversely, obviously if U = V , then we have dimU = dimV .

□

Now we have the following nice formula relating the dimensions of subspaces U1,
U2 of a vector space V to the dimension of their intersection U1 ∩ U2 and their
sum U1 + U2. We use the convention that ∞ + n = n + ∞ = ∞ + ∞ = ∞ for
n ∈ Z≥0.

Theorem 7.55. Let U1 and U2 be linear subspaces of a vector space V. Then

dim(U1 + U2) + dim(U1 ∩ U2) = dimU1 + dimU2 .

Proof. First note that the statement is trivially true when U1 or U2 is infinite-
dimensional, since then both sides are ∞. So we can assume that U1 and U2

are both finite-dimensional.

We use the Basis Extension Theorem 7.33 again. Since U1 is finite-dimensional,
we know by Lemma 7.54 that its subspace U1∩U2 ⊂ U1 is also finite-dimensional.
Let (v1, . . . , vr) be a basis for U1 ∩U2. Using the Basis Extension Theorem, we
can extend it on the one hand to a basis (v1, . . . , vr, w1, . . . , ws) for U1 and on
the other hand to a basis (v1, . . . , vr, x1, . . . , xt) for U2. We claim that then
(v1, . . . , vr, w1, . . . , ws, x1, . . . , xt) is a basis for U1 + U2. It is clear that these
vectors generate U1 + U2 (since they are obtained by putting generating sets
of U1 and of U2 together, see Lemma 3.41). So it remains to show that they are
linearly independent. Consider a general linear relation

λ1v1 + · · ·+ λrvr + µ1w1 + · · ·+ µsws + ν1x1 + · · ·+ νtxt = 0 .

Then for z = ν1x1 + · · ·+ νtxt ∈ U2 we also have

z = −λ1v1 − · · · − λrvr − µ1w1 − · · · − µsws ∈ U1 ,

so z ∈ U1 ∩ U2, which implies that

z = α1v1 + · · ·+ αrvr

for suitable αj, since v1, . . . , vr is a basis of U1 ∩ U2. Since z has unique coeffi-
cients with respect to the basis (v1, . . . , vr, x1, . . . , xt) for U2 (see Lemma 7.30),
we find αi = 0 for 1 ≤ i ≤ r and νj = 0 for 1 ≤ j ≤ t. Since z also has unique
coefficients with respect to the basis (v1, . . . , vr, w1, . . . , ws) for U1, we also find
µj = 0 for 1 ≤ j ≤ s and λi = −αi = 0 for 1 ≤ i ≤ r.

We conclude that (v1, . . . , vr, w1, . . . , ws, x1, . . . , xt) is indeed a linearly indepen-
dent sequence and therefore a basis for U1+U2. So we get dim(U1+U2) = r+s+t,
dim(U1 ∩ U2) = r, dimU1 = r + s and dimU2 = r + t, from which the claim
follows. □

Remark 7.56. Note the analogy with the formula

#(X ∪ Y ) + #(X ∩ Y ) = #X +#Y

for the number of elements in a set. However, there is no analogue of the
corresponding formula for three sets:

#(X∪Y ∪Z) = #X+#Y+#Z−#(X∩Y )−#(X∩Z)−#(Y ∩Z)+#(X∩Y ∩Z) .
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It is an exercise to find a vector space V and linear subspaces U1, U2, U3 ⊂ V
such that

dim(U1 + U2 + U3) + dim(U1 ∩ U2) + dim(U1 ∩ U3) + dim(U2 ∩ U3)

̸= dimU1 + dimU2 + dimU3 + dim(U1 ∩ U2 ∩ U3) .

For given dimensions of U1 and U2, we see that if the intersection U1 ∩ U2 is
relatively small, then the sum U1 + U2 is relatively big, and vice versa.

Note that if U1 ∩U2 = {0}, then we simply have dim(U1 +U2) = dimU1 +dimU2

(and conversely). Complementary subspaces (see Definition 3.42) give an espe-
cially nice case.

Proposition 7.57. If U1 and U2 are complementary subspaces in a vector space V ,
then we have

dimU1 + dimU2 = dimV.

Proof. Follows immediately from Theorem 7.55 and the fact that U1∩U2 = {0}
and U1 + U2 = V . □

Example 7.58. Let a ∈ Rn be nonzero and H the hyperplane H = a⊥. By Ex-
ample 7.43 we have dim(L(a)) = 1. The subspaces L(a) and H are complemen-
tary subspaces in F n by Corollary 3.45, so Proposition 7.57 yields dimH = n−1.
In Example 8.21 we will see that the same holds for a hyperplane over any field
F .

Example 7.59. Let L and V be a line and a plane in R3, both containing 0,
so that they are subspaces. Then dimL = 1 and dimV = 2. By Theorem 7.55
we have

dim(L ∩ V ) + dim(L+ V ) = 1 + 2 = 3.

From dim(L + V ) ≥ dimV = 2, we find that there are two possibilities. The
first possibility is dim(L+V ) = 3 and dim(L∩V ) = 0, which means L+V = R3

and L∩ V = {0}. The second is dim(L+ V ) = 2 and dim(L∩ V ) = 1 = dimL,
which implies L ∩ V = L, so L is contained in V in this case.

We can use the Basis Extension Theorem to show the existence of complementary
subspaces in finite-dimensional vector spaces.

Proposition 7.60. Let V be a finite-dimensional vector space. If U ⊂ V is a
linear subspace, then there is a linear subspace U ′ ⊂ V that is complementary
to U .

Proof. The subspace U is finite-dimensional by Proposition 7.54, say with basis
u1, . . . , um. By the Basis Extension Theorem 7.33, we can extend this to a
basis u1, . . . , um, v1, . . . , vn of V . Let U ′ = L(v1, . . . , vn). Then we clearly have
V = U +U ′ (Lemma 3.41). But we also have U ∩U ′ = {0}: if v ∈ U ∩U ′, then

v = λ1u1 + · · ·+ λmum = µ1v1 + · · ·+ µnvn ,

for some coefficients λ1, . . . , λm and µ1, . . . , µn, which gives

λ1u1 + · · ·+ λmum − µ1v1 − · · · − µnvn = v − v = 0.

But u1, . . . , um, v1, . . . , vn are linearly independent, so this relation yields

λ1 = . . . = λm = µ1 = . . . = µn = 0,

and hence v = 0. □
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Example 7.61. Given U ⊂ V , there usually are many complementary sub-
spaces. For example, consider V = R2 and U = {(x, 0) : x ∈ R}. What are its
complementary subspaces U ′? We have dimV = 2 and dimU = 1, so we must
have dimU ′ = 1 as well. Let u′ = (x′, y′) be a basis of U ′. Then y′ ̸= 0 (otherwise
0 ̸= u′ ∈ U∩U ′). Then we can scale u′ by 1/y′ (replacing u′, x′, y′ by 1

y′
u′, x′/y′, 1,

respectively) to obtain a basis for U ′ of the form u′ = (x′, 1), and U ′ = L(u′)
then is a complementary subspace for every x′ ∈ R — note that U +U ′ = R2 as
every elements (x, y) can be written as (x, y) = (x− yx′, 0) + y(x′, 1) ∈ U +U ′.

Remark 7.62. For any two subspaces U1 and U2 of a vector space V , we have
dim(U1+U2) ≤ dimV by Lemma 7.54. If V is finite-dimensional, then together
with Theorem 7.55 this implies the inequality

dim(U1 ∩ U2) ≥ dimU1 + dimU2 − dimV.

Example 7.63. Let a1, a2 ∈ Rn be nonzero and Hi the hyperplane Hi = {ai}⊥
for i = 1, 2. Then dimHi = n− 1 by Example 7.58, so we have

n− 1 = dimH1 ≥ dim(H1 ∩H2) ≥ dimH1 + dimH2 − dimRn = n− 2.

Now there are two cases, namely dim(H1∩H2) = n−2 and dim(H1∩H2) = n−1.
In the former case we have dim(H1 + H2) = n, so H1 + H2 = Rn by Lemma
7.54. In the latter we have H1 ∩H2 = H1 and thus H1 ⊂ H2; by symmetry we
obtain H1 = H2 = H1 +H2. For R3 we conclude that two different planes that
both contain 0 intersect in a subspace of dimension 1, that is, a line.

Exercises

7.4.1. (1) Let U ⊂ Fn be a subspace of dimension dimU = 1. Show that U is a
line.

(2) Let U ⊂ Fn be a subspace of dimension dimU = n− 1. Show that U is a
hyperplane. (See Example 8.22 for a clean proof.)

7.4.2. Let d ≥ 1 be an integer, and for any r ∈ R, let Ur ⊂ R[x]d be the kernel of
the evaluation map R[x]d → R that sends f to f(r).
(1) Prove dimUr = d and give a basis for Ur.
(2) Prove that for r, s ∈ R with r ̸= s, we have dim(Ur ∩Us) = d− 1 and give

a basis for Ur ∩ Us.
(3) Prove that Ur + Us = R[x]d.

7.4.3. Let U1, U2 be subspaces of a finite-dimensional vector space V satisfying
U1 ∩ U2 = {0} and dimU1 + dimU2 ≥ dimV . Show that U1 and U2 are
complementary subspaces.

7.4.4. Find a vector space V and linear subspaces U1, U2, U3 ⊂ V such that

dim(U1 + U2 + U3) + dim(U1 ∩ U2) + dim(U1 ∩ U3) + dim(U2 ∩ U3)

̸= dimU1 + dimU2 + dimU3 + dim(U1 ∩ U2 ∩ U3) .

(See Remark 7.56.)

7.4.5. Let V be a vector space of dimension dimV = 10. Let U1 ⊂ V and U2 ⊂ V
be subspaces of dimensions dimU1 = 6 and dimU2 = 7, respectively. Prove
that the intersection U1 ∩ U2 is not zero.

7.4.6. Let F be a finite field, and consider the F -vector space P (F ) ⊂ FF of poly-
nomial functions as defined in Appendix D. Show that dimF P (F ) is finite.
This is in contrast with Example 7.50, which deals with infinite fields. It is
also in contrast with Example 7.44, which deals with polynomials instead of
polynomial functions (cf Warning D.8).
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7.4.7. Let F be a finite field. Show that the map φ : F [x] → FF of Exercise D.2.1
is not injective, cf. Exercise 4.1.9.

[Remark: one can show that if q = |F |, then the kernel of φ consists of all
polynomials that are a multiple of xq − x.]





CHAPTER 8

Ranks

8.1. The rank of a linear map

There is an important result that relates the dimensions of the kernel, image and
domain of a linear map.

Definition 8.1. Let f : V → W be a linear map. Then we call the dimension of
the image of f the rank of f : rk(f) = dim im(f).

Lemma 8.2. Let f : V → W be a linear map. If f is surjective, then we have
rk f = dimW . If W is finite-dimensional, then the converse is true as well.

Proof. The map f is surjective if and only if the inclusion im f ⊂ W is an
equality, so this follows from Lemma 7.54. □

Theorem 8.3 (Dimension Formula for Linear Maps). Let f : V → W be a
linear map. Then

dimker(f) + rk(f) = dimV .

Proof. First we consider the case that V is finite-dimensional. By Proposi-
tion 7.60, there is a complementary subspace U of ker(f) in V and we have
dimker f + dimU = dimV by Proposition 7.57.

Let f ′ : U → im(f) be the restriction of f to U . We will show that f ′ is an
isomorphism. Note that ker(f ′) = ker(f) ∩ U = {0}, so f ′ is injective. To
show that f ′ is also surjective, take w ∈ im(f). Then there is v ∈ V such that
f(v) = w. We can write v = u′ + u with u′ ∈ ker(f) and u ∈ U (see Lemma
3.44). Now

f ′(u) = f(u) = f(v − u′) = f(v)− f(u′) = w − 0 = w ,

so we have w ∈ im(f ′) as well. This implies that f ′ is surjective and thus an
isomorphism. Since isomorphisms send bases to bases (see Corollary 7.32), we
conclude dimU = dim im(f) = rk f and therefore

dimV = dimker f + dimU = dimker f + rk f.

Now consider the case dimV = ∞. If rk f = ∞, then we are done, so assume
rk f = n for some integer n. Let r be any positive integer. Let U ⊂ V be any r-
dimensional subspace of V , which exists because we can take r linearly indepen-
dent elements v1, . . . , vr ∈ V (see Proposition 7.53) and set U = L(v1, . . . , vr).
Let f ′ : U → im f be the linear map given by restricting f to U . Then by the
finite-dimensional case, we have

dimker f ≥ dimker f ′ = dimU − rk f ′ ≥ dimU − dim im f = r − n,

147
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where the two inequalities follow from the inclusion ker f ′ ⊂ ker f and the
inclusion im f ′ ⊂ im f , respectively. Since r was an arbitrary positive integer,
we conclude dimker f = ∞, which proves the dimension formula for linear
maps. □

For a proof working directly with bases, see Chapter 4 in Jänich’s book [J].

Example 8.4. Let k ≤ n be positive integers, and F [x]n−k and F [x]n the vector
spaces of polynomials over F of degree at most n − k and n, respectively. Let
α1, α2, . . . , αk ∈ F be distinct elements, and set p = (x−α1)(x−α2) · · · (x−αk).
The map T : F [x]n−k → F [x]n that sends an element f to f · p is linear and
clearly injective, so the rank of T equals

rkT = dimF [x]n−k − dimkerT = (n− k + 1)− 0 = n− k + 1.

The (n−k+1)-dimensional image of T consists of all polynomials in F [x]n that
are multiples of p.

Let S : F [x]n → F k be the linear map that sends the polynomial f ∈ F [x]n to
the sequence

(
f(α1), f(α2), . . . , f(αk)

)
. Then for each 1 ≤ i ≤ k, the map S

sends the polynomial pi = p/(x−αi) to a nonzero multiple of ei ∈ F k, so these
k images are linearly independent and thus rkS = dim imS ≥ k. Of course
we also have dim imS ≤ k, as imS is a subspace of F k. Thus rkS = k and
dimkerS = dimF [x]n − rkS = n+ 1− k.

Clearly, the kernel kerS of S contains the image imT of T , and as they both have
dimension n− k + 1, we conclude kerS = imT . This shows that a polynomial
f satisfies f(α1) = f(α2) = . . . = f(αk) = 0 if and only if f is a multiple of p.

Corollary 8.5. Let f : V → W be a linear map between finite-dimensional vector
spaces with dimV = dimW . Then the following statements are equivalent.

(1) The map f is injective.
(2) The map f is surjective.
(3) The map f is an isomorphism.

Proof. Note that f is injective if and only if dim ker f = 0 (Lemma 4.7) and f is
surjective if and only if rk(f) = dimW = dimV (Lemma 8.2). By Theorem 8.3,
these two statements are equivalent. □

Example 8.6. Let T : F [x]n → F [x]n be the linear map that sends a polynomial
f to f + f ′, where f ′ is the derivative of f . Since f ′ has smaller degree than f ,
we have deg T (f) = deg(f + f ′) = deg f . This shows that the only polynomial
f with T (f) = 0, is f = 0, so T is injective and therefore, it is surjective. This
proves, without explicit computations, that for every polynomial g, there is a
polynomial f with f + f ′ = g.

Proposition 8.7. Suppose f : V → W is a linear map of vector spaces. Then the
following statements hold.

(1) If f is injective, then dimV ≤ dimW .
(2) If f is surjective, then dimV ≥ dimW .
(3) If f is an isomorphism, then dimV = dimW .
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Proof. If f is injective, then dimker f = 0, so Theorem 8.3 yields

dimV = dim im f ≤ dimW,

where the inequality follows from the inclusion im f ⊂ W . If f is surjective,
then im f = W , so Theorem 8.3 yields dimV = dimW + dimker f ≥ dimW .
Implication (3) follows from (1) and (2). It also follows from the fact that
isomorphisms send bases to bases (see Corollary 7.32). □

Example 8.8. We conclude, just from the dimensions, that the 3 × 4 matrix
A of Example 5.10 induces a linear map F 4 → F 3 that is not injective.

In Exercise 6.3.5 we could already prove that invertible matrices are square by
using Proposition 6.20, which relied on the row echelon form. Instead of those
computational arguments, we can now give a nicer proof.

Corollary 8.9. Every invertible matrix is a square matrix.

Proof. Suppose an m × n matrix A over F is invertible. Then the associated
map fA : F

n → Fm is an isomorphism, so we get m = dimFm = dimF n = n
by Proposition 8.7. □

Proposition 8.7(3) shows that if V and W are isomorphic, then dimV = dimW .
The next proposition shows that the converse also holds if V and W are finite-
dimensional. Together, these results show that essentially (‘up to isomorphism’),
there is only one F -vector space of any given dimension n (namely F n, cf. Propo-
sition 7.29).

Proposition 8.10. If V andW are finite-dimensional vector spaces over the same
field F with dimV = dimW , then V and W are isomorphic.

Proof. If we have dimW = dimV = n, then V has a basis B = (v1, . . . , vn)
and W has a basis C = (w1, . . . , wn), so φB : F

n → V and φC : F
n → W are

isomorphisms by Proposition 7.29 and the composition φC ◦φ−1
B : V → W is an

isomorphism. □

In particular, we see that if V is an F -vector space of dimension dimV = n, then V
is isomorphic to F n; indeed, an isomorphism is given by φB for any basis B for V .
Note, however, that in general there is no natural (or canonical) isomorphism

V
∼→ F n. The choice of isomorphism is equivalent to the choice of a basis, and

there are many bases of V. In particular, we may want to choose different bases
for V for different purposes, so it does not make sense to identify V with F n in a
specific way.

Exercises

8.1.1. Is the statement of Corollary 8.5 true without the assumption that V and W
be finite-dimensional? If not, then give a counterexample and show where in
the proof of Corollary 8.5 finite-dimensionality is used.

8.1.2. Let n be a positive integer and F [x]n the vector space of polynomials over F
of degree at most n. Assume α1, α2, . . . , αn+1 ∈ F are distinct elements. Let
S : F [x]n → Fn+1 be the function given by

S(f) =
(
f(α1), f(α2), . . . , f(αn+1)

)
as in Example 8.4 (for k = n+ 1).
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(1) Show that S is indeed a linear map as stated in Example 8.4.
(2) Show that S is surjective (cf. Example 8.4).
(3) Show that S is an isomorphism.
(4) Show that for every i ∈ {1, . . . , n + 1}, there is a unique polynomial

fi ∈ F [x]n such that fi(αj) = 1 if i = j and fi(αj) = 0 if i ̸= j.
(5) Show that f1, f2, . . . , fn+1 form a basis for F [x]n.
(6) The polynomials f1, . . . , fn+1 are called Lagrange polynomials. Give an

explicit expression for them in terms of the elements α1, α2, . . . , αn+1.

8.1.3. Let n be a positive integer and T : R[x]n → R[x]n the map that sends f to
xf ′, where f ′ is the derivative of f . Show that T is a linear map and determine
the rank of T .

8.1.4. Let f : U → V and g : V →W be linear maps of vector spaces.
(1) Show that we have rk(g ◦ f) ≤ rk f with equality if g is injective. Give an

example where equality holds and g is not injective.
(2) Show that we have rk(g ◦ f) ≤ rk g with equality if f is surjective. Give

an example where equality holds and f is not surjective.

8.1.5. This exercise generalises Exercise 8.1.4. Let f : U → V and g : V → W be
linear maps of vector spaces.
(1) Show that rk(g ◦ f) ≤ rk f with equality if and only if rk(g ◦ f) = ∞ or

ker g ∩ im f = {0}.
(2) Show that rk(g ◦ f) ≤ rk g with equality if and only if rk(g ◦ f) = ∞ or

ker g + im f = V .

8.2. The rank of a matrix

Definition 8.11. Let A ∈ Mat(m × n, F ). Then the rank rkA of A is the rank
of the associated linear map fA : F

n → Fm.

Recall that for a matrix A ∈ Mat(m × n, F ), the image of fA equals the column
space C(A) ⊂ Fm of A (see Proposition 5.32). Therefore, rkA = dimC(A) ≤ m,
with equality if and only if C(A) = Fm (see Lemma 7.54). Since the image
im fA = C(A) is generated by the n columns of A, we also have rkA ≤ n by part
(2) of Theorem 7.47. Hence, we have rkA ≤ min{m,n}.
By this definition, the rank of A is the same as the column rank of A, that is, the
dimension of the column space C(A) ⊂ Fm of A. We can as well define the row
rank of A to be the dimension of the row space R(A) ⊂ F n of A. Part (3) of the
following theorem tells us that these additional notions are not really necessary,
as the row rank of any matrix equals the column rank.

Theorem 8.12. Let A ∈ Mat(m×n, F ) be a matrix. Then the following are true.

(1) We have dimkerA+ dimC(A) = n.
(2) We have dimkerA+ dimR(A) = n.
(3) We have dimC(A) = dimR(A).

Part (2) was already proved computationally (that is, using a row echelon form
and Proposition 7.22, which uses Proposition 6.19) in Example 7.46. We will give
several proofs of this important theorem. All except for the second alternative
proof include a new computation-free proof of part (2).

Proof. Clearly, any two of the three statements imply the third. Statement
(1) is true because it is a restatement of Theorem 8.3, so statements (2) and
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(3) are equivalent. After repeatedly deleting from A some row that is a linear
combination of the other rows, thus not changing the row space, we obtain an
r × n matrix A′ of which the rows are linearly independent. As the row spaces
R(A′) and R(A) are equal, we have kerA′ = kerA by Proposition 5.32, and
therefore dimC(A′) = dimC(A) by statement (1). The r rows of A′ form a
basis of the row space R(A′), so we have r = dimR(A′). The column space
C(A′) is contained in F r, so we find

dimC(A) = dimC(A′) ≤ dimF r = r = dimR(A′) = dimR(A).

By symmetry, or applying the same argument to A⊤, we also get the opposite
inequality dimR(A) ≤ dimC(A), so statement (3), and thus also (2), follows.

□

First alternative proof. Again, any two of the three statements imply the third.
Statement (1) is true because it is a restatement of Theorem 8.3, so statements
(2) and (3) are equivalent.

Applying elementary row operations to A does not change kerA and R(A) (see
Proposition 6.3), so the truth of statement (2) is invariant under row operations,
and therefore so is the truth of statement (3). Since statement (3) is symmetric
in the rows and columns, the truth of both statements is also invariant under
elementary column operations.

Using row and column operations, we can transform A into a matrix A′ of which
all entries are zero, except for some ones along the diagonal. For example, we
could first use row operations to find the reduced row echelon form of A, then
apply some permutation of the columns so that all pivots are along the diagonal,
and finally apply column operations to make all non-diagonal entries zero; then
A′ would have the form of a block matrix

A′ =

(
Ir 0
0 0

)
.

It is clear that the row rank and column rank of A′ both equal the number of
ones along the diagonal, which proves statement (3) and therefore also (2). □

Second alternative proof. Statement (1) is true because it is a restatement of
Theorem 8.3. Statement (2) is proved Example 7.46. Statement (3) follows
from (1) and (2). □

Third alternative proof. Assume A′ is as in the first proof. We now only give
an alternative proof of one step of the first proof, namely that the equality
kerA′ = kerA implies dimC(A′) = dimC(A).

So assume kerA′ = kerA. Then the linear relations among the columns of A′

correspond exactly with the linear relations among the columns of A. This
means that for any maximal linearly independent subset of the columns of A
(and thus a basis of the column space C(A)), the corresponding columns of A′

form a maximal linearly independent subset of the columns of A′, (and thus a
basis of C(A′)). This yields dimC(A′) = dimC(A). □

Remark 8.13. Statement (3) of Theorem 8.12 can be stated as rkA = rkA⊤.

Remark 8.14. By statement (3) of Theorem 8.12, the rank of a matrix A
equals the row rank of A, which also equals the number of nonzero rows in a
row equivalent matrix A′ that is in row echelon form by Proposition 7.22.
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Remark 8.15. The first proof, with the argument for the implication

kerA′ = kerA ⇒ dimC(A′) = dimC(A)

replaced by the argument in the third alternative proof, gives a proof of state-
ment (3) that does not depend on (1). The second alternative proof contains a
direct proof of statement (2). Together they imply (1), which gives an alterna-
tive proof of the dimension formula for linear maps between vector spaces F n

and Fm. Since every finite-dimensional vector space over F is isomorphic to
F n for some integer n (Proposition 8.10), we get a new proof of the dimension
formula for general finite-dimensional vector spaces from Proposition 4.41.

Remark 8.16. In Proposition 7.22, we found that for an m × n matrix A in
row echelon form with r nonzero rows, the n−r elements wk of Proposition 6.19
form a basis of the kernel kerA by showing that they are linearly independent
and they generate kerA. Theorem 8.12, statement (2), shows independently
that the dimension of the kernel equals n − r (independent as long as we do
not use the second alternative proof). Using this and Theorem 7.47, we find
that in order to reprove that the wk form a basis for kerA, it would suffices to
show only one of the two: either that they are linearly independent or that they
generate kerA.

Example 8.17. Consider the matrix

A =

1 2 3
4 5 6
7 8 9


over R. The reduced row echelon form of A is

A′ =

1 0 −1
0 1 2
0 0 0

 ,

which has two nonzero rows, so we find rk(A) = 2.

Proposition 8.18. For any m × n matrix A we have kerA = {0} if and only if
rkA = n.

Proof. This follows immediately from Theorem 8.3. □

Remark 8.19. Corollary 7.11 states that n vectors w1, w2, . . . , wn ∈ Fm are
linearly independent if and only if the m × n matrix A of which the columns
are w1, w2, . . . , wn has kernel kerA = {0}. By Proposition 8.18, this is the case
if and only if rkA = n. As we have rkA = rkA⊤ by Theorem 8.12, we may
also check that the rank of A⊤, which has the n vectors as rows, equals n (cf.
Remark 7.23).

Proposition 8.20. Let F be a field, n a positive integer, and U a subspace of F n.
Then dimU + dimU⊥ = n and (U⊥)⊥ = U .

Proof. By Lemma 7.54 there is a finite basis v1, v2, . . . , vr for U . Let A be
the r × n matrix of which the rows are v1, v2, . . . , vr. Then R(A) = U and
kerA = U⊥ by Proposition 5.32. The first equality follows immediately from
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Theorem 8.12, statement (2). It implies

dim(U⊥)⊥ = n− dimU⊥ = n− (n− dimU) = dimU,

and since U is contained in (U⊥)⊥ (Proposition 3.33), we conclude (U⊥)⊥ = U
from Lemma 7.54. □

Example 8.21. Let a ∈ F n be nonzero and set H = a⊥ = L(a)⊥. By Exam-
ple 7.43, we have dimL(a) = 1, so we find dimH = n− dimL(a) = n− 1.

Example 8.22. Let U ⊂ F n be a subspace of dimension n− 1. Then U⊥ has
dimension 1, so there is a nonzero element a ∈ U⊥ with U⊥ = L(a). Then
U = (U⊥)⊥ = L(a)⊥ = a⊥, so U is a hyperplane (cf. Exercise 7.4.1).

As in Example 8.22, we can think of any element a ∈ F n as an equation for the
hyperplane a⊥ (see Definition 3.12). Similarly, the elements of a subset S ⊂ F n

correspond to equations for the subspace S⊥ (See Definition 3.16).

Suppose v1, v2, . . . , vm ∈ F n generate a subspace U ⊂ F n, and write V = U⊥.
Then we have {v1, . . . , vm}⊥ = V , so v1, . . . , vm correspond to equations for V in
this sense. Recall from Remark 5.33 that the space V is equal to the kernel of the
m × n matrix M that has v1, v2, . . . , vm as rows. After finding a row equivalent
matrix M ′ in row echelon form, we can use Proposition 6.19 to find a set S of
generators for kerM ′ = kerM = V . This way we go from equations to generators
for V .

To go from generators to equations, we switch our point of view to U , for which
v1, v2, . . . , vm are generators. By Proposition 8.20, the set S can be viewed as a
set of equations for U , in the sense that S⊥ = L(S)⊥ = (U⊥)⊥ = U .

Example 8.23. Take U ⊂ R4 generated by v1 = (1, 0, 1, 0) and v2 = (1, 1, 1, 0).
The kernel of the 2× 4 matrix (

1 0 1 0
1 1 1 0

)
with v1 and v2 is generated by w1 = (0, 0, 0, 1) and w2 = (1, 0,−1, 0). We
conclude that w1 and w2 correspond to equations for U in the sense that
{w1, w2}⊥ = U .

Corollary 8.24. Let U be a subspace of Rn. Then U and U⊥ are complementary
subspaces.

Proof. Suppose x ∈ U ∩ U⊥, so that we have ⟨x, x⟩ = 0. Because we work over
R, we conclude x = 0, so we have U ∩ U⊥ = {0}. From the dimension formula
7.55 and Proposition 8.20 we then find

dim(U + U⊥) = dimU + dimU⊥ − dim(U ∩ U⊥) = n− 0 = n,

so from Lemma 7.54 we conclude U +U⊥ = Rn and U and U⊥ are complemen-
tary spaces. □

For any subset U ⊂ Rn, we call U⊥ the orthogonal complement of U .

Warning 8.25. For some fields F , such as F2 and C, there exist subspaces U ⊂ F n

with U ∩ U⊥ ̸= {0}, so Corollary 8.24 is not true over general fields.
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Exercises

8.2.1. Determine the rank of the matrices in Exercises 5.5.4 and 5.5.5.

8.2.2. Determine the rank of the matrices in Exercise 6.3.4.

8.2.3. Determine the rank of the linear maps and matrices of the exercises of Sec-
tion 5.4.

8.2.4. Show that for any subset S of Fn, we have L(S) = (S⊥)⊥ (cf. Proposition 3.33
and Remark 3.34).

8.2.5. For the matrices A in Exercise 5.5.5, compute a basis for (kerA)⊥ and (imA)⊥

and determine the dimensions of these spaces.

8.2.6. Let l,m, n be non-negative integers. Suppose that A is an l ×m matrix and
B is an m × n matrix, so that the product AB exists. Prove the following
statements (cf. Exercise 8.1.4).
(1) We have rkAB ≤ rkA with equality if rkB = m. Give an example where

equality holds and rkB ̸= m.
(2) We have rkAB ≤ rkB with equality if rkA = m. Give an example where

equality holds and rkA ̸= m.
(3) We have rkAB = rkA if B is invertible.
(4) We have rkAB = rkB if A is invertible.

8.3. Computing intersections

Proposition 8.26. Suppose F is a field and U1, U2 ⊂ F n are subspaces. Then we
have

U1 ∩ U2 = (U⊥
1 + U⊥

2 )
⊥ and (U1 ∩ U2)

⊥ = U⊥
1 + U⊥

2 .

Proof. In Proposition 3.33 we have already seen that S⊥ ∩ T⊥ = (S ∪ T )⊥ for
all subsets S, T ⊂ F n. For S = U⊥

1 and T = U⊥
2 we obtain

U1 ∩ U2 = (U⊥
1 )

⊥ ∩ (U⊥
2 )

⊥ = (U⊥
1 ∪ U⊥

2 )
⊥ =

(
L(U⊥

1 ∪ U⊥
2 )

)⊥
= (U⊥

1 + U⊥
2 )

⊥,

where the first equality follows from Proposition 8.20, the second and third from
Proposition 3.33 (part (4) and (2)), and the last from the definition of sums of
subspaces (Definition 3.37). This proves the first identity of the proposition.
Applying ( )⊥ to both sides gives the second identity by Proposition 8.20. □

Proposition 8.26 expresses taking intersections in terms of taking sums and or-
thogonal subspaces. If we view U⊥ as a set of equations for the subspace U , as
we did in the previous section, then Proposition 8.26 follows from the fact that if
U1 and U2 are subspaces, each given by a set of linear equations, then the union
of these sets is a set of equations for the intersection U1 ∩ U2.

This allows us to explicitly compute generators for the intersection U1 ∩ U2 if we
know generators for the subspaces U1 (or U

⊥
1 ) and U2 (or U

⊥
2 ). Indeed, we already

know how to take sums and orthogonal subspaces: if we have generating subsets
S1 and S2 for two subspaces V1 and V2 of F n, then the union S1 ∪ S2 generates
V1 + V2 by Lemma 3.41, and if v1, v2, . . . , vr ∈ F n generate a subspace V ⊂ F n,
then V ⊥ is the kernel of the matrix whose rows are v1, v2, . . . , vn by Proposition
5.32 and we can compute generators for this kernel with Proposition 6.19.
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Example 8.27. Let U ⊂ R5 be generated by the elements

u1 = (1, 3, 1, 2, 2),

u2 = (−1, 2,−2, 3, 2),

u3 = (3, 2, 0,−1,−4),

and V ⊂ R5 by the elements

v1 = (−2, 0,−6, 3,−2),

v2 = (1, 2,−3, 1,−3),

v3 = (−1, 0,−3,−2,−1).

To determine generators for the intersection U ∩ V , we use the identity

U ∩ V = (U⊥ + V ⊥)⊥.

The subspaces U⊥ and V ⊥ equal the kernels of the matrices

M =

 1 3 1 2 2
−1 2 −2 3 2
3 2 0 −1 −4

 and N =

−2 0 −6 3 −2
1 2 −3 1 −3
−1 0 −3 −2 −1

 ,

respectively, where the rows of M are u1, u2, u3 and those of N are v1, v2, v3.
The reduced row echelon forms of M and N are

M ′ =

1 0 0 −1 −2
0 1 0 1 1
0 0 1 0 1

 and N ′ =

1 0 3 0 1
0 1 −3 0 −2
0 0 0 1 0

 ,

respectively. The dimensions of U and V equal the number of nonzero rows in
M and N , respectively, so dimU = dimV = 3. By Proposition 6.27, the kernels
kerM ′ = kerM = U⊥ and kerN ′ = kerN = V ⊥ are generated by {w4, w5} and
{x3, x5} respectively, with

w4 =


1
−1
0
1
0

 , w5 =


2
−1
−1
0
1

 , x3 =


−3
3
1
0
0

 , x5 =


−1
2
0
0
1

 .

Therefore, the subspace U⊥+V ⊥ is generated by w4, w5, x3, x5, so the subspace
U ∩ V = (U⊥ + V ⊥)⊥ is the kernel of the matrix

A =


1 −1 0 1 0
2 −1 −1 0 1
−3 3 1 0 0
−1 2 0 0 1

 ,

which has w4, w5, x3, x5 as rows. The reduced row echelon form of this matrix
is

A′ =


1 0 0 2 1
0 1 0 1 1
0 0 1 3 0
0 0 0 0 0

 ,

so the kernel kerA = kerA′ = U ∩ V is generated by the vectors (now not
written as column vectors)

z4 = (−2,−1,−3, 1, 0) and z5 = (−1,−1, 0, 0, 1).
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Note that the row space of the last matrix equals U⊥ + V ⊥, so even without
computing its kernel explicitly, we find dim(U⊥ + V ⊥) = 3 and thus

dim(U ∩ V ) = dim(U⊥ + V ⊥)⊥ = 5− dim(U⊥ + V ⊥) = 2

by Proposition 8.20. We also conclude

dim(U + V ) = dimU + dimV − dim(U ∩ V ) = 3 + 3− 2 = 4.

Indeed, U and V are both contained in the 4-dimensional hyperplane H with
normal a = (2,−1,−1, 0, 1), so U + V = H. This is of course easier to verify
immediately than through the computation we just did.

There is a different way to compute the intersection of two subspaces, based on
the equality

U1 ∩ U2 = (U⊥
1 )

⊥ ∩ U2 = {u ∈ U2 : u ⊥ U⊥
1 }.

Example 8.28. Let U and V be as in Example 8.27. Just as in Example 8.27,
we first determine that U⊥ = kerM is generated by w4 and w5. This shows

U ∩ V = (U⊥)⊥ ∩ V = {v ∈ V : ⟨v, w4⟩ = ⟨v, w5⟩ = 0}.
Every v ∈ V can be written as v = λ1v1 + λ2v2 + λ3v3 for some λ1, λ2, λ3 ∈ R.
In terms of the λi, the equation ⟨v, wk⟩ = 0 (for k = 4, 5) is equivalent to

0 = ⟨λ1v1 + λ2v2 + λ3v3, wk⟩ = λ1⟨v1, wk⟩+ λ2⟨v2, wk⟩+ λ3⟨v3, wk⟩,
so the two equations ⟨v, w4⟩ = ⟨v, w5⟩ = 0 are equivalent to (λ1, λ2, λ3) lying in
the kernel of the matrix(

⟨v1, w4⟩ ⟨v2, w4⟩ ⟨v3, w4⟩
⟨v1, w5⟩ ⟨v2, w5⟩ ⟨v3, w5⟩

)
=

(
1 0 −3
0 0 0

)
.

It turns out (as the bottom row is zero) that w5 is orthogonal to V and this
matrix is already in reduced row echelon form. Its kernel is generated by (0, 1, 0)
and (3, 0, 1), which correspond to the vectors 0 · v1 + 1 · v2 + 0 · v3 = v2 and
3 · v1 +0 · v2 +1 · v3 = 3v1 + v3. We conclude that U ∩ V is generated by v2 and
3v1 + v3.

Remark 8.29. The method you choose to compute an intersection U1 ∩ U2

obviously depends on whether you have generators for Ui or equations (that
is, generators for U⊥

i ), and whether you want generators for the intersection or
equations. Also, if Ui requires many generators, then U⊥

i only needs few, so it is
worth considering a method where you can do the bulk of the computation with
U⊥
i instead of Ui. Another point to consider is that the method of Example 8.28

yields generators for U1∩U2 that are given as explicit linear combinations of the
generators of U1 and/or U2, which in some applications is an advantage. The
big advantage of the method of Example 8.27 is that it always yields a minimal
number of generators, regardless of whether the number of given generators for
U1 and U2 is minimal.

Exercises

8.3.1. Compute the intersection U ∩ V with U and V as in Example 8.27 with the
method of Example 8.28, but with the roles of U and V reversed.

8.3.2. Let F = F2 be the field of two elements. Let U ⊂ F 4 be the subspace
generated by

(1, 1, 1, 1), (1, 1, 0, 0), and (0, 1, 1, 0),
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and let V ⊂ F 4 be the subspace generated by

(1, 1, 1, 0) and (0, 1, 1, 1).

Find generators for the intersection U ∩ V .

8.3.3. Take two subspaces of R6 generated by four elements and compute generators
for the intersection.

8.4. Inverses of matrices

Recall that every invertible matrix is square by Corollary 8.9. Proposition 5.25
shows that a matrix is invertible if and only if it has both a right and a left inverse.
The following lemma implies that a square matrix A has a left inverse if and only if
it has a right inverse, in which case A is invertible and these left and right inverses
both equal A−1.

Lemma 8.30. Let A be an n × n matrix over F . Then the following statements
are equivalent.

(1) The matrix A is invertible.
(2) The map fA is injective.
(3) The map fA is surjective.
(4) We have kerA = ker fA = {0}.
(5) We have rkA = rk fA = n.
(6) There exists an n× n matrix B such that AB = In.
(7) There exists an n× n matrix C such that CA = In.

Moreover, if a matrix B as in (6) exists, then we have B = A−1; analogously, if a
matrix C as in (7) exists, then we have C = A−1.

Proof. By definition, the matrix A is invertible when fA : F
n → F n is an isomor-

phism. Hence, Corollary 8.5 shows that the first three statements are equivalent.
Lemmas 4.7 and 8.2 show that statements (2) and (3) are equivalent with (4)
and (5), respectively. Clearly, statement (1) implies statements (6) and (7),
as we may take B = A−1. We finish the proof that all seven statements are
equivalent by noting that the implication (6) ⇒ (3) and the implication (7)
⇒ (2) both follow from Lemma 5.23. Suppose a matrix B as in (6) exists.
Then A is invertible by statement (1). From Proposition 5.25 with C = A−1

we then conclude B = A−1. If a matrix C as in (7) exists, then taking the
transpose yields A⊤C⊤ = (CA)⊤ = In, which by the previous arguments means
C⊤ = (A⊤)−1 = (A−1)⊤, so C = A−1. □

Remark 8.31. Lemma 8.30 is analogous to the situation for functions. Suppose
f : X → Y is a function between sets X and Y . If f is a bijection, then any
left inverse g, that is, a function g : Y → X with g ◦ f = idX , is the inverse of
f ; and any right inverse h, that is, a function h : Y → X with f ◦ h = idY , is
the inverse of f . Moreover, if X and Y are finite sets of the same size, then f
is injective if and only if it is surjective.

In this section, we will give a method to check whether a square matrix is invertible,
and, if so, to compute the inverse.
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Lemma 8.32. Let A,B,C be matrices satisfying AB = C. Let A′ be the ma-
trix obtained from A by a sequence of elementary row operations, and let C ′ be
the matrix obtained from C by the same sequence of operations. Then we have
A′B = C ′.

Proof. By Proposition 6.4, there is an invertible matrix M , depending only on
the applied sequence of row operations, such that A′ = MA and C ′ = MC.
We immediately see A′B = (MA)B =M(AB) =MC = C ′. Alternatively, the
identity A′B = C ′ also follows easily from the fact that the entries of C are the
scalar products of the rows of A and the columns of B, and the fact that the
scalar product is linear in its variables. □

Lemma 8.32 states that if we start with a product AB = C, written as
b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

bm1 bm2 · · · bmn

 = B(8.1)

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

al1 al2 · · · alm



c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
...

cl1 cl2 · · · cln

 = C

as in (5.6), and we perform an elementary row operation on the two bottom
matrices A and C simultaneously, then we obtain the matrices A′ and C ′ and,
together with B, these resulting matrices depict the equality A′B = C ′.

Given the matrices A and C, one might be interested in finding a matrix B such
that AB = C, if such B exists. If A is invertible, then such a B does exist, as
we have B = A−1(AB) = A−1C. If A−1 is known, then the matrix B is readily
computed by multiplying A−1 with C. The following proposition gives a criterion
for A being invertible and, if so, for determining A−1C efficiently if the inverse
A−1 is not yet known.

Proposition 8.33. A matrix A ∈ Mat(n, F ) is invertible if and only if its reduced
row echelon form is the identity matrix In. Suppose In is obtained from A by a
sequence of elementary row operations. Then A−1 is obtained from In by the same
sequence of operations. More generally, for any matrix C with n rows, the matrix
A−1C is obtained from C by the same sequence of operations.

Proof. If A is invertible, then fA is injective, and by Proposition 6.20 we con-
clude that any row echelon form of A has n nonzero rows, so every row has a
pivot and all pivots are on the diagonal; it follows that the reduced row echelon
form is the identity matrix. Conversely, suppose that the reduced row eche-
lon form of A is the identity matrix In. Then by Proposition 6.4 there is an
invertible matrix B, such that In = BA, so A is invertible by Lemma 8.30.
Applying Lemma 8.32 to the products A · A−1 = In and A · (A−1C) = C and
the sequence of elementary row operations that transform A into In, yields the
last two statements. □

Here is a visual interpretation of Proposition 8.33. If we write X = A−1C for A
and C as in Proposition 8.33, then we can depict the equality AX = C as in (8.1)
by
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X

A C
.

Applying elementary row operations to the combined matrix A C yields

a combined matrix A′ C ′ of matrices A′ and C ′ that satisfy A′X = C ′ by
Lemma 8.32, depicted as follows.

X

A C ⇝

X

A′ C ′

In particular, if we obtain A′ = I, then we have C ′ = A′X = IX = X.

X

A C ⇝

X

I X

Therefore, if a priori we do not yet know the matrixX = A−1C, then we can findX
by writing down the combined matrix A C and applying row operations until
the left part of the combined matrix equals I. The right part then automatically
equals X = A−1C.

Example 8.34. Let us see how to invert the following real matrix

A =

1 1 1
1 2 4
1 3 9

 .

We perform the row operations on A and on I in parallel, as above. 1 1 1 1 0 0
1 2 4 0 1 0
1 3 9 0 0 1

 ⇝

 1 1 1 1 0 0
0 1 3 −1 1 0
0 2 8 −1 0 1


⇝

 1 0 −2 2 −1 0
0 1 3 −1 1 0
0 0 2 1 −2 1


⇝

 1 0 0 3 −3 1
0 1 0 −5

2
4 −3

2
0 0 1 1

2
−1 1

2


So

A−1 =

 3 −3 1
−5

2
4 −3

2
1
2

−1 1
2

 .

Remark 8.35. This inversion procedure will also tell us whether a matrix A
is invertible or not. Namely, if at some point in the computation of the row
echelon form, the lower part of the next column has no non-zero entries, then
the reduced row echelon form of A is not the identity, so the matrix is not
invertible by Proposition 8.33.

Corollary 8.36. If A ∈ Mat(m,F ) is invertible, then A can be written as a
product of matrices Li(λ) (for λ ̸= 0) andMij(λ) (for i ̸= j) and Nij of Section 6.1.
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Proof. By Proposition 8.33, the matrix A can be transformed into Im by a
sequence of elementary row operations. Let r be the number of operations.
The i-th operation can also be obtained by multiplication from the left by an
elementary matrix Bi, which is of the form Li(λ) (for λ ̸= 0) or Mij(λ) (for
i ̸= j) or Nij. We obtain Im = BA with B = BrBr−1 · · ·B1. Cf. the proof of
Proposition 6.4. □

Example 8.37. Let A be the matrix of Example 8.34 and b ∈ F 3 the vector

b =

−1
2
1

 .

Using the inverse A−1, it is easy to find an element x ∈ F 3 with Ax = b, namely

x = A−1(Ax) = A−1b =

 3 −3 1
−5

2
4 −3

2
1
2

−1 1
2

−1
2
1

 =

−8
9
−2

 .

If we had not know A−1 yet, then we can apply Lemma 8.32 directly to the
product Ax = b and the sequence of row operations that transforms A into I3,
so that we need not compute A−1 first. We put A and b in an extended matrix 1 1 1 −1

1 2 4 2
1 3 9 1


and transform the left part to I3: 1 1 1 −1

1 2 4 2
1 3 9 1

 ⇝

 1 1 1 −1
0 1 3 3
0 2 8 2


⇝

 1 0 −2 −4
0 1 3 3
0 0 2 −4

⇝
 1 0 0 −8

0 1 0 9
0 0 1 −2

 ,

so

x =

−8
9
−2

 .

Exercises

8.4.1. Determine the inverses of the following matrices

(
−3 −1
−2 −1

)
,

 −1 −2 −1
1 3 1
1 −2 0

 ,

 −1 2 −2
0 −1 0
1 −2 3

 ,


0 −1 0 1
3 −2 −2 1

−1 −2 −2 0
0 0 −1 −1

 .

8.4.2. Are the matrices(
1 2

−2 4

)
,

 −2 1 −2
−1 1 −1
1 −1 1


invertible?
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8.4.3. Determine the inverse of those matrices (over R) that are invertible. 0 −2 −1
−1 1 0
−2 −2 1




−1 1 −2 2
−2 1 1 −1
2 −1 1 0
0 1 2 1




0 2 −1 1
−2 −1 −2 0
1 0 −1 2
2 2 0 2


 1 2 1

1 1 −1
1 0 0

 .

8.4.4. Suppose the product AB of square matrices A,B ∈ Mat(n, F ) is invertible.
Prove that A and B are also invertible. Cf. Exercise 5.5.1.

8.4.5. Write the following matrices as a product of elementary matrices (see Sec-
tion 6.1), if possible: 1 −1 0

−1 −2 −1
2 2 1

  −1 0 −2
−1 −1 −2
2 3 3

  2 3 −2
3 2 2
0 −1 2


8.5. Solving linear equations

As mentioned in the beginning of Chapter 6, the system
a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

of linear equations over F can be written as Ax = b with

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 ∈ Mat(m× n, F ) and b =


b1
b2
...
bm

 ∈ Fm

and the vector

x =


x1
x2
...
xn


of unknowns. The solution set is the inverse image f−1

A (b), where fA : F
n → Fm

is the usual map that sends x ∈ F n to Ax ∈ Fm.

If b = 0, then the system is homogeneous and the solution set equals kerA, for
which we have seen in Chapter 6 how to find generators.

If b ̸= 0, then the system is inhomogeneous. by Theorem 4.33 it suffices to do
two things to solve the system: the first is to find a single solution, and if this
exists, the second is to compute kerA. Below we describe an algorithm to do both
at once. For completeness, we also summarise an algorithm for the homogeneous
case.

Algorithm for a homogeneous system. To solve a homogeneous system of
linear equations Ax = 0, use elementary row operations to bring the matrix A
into (reduced) row echelon form; then read off a basis of the kernel (which is the
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solution space) according to Proposition 6.19 (or Proposition 6.27 for the reduced
row echelon form).

Algorithm for an inhomogeneous system. To solve an inhomogeneous system
of linear equations Ax = b, we do the same as in Example 8.37 (though this time
we do not assume A is invertible). Let A◦ = (A|b) denote the extended matrix of
the system (the matrix A with b attached as an (n+1)-st column). Use elementary
row operations to bring A◦ into reduced row echelon form. The system is consistent
if and only if b is a linear combination of the columns of A, so if and only if the
last column of A◦ does not contain a pivot (see Proposition 6.21). In this case, the
first n coordinates of −wn+1 (in the notation of Proposition 6.27) give a solution of
the system, but such a solution can also easily be found by solving the equations
corresponding to the nonzero rows of the row echelon form from the bottom up.
A basis of the solution space of the corresponding homogeneous system (needed to
find the complete solution set with Theorem 4.33) can be read off from the first
n columns of the reduced row echelon form of A◦, as these form the reduced row
echelon form of A.

To see that this algorithm is correct, we depict the system, as in Section 8.4, as

x

A b
.

Applying elementary row operations to the combined matrix A◦ = A b yields

a combined matrix A′ b′ , for which the solution set to the equation A′x = b′

is the same as the solution set to the original equation Ax = b by Lemma 8.32.
Note that the last column of the row echelon form of A◦ does not contain a pivot
if and only if the rank of the first n columns equals the rank of all n+ 1 columns,
that is, if and only if rk(A) = rk(A◦). The latter is equivalent to saying that b is
in the span of the columns of A, which is the image of the linear map fA. The
statement on how to find a solution is then easily verified.

The process of solving a system of linear equations by first bringing the correspond-
ing matrix of coefficients into (reduced) row echelon form through elementary row
operations, and then solving the system using the rows of the row echelon form
from bottom to top is called Gaussian elimination. Indeed, when we add a multi-
ple of a row with a pivot in the j-th column to the i-th row in order to make the
(i, j)-entry zero, we are essentially eliminating the j-th variable from the equation
corresponding to the i-th row.

Remark 8.38. Of course, if A is an invertible n×n matrix over F , then for any
b ∈ F n, the solution to the equation Ax = b is just x = A−1b (cf. Remark 4.36).

Example 8.39. Consider the following system of linear equations:

x + y + z + w = 0
x + 2y + 3z + 4w = 2
x + 3y + 5z + 7w = 4

We will solve it according to the procedure outlined above. The extended ma-
trix is

A◦ =

 1 1 1 1 0
1 2 3 4 2
1 3 5 7 4

 .
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We transform it into reduced row echelon form. 1 1 1 1 0
1 2 3 4 2
1 3 5 7 4

 −→

 1 1 1 1 0
0 1 2 3 2
0 2 4 6 4

 −→

 1 0 −1 −2 −2
0 1 2 3 2
0 0 0 0 0

 = A◦′

Since the last column of A◦′ does not contain the leading 1 of a row, the sys-
tem is consistent. To find a solution, we find the element wn+1 ∈ F 5 in the
kernel of A◦′, as in Proposition 6.19. It has a 1 as last coordinate and a 0
for all other coordinates that correspond to columns without a pivot. Hence,
we have wn+1 = (∗, ∗, 0, 0, 1). Using the nonzero rows of A◦′, we determine
the two remaining unknown coordinates, and we find wn+1 = (2,−2, 0, 0, 1).
Proposition 6.27 would have given this directly.

Hence, following our algorithm, we let a ∈ F 4 be the vector of the first 4
coordinates of −wn+1, so a solution is given by a = (x, y, z, w) = (−2, 2, 0, 0).
It is easy to check that this is indeed a solution. Alternatively, if we write A◦′

as (A′|b′), then we could also find a by taking the coordinates corresponding to
columns of A′ without pivots to be 0 (so a = (∗, ∗, 0, 0)), and solving for the
remaining coordinates using the equation A′a = b′, working from the bottom
nonzero row to the top.

The kernel of the non-extended matrix has basis (u, v) with u = (1,−2, 1, 0)
and v = (2,−3, 0, 1). So all solutions are given by

(x, y, z, w) = a+ ru+ sv = (−2 + r + 2s, 2− 2r − 3s, r, s) ,

for some r and s.

Exercises

8.5.1. For each of the following systems of linear equations over R, find a matrix A
and a vector b, such that the system is equivalent with the equation Ax = b in
x. Then describe the full solution set. 2x1+ 3x2+ −2x3 = 0

3x1+ 2x2+ 2x3 = 0
−x2+ 2x3 = 0 2x1+ 3x2+ −2x3 = 1

3x1+ 2x2+ 2x3 = −1
−x2+ 2x3 = −1 2x1+ 3x2+ −2x3 = 1

3x1+ 2x2+ 2x3 = 1
−x2+ 2x3 = 1

3x1+ x2+ 2x3+ −2x4 = 1
2x1+ −x2+ 2x3 = 2
x1+ x3 = 3

−2x1+ −x2+ −x3+ x4 = 4

8.5.2. The formula for trinitrotoluene (TNT) is C7H5N3O6. If it explodes, then the
products of that reaction are N2, H2O, CO en C. Determine the balanced
equation:

a·C7H5N3O6 → b·N2 + c·H2O+ d·CO+ e·C.
8.5.3. Consider the points a = (1, 2, 1) and b = (2, 1,−1) and s = (−1, 4, 5) in R3.

Set λ = 1
3 and µ = 2

3 .
(1) Verify that s lies in the plane V = L(a, b).
(2) Find p ∈ L(a) and q ∈ L(b) such that s = λp+ µq.





CHAPTER 9

Linear maps and matrices

9.1. The matrix associated to a linear map

Proposition 8.10 shows that any finite-dimensional vector space V over a field F
is isomorphic with F n with n = dimV . For any basis B for V , there is an iso-
morphism φB : F

n → V (Proposition 7.29). As we have seen in Proposition 4.41,
this means that for all practical purposes, we can identify V and F n, though we
should keep in mind that the identification depends on the choice of a basis B.
If we identify a second finite-dimensional vector space W over F with Fm for
m = dimW (based on a choice of basis for W ), then any linear map f : V → W
corresponds with a linear map F n → Fm, which is given by some matrix. The
following definition makes this precise.

Definition 9.1. Let F be a field and V,W finite-dimensional vector spaces over F
with bases B and C, respectively, and dimensions n = dimV and m = dimW .
Then for every linear map f : V → W , the matrix associated to f with respect to
the bases B and C, denoted [f ]BC , is the unique m × n matrix whose associated
function as in Proposition 5.11 is the linear map (φ−1

C ◦ f ◦ φB) : F n → Fm.

In the case V = W and B = C, we also refer to [f ]BB as the matrix associated to
f with respect to B.

If we write M = [f ]BC , then by definition we have

fM = φ−1
C ◦ f ◦ φB.

If we identify the matrix M with the map fM : F n → Fm it defines, then we have
the following commutative diagram.

(9.1) V
f // W

F n

φB∼=

OO

[f ]BC

// Fm

φC∼=

OO

Note that the map φ−1
C ◦ f ◦ φB : F n → Fm is nothing but the composition of (1)

the identification of F n with V , (2) the map f : V → W , and (3) the identification
of W with Fm. In other words, if we identify V with F n and W with Fm, through
the choice of bases B and C for V and W , respectively, then the map f : V → W
corresponds with the map F n → Fm given by the m× n matrix [f ]BC .

Example 9.2. For the standard bases En and Em for F n and Fm, the maps
φEn and φEm are the identity maps on F n and Fm, respectively. Hence, for any
linear map f : F n → Fm, the matrix [f ]En

Em
is the matrix associated to f as in

Proposition 5.11. This implies that for any m × n matrix A over F , and its

165
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associated linear map fA : F
n → Fm, we have

[fA]
En
Em

= A.

Example 9.3. Let V be a finite-dimensional vector space over F with basis
B and dimension n. Then the matrix [idV ]

B
B is the matrix whose associated

function F n → F n equals φ−1
B ◦ idV ◦φB = idFn , so [idV ]

B
B = In.

Example 9.4. Let R[x]3 be the vector space of real polynomials of degree at
most 3 with basis B = (1, x, x2, x3). Let D : R[x]3 → R[x]3 denote the map that
sends g ∈ R[x]3 to its derivative g′.

a0 + a1x+ a2x
2 + a3x

3 R[x]3
D // R[x]3

(a0, a1, a2, a3)
_

OO

R4

φB∼=

OO

[D]BB

// R4

φB∼=

OO

Consider the composition φ−1
B ◦ D ◦ φB. The map φB sends a quadruple

(a0, a1, a2, a3) to the polynomial g = a0 + a1x + a2x
2 + a3x

3, of which the de-
rivative D(g) = g′ equals a1 + 2a2x+ 3a3x

2, which in turn is identified through
φ−1
B with the quadruple (a1, 2a2, 3a3, 0). This means that the map associated

to the matrix [D]BB sends

(a0, a1, a2, a3) to (a1, 2a2, 3a3, 0),

so the matrix equals

[D]BB =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

Example 9.5. Let F be a field with k elements α1, α2, . . . , αk ∈ F and let
n be a positive integer. Let T : F [x]n → F k be the linear map that sends
a polynomial g ∈ F [x]n to the vector

(
g(α1), . . . , g(αk)

)
. We determine the

matrix associated to T with respect to the basis B = (1, x, x2, . . . , xn) for F [x]n
and the standard basis E for F k. Note that φE : F

k → F k is the identity.
Therefore, the composition φ−1

E ◦T ◦φB sends the j-th standard basis vector ej
to

φ−1
E (T (φB(ej))) = T (xj−1) = (αj−1

1 , αj−1
2 , . . . , αj−1

k ).

By definition of the matrix [T ]BE , this vector also equals [T ]BE · ej, that is, the
j-th column of [T ]BE , cf. Lemma 5.9. Hence, we find

[T ]BE =


1 α1 α2

1 · · · αn1
1 α2 α2

2 · · · αn2
...

...
...

. . .
...

1 αk α2
k · · · αnk

 .

Such a matrix is called a Vandermonde matrix.

Definition 9.6. If V is a vector space over a field F of dimension n with basis
B = (v1, . . . , vn), then we say that the n-tuple a = (a1, . . . , an) ∈ F n is the
sequence of coefficients of the vector v = φB(a) = a1v1 + · · · + anvn with respect
to B, and we write vB = a = φ−1

B (v).
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Lemma 9.7. Let f : V → W be a linear map, B = (v1, v2, . . . , vn) a basis for V ,
and C a basis for W . Then for any 1 ≤ j ≤ n, the j-th column of the m × n
matrix [f ]BC is the sequence f(vj)C of coefficients of f(vj) with respect to C.

[f ]BC =

 | | |
f(v1)C f(v2)C · · · f(vn)C

| | |


Proof. As for any matrix, the j-th column of the matrix [f ]BC equals the image
of the j-th standard basis vector ej under the map associated to the matrix. By
definition of [f ]BC , this is equal to (φ−1

C ◦ f ◦φB)(ej) = φ−1
C (f(vj)) = f(vj)C . □

Example 9.8. Indeed, in Example 9.5, the columns are as described in Lemma 9.7.
Also in Example 9.4, the j-th element in the basis B is xj−1, and the j-th col-
umn of [D]BB is the sequence of coefficients of D(xj−1) = (j−1)xj−2 with respect
to the basis B = (1, x, x2, x3).

Remark 9.9. If we identify [f ]BC with the linear map that it induces, then the
commuting diagram (9.1) can also be expressed as φ−1

C ◦ f = [f ]BC ◦ φ−1
B , that

is, for each v ∈ V we have

f(v)C = [f ]BC · vB.
In words: the sequence of coefficients of f(v) with respect to C equals the
product of the matrix [f ]BC with the sequence of coefficients of v with respect to
B.

Example 9.10. The sequence B =
(
(x − 1)3, (x − 1)2, x − 1, 1

)
is a basis for

F [x]3. Let C denote the usual basis (1, x, x2, x3). Then the matrix associated
to the identity map id: F [x]3 → F [x]3 with respect to the bases B and C is

[id]BC =


−1 1 −1 1
3 −2 1 0
−3 1 0 0
1 0 0 0

 .

This can be found directly from Lemma 9.7 (the j-th column contains the
sequence of coefficients of (x− 1)4−j with respect to C), but the identity

a1(x− 1)3 + a2(x− 1)2 + a3(x− 1) + a4

= (−a1 + a2 − a3 + a4) + (3a1 − 2a2 + a3)x+ (−3a1 + a2)x
2 + a1x

3

also shows that [id]BC sends the quadruple (a1, a2, a3, a4) to(
− a1 + a2 − a3 + a4, 3a1 − 2a2 + a3, −3a1 + a2, a1

)
.

Example 9.11. Let V ⊂ R3 be the plane spanned by v1 = (1, 2, 1) and
v2 = (1, 1, 0). Then the vector v3 = (1,−1, 1) is a normal to V . Let B be
the basis (v1, v2, v3) of R3, and let s = sV : R3 → R3 denote the reflection in V .
Note that s(vi) = vi for i = 1, 2, and s(v3) = −v3. This means that the matrix
associated to s with respect to B is easy to find; we have

[s]BB =

1 0 0
0 1 0
0 0 −1

 .
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Indeed, for any triple a = (a1, a2, a3) ∈ R3 we have [s]BB ·a = (a1, a2,−a3), which
corresponds to the fact that by linearity of s we have

s(φB(a)) = s(a1v1 + a2v2 + a3v3) = a1v1 + a2v2 − a3v3 = φB
(
[s]BB · a

)
.

Example 9.12. Let B = (v1, v2, v3) be the basis for R3 as in Example 9.11,
and let E be the standard basis for R3. Then φE : R3 → R3 is the identity,
which reflects the fact that the sequence of coefficients of a vector v ∈ R3 with
respect to E is the vector v itself. Therefore, the columns of the matrix [id]BE
are v1, v2, v3 and we have

[id]BE =

1 1 1
2 1 −1
1 0 1

 .

Again, we can check for consistency by verifying that for a = (a1, a2, a3) we
have

id
(
φB(a)

)
= a1v1 + a2v2 + a3v3 =

 a1 + a2 + a3
2a1 + a2 − a3

a1 + a3

 = φE
(
[id]BE · a

)
.

Example 9.13. Let E be the standard basis of F n. Then every vector v ∈ F n

is its own sequence of coefficients with respect to E, that is, vE = v. This
makes it easy to determine the matrix [idFn ]BE for any basis B of F n. Indeed,
let B = (w1, w2, . . . , wn) be a basis for F n and let M be the n×n matrix whose
columns are w1, w2, . . . , wn. Then we have M = [idFn ]BE by Lemma 9.7.

As mentioned before, if we use the bases B and C of the vector spaces V andW to
identify V andW with F n and Fm, respectively, then every linear map f : V → W
corresponds to a linear map F n → Fm, which in turn corresponds to an m × n
matrix over F by Proposition 5.11. Exercise 9.1.5 makes this more precise by
showing that this correspondence induces an isomorphism between Hom(V,W )
and Mat(m× n, F ). In particular, we see that dimHom(V,W ) = mn.

Exercises

9.1.1. Let ρ : R2 → R2 be the rotation around 0 over an angle of 90 degrees. Let
E = (e1, e2) be the standard basis of R2, and let C = (v1, v2) be the basis with
v1 = (1, 1) and v2 = (2, 1).
(1) Compute φ−1

C (ρ(φE(ei))) for i = 1 and i = 2.

(2) Determine the matrix associated to φ−1
C ◦ρ◦φE (as in Section 5.2, so with

respect to the standard basis).
(3) Verify that your answer to the previous part equals the matrix [ρ]EC as

described in Lemma 9.7.

9.1.2. Let T : R[x]4 → R[x]4 be the linear map given by T (f) = 3f + (x − 2)f ′′.
Determine the matrix [T ]BB of T with respect to the basis B = (1, x, x2, x3, x4).

9.1.3. Let F be a field containing k distinct elements α1, α2, . . . , αk ∈ F . Show that
the square Vandermonde matrix

1 α1 α2
1 · · · αk−1

1

1 α2 α2
2 · · · αk−1

2
...

...
...

. . .
...

1 αk α2
k · · · αk−1

k

 .

is invertible, cf. Exercise 8.1.2 and Example 9.5.
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9.1.4. Let V1 be the vector space of 2 × 2 matrices over R and V2 the vector space
of 3× 2 matrices over R with bases

B =

((
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

))
and

C =

1 0
0 0
0 0

 ,

0 1
0 0
0 0

 ,

0 0
1 0
0 0

 ,

0 0
0 1
0 0

 ,

0 0
0 0
1 0

 ,

0 0
0 0
0 1

 ,

respectively. Let T : V1 → V2 be the linear map given by

T (M) =

 3 7
−1 5
8 2

 ·M.

Determine [T ]BC .

9.1.5. Let B and C be bases for the F -vector spaces V and W of dimensions n
and m, respectively. Show that the map

Hom(V,W ) → Mat(m× n, F ) , f 7→ [f ]BC

is an isomorphism (cf. Exercises 4.5.7 and 5.5.11).

9.2. The matrix associated to the composition of linear maps

Suppose U, V,W are finite-dimensional vector spaces of dimensions dimU = p,
dimV = n, and dimW = m, and with bases A,B,C respectively. Then for any
linear maps g : U → V and f : V → W , we get associated matrices [g]AB and [f ]BC .
The two commuative diagrams as in (9.1) can be combined into one.

(9.2) U
g // V

f // W

F p

φA∼=

OO

[g]AB

// F n

φB∼=

OO

[f ]BC

// Fm

φC∼=

OO

Proposition 9.14. With the notation as above, we have [f ◦ g]AC = [f ]BC · [g]AB.

Proof. The commutative diagram above simplifies to the following diagram.

U
f◦g // W

F p

φA∼=

OO

[f ]BC ·[g]AB
// Fm

φC∼=

OO

In other words, identifying matrices with the maps they induce, we obtain from
the identities

[f ]BC = φ−1
C ◦ f ◦ φB and [g]AB = φ−1

B ◦ g ◦ φA,
that

[f ]BC · [g]AB = φ−1
C ◦ (f ◦ g) ◦ φA = [f ◦ g]AC ,

which proves the statement. □

Alternative proof. Suppose u ∈ U is any element. We apply Remark 9.9 twice.
By first multiplying the matrix [g]AB with the sequence uA of coefficients of u
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with respect to A, we obtain the sequence (g(u))B of coefficients of g(u) with
respect to B; multiplying the matrix [f ]BC with that vector yields the sequence
(f(g(u)))C of coefficients of f(g(u)) with respect to C. In other words, we have(

f(g(u))
)
C
= [f ]BC ·

(
g(u)

)
B
= [f ]BC · [g]AB · uA.

Similarly, we have(
f(g(u))

)
C
=

(
(f ◦ g)(u)

)
C
= [f ◦ g]AC · uA.

This holds for all u ∈ U , in particular for the j-th element of the basis A, for
which we have uA = ej ∈ F p, so we find

[f ]BC · [g]AB · ej = [f ◦ g]AC · ej
for all j. This shows that the two matrices [f ]BC · [g]AB and [f ◦g]AC have the same
columns, so they are equal. □

Note that the order of f and g in the product [f ]BC · [g]AB of matrices, and in the
composition f ◦ g, is opposite of the order in which they appear in diagram (9.2).

Corollary 9.15. With the notation as above, if f is an isomorphism, then we

have [f−1]CB =
(
[f ]BC

)−1
.

Proof. If f is an isomorphism, then m = n, and [f ]BC is a square matrix. Apply
Proposition 9.14 with g = f−1 and A = C to find

[f ]BC · [f−1]CB = [id]CC = Im.

The statement follows. □

Example 9.16. Let B and E be the bases for R3 as in Examples 9.11 and 9.12.
Then

[id]EB =
(
[id]BE

)−1
=

−1
3

1
3

2
3

1 0 −1
1
3

−1
3

1
3

 .

Since the sequence of coefficients of any vector v ∈ R3 with respect to E is equal
to itself, we have

vB = (id(v))B = [id]EB · vE = [id]EB · v,
so the sequence vB of coefficients of a vector v ∈ R3 with respect to B equals
[id]EB · v. Indeed, the sequence of coefficients with respect to B of the j-th
standard vector is the j-th column of [id]EB, as we have

e1 = −1
3
v1 + v2 +

1
3
v3, e2 =

1
3
v1 − 1

3
v3, e3 =

2
3
v1 − v2 +

1
3
v3.

Example 9.17. Let d : R[x]3 → R4 be the linear map that sends a polynomial
f ∈ R[x]3 to

(f(2) + f ′(2), f(3) + f ′(3), f(4) + f ′(4), f(5) + f ′(5)),

where f ′ is the derivative of f . Then d is the composition of the map

d1 : R[x]3 → R[x]3
that sends f to f + f ′ and the map

d2 : R[x]3 → R4
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that sends g to (g(2), g(3), g(4), g(5)). With respect to the basisB = (1, x, x2, x3)
for R[x]3 and the standard basis E for R4, we get

[d]BE = [d2]
B
E · [d1]BB =


1 2 4 8
1 3 9 27
1 4 16 64
1 5 25 125

 ·


1 1 0 0
0 1 2 0
0 0 1 3
0 0 0 1

 =


1 3 8 20
1 4 15 54
1 5 24 112
1 6 35 200

 ,

cf. Examples 9.4 and 9.5.

Exercises

9.2.1. Let B = (v1, v2, v3, v4) be a basis for a vector space V over R. Show that
B′ = (v′1, v

′
2, v

′
3, v

′
4) with

v′1 = v1,

v′2 = v1 + 2v2,

v′3 = v1 + 2v2 + 3v3,

v′4 = v1 + 2v2 + 3v3 + 4v4

is also a basis for V .
(1) Determine the matrices M = [id]B

′
B and N = [id]BB′ .

(2) Explain that for x = (x1, x2, x3, x4) ∈ R4, the vector Mx is the sequence
of coefficients with respect to B of the vector v = x1v

′
1+x2v

′
2+x3v

′
3+x4v

′
4.

(3) Explain that for x = (x1, x2, x3, x4) ∈ R4, the vector Nx is the sequence of
coefficients with respect to B′ of the vector v = x1v1+x2v2+x3v3+x4v4.

9.2.2. Let E = (e1, e2, e3) be the standard basis for R3 and C = (v1, v2, v3) a basis
with

v1 = (−1,−2, 0), v2 = (−2, 1, 3), v3 = (1,−1,−2).

Determine the matrices [id]CE and [id]EC .

9.3. Changing bases

Proposition 9.18. Let f : V → W be a linear map of finite-dimensional vector
spaces. Suppose B and B′ are bases for V and C and C ′ are bases for W . Then
we have

(9.3) [f ]B
′

C′ = [id]CC′ · [f ]BC · [id]B′

B .

Proof. This follows immediately from Proposition 9.14. □

The following commuting diagram corresponds to the identity (9.3) of Proposi-
tion 9.18.

V
id //

f

((
V

f // W
id // W

F n

[f ]B
′

C′

;;
[id]B

′
B

//

φB′

OO

F n

[f ]BC

//

φB

OO

Fm

[id]C
C′

//

φC

OO

Fm

φC′

OO

In the spirit of the alternative proof of Proposition 9.14, we can explain the iden-
tity (9.3) as follows. Take a vector v ∈ V . By first multiplying the sequence vB′ of
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coefficients of v with respect to B′ with the matrix [id]B
′

B , we obtain the sequence
vB of coefficients of v with respect to B; multiplying that vector with the matrix
[f ]BC yields the sequence (f(v))C of coefficients of f(v) with respect to C. Finally,
multiplying this last vector with the matrix [id]CC′ gives the sequence (f(v))C′ of co-
efficients of f(v) with respect to C ′. This sequence could also have been obtained
directly by multiplying [f ]B

′

C′ with the vector vB′ . In other words, we have

[f ]B
′

C′ · vB′ =
(
f(v)

)
C′ =

(
[id]CC′ · [f ]BC · [id]B′

B

)
· vB′

for all v ∈ V , in particular for the j-th element of the basis B′, for which we have
vB′ = ej ∈ F n. So we find

[f ]B
′

C′ · ej =
(
[id]CC′ · [f ]BC · [id]B′

B

)
· ej

for all j. This shows that the two matrices [f ]B
′

C′ and [id]CC′ · [f ]BC · [id]B′
B have the

same columns, so they are equal.

Note again that the order of the matrices in the right-hand side of (9.3) is opposite
of the order in which they appear in this diagram. Because of Proposition 9.18,
the matrices [id]B

′
B and [id]CC′ associated as in Proposition 5.11 to the linear maps

φ−1
B ◦ φB′ : F n → F n and φ−1

C′ ◦ φC : Fm → Fm, respectively, are often called basis
change matrices. The latter, for example, satisfies [id]CC′ ·wC = wC′ for all w ∈ W ,
so multiplying [id]CC′ with the sequence wC of coefficients of a vector w with respect
to C gives the sequence wC′ of coefficients of w with respect to C ′.

Exercises

9.3.1. Let E2 and E3 be the standard bases of R2 and R3, respectively. Let T : R2 → R3

be the map given by

T
(
(x, y)

)
= (3x+ 2y, x− y,−x+ 2y).

(1) Determine the matrix [T ]E2
E3
.

(2) Determine the matrix [T ]BC for the basis B =
(
(1, 2), (−1, 1)

)
of R2 and

the basis C = (v1, v2, v3) of R3 with the vectors

v1 = (−1,−2, 0), v2 = (−2, 1, 3), v3 = (1,−1,−2)

as in Exercise 9.2.2.

9.3.2. Let V ⊂ R3 be the subspace spanned by v1 and v3 as in Exercise 9.3.1. Then
B = (v1, v3) is a basis for V . Let T : V → R3 be the inclusion map. Let E be
the standard basis for R3. Let C be the basis for R3 as in Exercise 9.3.1.
(1) Determine the matrices [T ]BE and [T ]BC directly.
(2) Verify the equality that should hold between one of the matrices [T ]BE and

[T ]BC on the one hand and the product of the other with [id]CE on the other
hand.

9.3.3. Let B be a basis for Fn and let E be the standard basis.
(1) Show that we have [φB]

E
B = In.

(2) Show that for M = [idFn ]BE we have fM = φB.
(3) Show that we have [φB]

E
E = [idFn ]BE .

9.3.4. LetB and C be the standard bases of R2 and R3, respectively. Let T : R2 → R3

be the linear map given by

T
(
(x, y)

)
= (2x− 3y, x+ y, 3x+ y).

(1) Determine the matrix [T ]BC .
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(2) Determine the matrix [T ]B
′

C′ for the basis B′ =
(
(3, 4), (1,−2)

)
for R2 and

the basis C ′ = (v1, v2, v3) for R3 with

v1 = (1, 1, 1), v2 = (1, 2, 3), v3 = (1, 4, 9).

(3) Verify that for the vector v ∈ R2 with vB′ = (1, 1) (that is, v = φB′((1, 1))),
we indeed have

[T ]B
′

C′ · vB′ =
(
T (v)

)
C′ .

(4) Repeat this verification for vB′ = (1, 0) and vB′ = (0, 1).

9.4. Endomorphisms

In the special case of Proposition 9.18 that we have V = W , we can take B = C
and B′ = C ′ to obtain the following.

Proposition 9.19. Let f : V → V be an endomorphism of a finite-dimensional
vector space V with bases B and B′. Then we have

[f ]B
′

B′ = [id]BB′ · [f ]BB · [id]B′

B = [id]BB′ · [f ]BB ·
(
[id]BB′

)−1
.

Proof. This follows immediately from Proposition 9.18 and Corollary 9.15. □

Example 9.20. Let B = (v1, v2, v3) be the basis for R3 as in Examples 9.11,
9.12, and 9.16. As in Example 9.11, let s denote the reflection in the plane V
spanned by v1 and v2. Then with the matrices of those examples, we find that
the matrix associated to s with respect to the standard basis E is

[s]EE = [id]BE · [s]BB · [id]EB = [id]BE · [s]BB ·
(
[id]BE

)−1

=

1 1 1
2 1 −1
1 0 1

 ·

1 0 0
0 1 0
0 0 −1

 ·

−1
3

1
3

2
3

1 0 −1
1
3

−1
3

1
3

 =

 1
3

2
3

−2
3

2
3

1
3

2
3

−2
3

2
3

1
3

 .

Example 9.21. Let B = (v1, v2, v3) be the basis for R3 as in Example 9.20 and
let π : R3 → R3 be the orthogonal projection onto the plane V spanned by v1
and v2. Then we have π(vi) = vi for i = 1, 2, and π(v3) = 0, as v3 is a normal
to V . Therefore, we find

[π]BB =

1 0 0
0 1 0
0 0 0


and as in Example 9.20, we find the matrix [π]EE with Proposition 9.18:

[π]EE = [id]BE · [π]BB · [id]EB = [id]BE · [π]BB ·
(
[id]BE

)−1

=

1 1 1
2 1 −1
1 0 1

 ·

1 0 0
0 1 0
0 0 0

 ·

−1
3

1
3

2
3

1 0 −1
1
3

−1
3

1
3

 =

 2
3

1
3

−1
3

1
3

2
3

1
3

−1
3

1
3

2
3

 .

Exercises

9.4.1. Let B be the basis
(
1, 1 + x, 1 + x + x2, 1 + x + x2 + x3

)
for R[x]3. Let

T : R[x]3 → R[x]3 be the linear map given by T (f) = f ′.
(1) Determine the matrix [T ]BB directly.
(2) Determine the matrix [T ]BB by first determining the matrix [T ]CC for the

basis C = (1, x, x2, x3), and then using a basis change matrix.
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9.4.2. Let L ⊂ R2 be the line given by y = 2x. Let π : R2 → R2 be the orthogonal
projection of R2 on L.
(1) Determine [π]BB, where B is the standard basis.
(2) Determine v1 and v2 such that (v1) is a basis for L and (v2) is a basis for

L⊥. Set C = (v1, v2). Determine [π]CC .
(3) Determine [π]BB again, this time using [π]CC and a basis change matrix.

9.4.3. Let V ⊂ R3 be the plane given by x + 3y − 2z = 0. Let π : R3 → R3 be the
orthogonal projection of R3 on V . Let B be the standard basis for R3.
(1) Determine [π]BB directly.
(2) Determine [π]BB via [π]CC , where C = (v1, v2, v3) is a basis consisting of a

basis (v1, v2) for V and a basis (v3) for V
⊥.

9.5. Similar matrices and the trace

Definition 9.22. We say that two n× n matrices M and M ′ are similar if there
is an invertible n× n matrix Q such that M ′ = QMQ−1.

The notion of similarity defines an equivalence relation on Mat(n, F ) (see Exer-
cise 9.5.2). Proposition 9.19 shows that any two matrices associated to the same
endomorphism of V , but with respect to different bases, are similar. The converse,
namely that any two similar n× n matrices are associated to the same endomor-
phism with respect to two appropriately chosen bases, will be proved in the next
section (see Proposition 9.29).

The next section also touches on the classification of matrices with respect to
similarity, which is complicated. For purposes of classification, it is useful to have
invariants, that is, functions that are constant on the equivalence classes.

The rank is an invariant with respect to similarity, that is, any two similar matrices
have the same rank (see Exercise 9.5.3). Here is another invariant (shown to be
invariant in Corollary 9.25).

Definition 9.23. For A = (aij) ∈ Mat(n, F ), we define the trace of A to be

Tr(A) = a11 + a22 + · · ·+ ann .

Lemma 9.24. If A ∈ Mat(m× n, F ) and B ∈ Mat(n×m,F ), then

Tr(AB) = Tr(BA) .

Proof. The (i, i)-entry ofAB is
∑n

j=1 aijbji. The (j, j)-entry ofBA is
∑m

i=1 bjiaij.
So we get

Tr(AB) =
m∑
i=1

n∑
j=1

aijbji =
n∑
j=1

m∑
i=1

bjiaij = Tr(BA) .

□

Corollary 9.25. Let A,A′ ∈ Mat(n, F ) be similar. Then Tr(A) = Tr(A′).

Proof. There is an invertible matrix Q ∈ Mat(n, F ) such that A′ = QAQ−1. It
follows from Lemma 9.24 that

Tr(A′) = Tr(QA ·Q−1) = Tr(Q−1 ·QA) = Tr(A) .

□
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This allows us to make the following definition.

Definition 9.26. Let V be a finite-dimensional F -vector space and f : V → V an
endomorphism of V. We define the trace Tr(f) of f to be the trace of any matrix
associated to f relative to some basis of V.

Note that Tr(f) is well-defined, since all matrices associated to f are similar by
Proposition 9.19 and therefore have the same trace according to Corollary 9.25.

In the next chapter, we will introduce another invariant, which is even more im-
portant than the trace: the determinant.

Exercises

9.5.1. Determine the trace of the following three matrices.

M1 =


1 2 2 1
4 −3 5 2
−2 1 5 11
3 2 7 −13



M2 =


1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 64


−1

1 2 2 1
4 −3 5 2
−2 1 5 11
3 2 7 −13



1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 64


M3 =

1 1 1
1 5 7
1 25 49

−11 5 6
0 2 7
0 0 3

 1 2 2
4 −3 5
−2 1 5

1 5 6
0 2 7
0 0 3

−11 1 1
1 5 7
1 25 49


9.5.2. Show that the notion of similarity defines an equivalence relation on the space

Mat(n, F ) of n× n matrices, as claimed.

9.5.3. Show that any two similar matrices have the same rank.

9.6. Classifying matrices

9.6.1. Similar matrices. Proposition 9.19 shows that any two matrices as-
sociated to the same endomorphism of V , but with respect to different bases, are
similar. Conversely, Proposition 9.29 implies that for any two similar n × n ma-
trices M1,M2 over F , there are an endomorphism f of F n and two bases B1 and
B2 for F n such that Mi = [f ]Bi

Bi
for i ∈ {1, 2}. The proof of Proposition 9.29 uses

the following lemma.

Lemma 9.27. Suppose V is an n-dimensional vector space over F with basis B.
Then for every invertible n × n matrix P , there is a basis B′ for V such that
[idV ]

B′
B = P .

Proof. Set wj = φB(P · ej) for all 1 ≤ j ≤ n, and set B′ = (w1, w2, . . . , wn).
Then we have φB′ = φB◦fP . The map φB is an isomorphism by Proposition 7.29
and fP is an isomorphism because P is invertible, so their composition φB′ is in-
vertible as well and B′ is a basis by Proposition 7.29. From fP = φ−1

B ◦ idV ◦φB′ ,
we conclude P = [idV ]

B′
B . □

Example 9.28. For V = F n and B = E, the standard basis for F n, we can
make this much more concrete. Let P be an every invertible n× n matrix, and
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let w1, . . . , wn ∈ F n be the columns of P . Then the sequence B′ = (w1, . . . , wn)
is linearly independent, so it is a basis for F n. We have P = [id]B

′
E by Exam-

ple 9.13. See Exercise 9.6.1 for the case that B is any basis of F n.

Proposition 9.29. Let M and M ′ be two similar n × n matrices over F . Then
there exists a basis B of F n such that for M ′ = [fM ]BB.

Proof. Since M ′ and M are similar, there is an invertible n× n matrix P such
that M ′ = P−1MP . By Lemma 9.27 there is a basis B such that [idFn ]BE = P ,
where E is the standard basis for F n. Then we have

M ′ = P−1MP =
(
[idFn ]BE

)−1 · [fM ]EE · [idFn ]BE = [idFn ]EB · [fM ]EE · [idFn ]BE = [fM ]BB.

□

The classification of matrices in Mat(n, F ) with respect to similarity is complex.
What is still easy, is that the ‘multiplication by λ’ endomorphism (for λ ∈ F ) has
matrix λIn regardless of the basis, and so λIn and µIn are not similar if λ ̸= µ.

Before we give a more complex example, we state the following lemma.

Lemma 9.30. Suppose that the n × n matrices M and N over F are similar.
Then for every scalar λ ∈ F , the matrices M − λIn and N − λIn are similar as
well.

Proof. Suppose M and N are similar. Then there is an invertible matrix Q
such that N = QMQ−1. Then the identity

Q(M − λIn)Q
−1 = QMQ−1 −Q(λIn)Q

−1 = N − λQInQ
−1 = N − λIn

shows that M − λIn and N − λIn are similar as well. □

Example 9.31. Consider the real matrices

Mλ,t =

(
λ t
0 λ

)
with trace Tr(Mλ,t) = 2λ. Since any two similar matrices have the same trace,
we find that Mλ,t and Mµ,u can be similar only when λ = µ. We have

dimker(Mλ,t − λI2) =

{
1 if t ̸= 0,

2 if t = 0.

By Lemma 9.30 and the fact that similar matrices have kernels of the same
dimension, we conclude that Mλ,0 and Mλ,1 are not similar. On the other hand,
Mλ,t is similar to Mλ,1 if t ̸= 0, since(

λ t
0 λ

)
=

(
1 0
0 t−1

)(
λ 1
0 λ

)(
1 0
0 t

)
.

This example gives us a first glimpse of the classification theorem, the ‘Jordan
Normal Form Theorem’.
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9.6.2. Equivalent matrices.

Proposition 9.32. If f : V → W is a linear map between finite-dimensional
F -vector spaces and M ∈ Mat(m × n, F ) is the matrix associated to f relative
to some choice of bases of V and W , then the set of all matrices associated to f
relative to any choice of bases is

{QMP : P ∈ Mat(n, F ), Q ∈ Mat(m,F ), P and Q invertible} .

Proof. By Proposition 9.18, every matrix associated to f is in the given set.
Conversely, let B and C be the original bases for V and W , so that M = [f ]BC .
Given invertible matrices P and Q, we can find bases B′ and C ′ for V and W ,
respectively, such that P = [id]B

′
B and Q−1 = [id]C

′
C by Lemma 9.27. Then (by

Proposition 9.18 again) we have QMP = [f ]B
′

C′ . □

Definition 9.33. We say that two matricesM,M ′ ∈ Mat(m×n, F ) are equivalent
if there are invertible matrices P ∈ Mat(n, F ) and Q ∈ Mat(m,F ) such that
M ′ = QMP .

This notion does indeed define an equivalence relation on Mat(m × n, F ) (see
Exercise 9.6.2). It is weaker than the notion of similarity in the sense that any
two similar square matrices are equivalent, while two equivalent matrices need not
necessarily be similar.

Proposition 9.18 shows that any two matrices associated to the same linear map
f : V → W , but with respect to different bases, are equivalent. Proposition 9.32
shows that the converse holds as well.

If we choose bases that are well-adapted to the linear map, then we will obtain a
very nice matrix. This is used in the following result.

Corollary 9.34. Let M ∈ Mat(m × n, F ). Then there are invertible matrices
P ∈ Mat(n, F ) and Q ∈ Mat(m,F ) such that

QMP =



1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · 1 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
...

...
...

0 0 · · · 0 0 · · · 0


=

(
Ir 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
,

where r = rk(M).

Proof. Let V = F n, W = Fm, and let f = fM : V → W be the linear map
given by M . By the Basis Extension Theorem 7.33 we can choose a basis
B = (v1, . . . , vn) for V such that vr+1, . . . , vn is a basis of ker(f). We have
dimker(f) = n− r, so rk f = r by Theorem 8.3. Since f(vi) = 0 for r < i ≤ n,
the r elements w1 = f(v1), . . . , wr = f(vr) generate the image im f , which has
dimension r, so these r elements are linearly independent by Theorem 7.47.
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Hence, we can extend them to a basis C = (w1, . . . , wm) for W . We then have

f(vi) =

{
wi if 1 ≤ i ≤ r

0 if r + 1 ≤ i ≤ n.

So the matrix M ′ = [f ]BC associated to f with respect to B and C has the
required form. Set P = [id]BEn

and Q = [id]Em
C , where En and Em are the

standard bases of F n and Fm, respectively. Then by Proposition 9.18, we have

M ′ = [f ]BC = [id]Em
C · [f ]En

Em
· [id]BEn

= QMP,

as M is the matrix associated to f = fM relative to the standard bases En
and Em. □

Corollary 9.34 implies the following, which shows that it is easy to classify matrices
up to equivalence.

Corollary 9.35. Two m×n matrices M and M ′ are equivalent if and only if they
have the same rank.

Proof. First note that if M and M ′ are equivalent, they must have the same
rank, since the rank does not change under multiplication by invertible matrices
(see Exercise 9.6.3). For the converse, suppose M,M ′ are m × n matrices of
rank r. Then Corollary 9.34 tells us that M and M ′ are both equivalent to the
matrix given there, and hence equivalent to each other. □

Remark 9.36. Recall that by Proposition 6.4, row operations on a matrix M
correspond to multiplication on the left by an invertible matrix, and column
operations on M correspond to multiplication on the right by an invertible
matrix. Conversely, Corollary 8.36 shows that any invertible matrix is the
product of elementary matrices, each corresponding with an elementary row
operation (if multiplied by from the left) or column operation (if multiplied by
from the right). This has two interesting implications.

(1) Corollary 9.34 implies that any matrix M can be transformed into
the given simple form by elementary row and column operations. The
advantage of this approach is that by keeping track of the operations,
we can also determine the matrices P and Q explicitly, much in the
same way as when inverting a matrix, cf. the first alternative proof of
Theorem 8.12.

(2) InterpretingM as the matrix [f ]BC associated to a linear map f : V → W
relative to some bases B and C for V and W , respectively, we see from
Proposition 9.18 that row operations onM correspond to changing the
basis of the target space W , whereas column operations correspond to
changing the basis of the domain space V .

Exercises

9.6.1. This exercise generalises Example 9.28 and makes Lemma 9.27 concrete for
V = Fn. Let B = (w1, . . . , wn) be a basis for Fn and let Q be the matrix
whose columns are w1, . . . , wn. Let P be any invertible n × n matrix and let
v1, v2, . . . , vn be the columns of the matrix QP . Show that B′ = (v1, . . . , vn) is

a basis for Fn and we have P = [idFn ]B
′

B .

9.6.2. Show that the notion of equivalent matrices defines an equivalence relation
on the space Mat(m× n, F ) of m× n matrices, as claimed.

9.6.3. Show that any two equivalent matrices have the same rank.



CHAPTER 10

Determinants

We will define the determinant det f of any endomorphism f : V → V of a finite-
dimensional vector space V over a field F . The most important properties of the
determinant include the fact that f is an isomorphism if and only if det f ̸= 0,
and the fact that it is multiplicative, that is, det(f ◦ g) = (det f) · (det g).

10.1. Determinants of matrices

We start with the case V = F n, so that f : V → V is given by some matrix. In
the case F = R, the determinant of f : Rn → Rn will turn out to correspond with
the factor by which f scales ‘oriented volumes’ (see Remark 10.14). So we have
to think a little bit about functions that define ‘oriented volume’.

We will only consider parallelotopes; these are the bodies spanned by n vectors
v1, . . . , vn ∈ Rn:

P (v1, . . . , vn) = {λ1v1 + · · ·+ λnvn : λ1, . . . , λn ∈ [0, 1]}.
The parallelotope P (v1, . . . , vn) is the image of the ‘unit cube’ P (e1, . . . , en) under
the linear map that sends the standard basis vectors e1, . . . , en to v1, . . . , vn; this
map is φC : Rn → Rn for the sequence C = (v1, . . . , vn), and it is given by the
matrix that has v1, . . . , vn as columns.

Now let us assume D : Mat(n,R) → R is a function that measures oriented vol-
umes in the sense that for any n × n matrix A, the absolute value |D(A)| can
be interpreted as a volume of the image of the ‘unit cube’ P (e1, . . . , en) under
fA, that is, a volume of the parallelotope P (v1, . . . , vn), where v1, . . . , vn are the
columns of A.

Note that if the n × n matrices A and A′ have the same columns, but in a
different order, then their associated parallelotopes are the same, so we have
|D(A)| = |D(A′)|. Even though the parallelotope P (v1, . . . , vn) does not deter-
mine the order of the vectors v1, . . . , vn, by abuse of language we say that the
oriented volume of the parallelotope P (v1, . . . , vn) is D(A), where A is the matrix
with columns v1, . . . , vn in the same order as in the notation P (v1, . . . , vn).

Example 10.1. For n = 1, the absolute value is a 1-dimensional volume, also
known as length: a number v ∈ R has a length |v|. As oriented volume we
can take the identity: the oriented volume of v is v itself, which is (obviously)
negative when v is negative, while its absolute value is the usual length.

With a generalisation to arbitrary fields in mind, what properties should such a
function

D : Mat(n, F ) → F

satisfy?

For notational convenience, for any m×n matrix A over F , any integer 1 ≤ j ≤ n,
and any vector x ∈ Fm, we denote by rj(A, x) the matrix obtained by replacing the

179
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j-th column of A by x; similarly, for integers 1 ≤ j, k ≤ n and vectors x, y ∈ Fm, we
denote by rjk(A, x, y) the matrix obtained by replacing the j-th and k-th column
of A by x and y, respectively.

The oriented volume should scale corresponding to scaling of the vectors, that is,

(10.1) D(rj(A, λx)) = λD(rj(A, x)) for all 1 ≤ j ≤ n and all x ∈ Fm .

Also, volumes should be additive in the following sense:
(10.2)
D(rj(A, x+ y)) = D(rj(A, x)) +D(rj(A, y)) for all 1 ≤ j ≤ n and all x ∈ Fm .

We will now give a motivation why we want D to satisfy these properties over R.
If the n − 1 columns v1, . . . , vj−1, vj+1, . . . , vn of A other than the j-th column,
span an (n−1)-dimensional parallelotope B = P (v1, . . . , vj−1, vj+1, . . . , vn) inside
a hyperplane H with normal a, and this so-called base B has (n− 1)-dimensional
volume b, then the volume |D(A)| of P (v1, . . . , vn) equals b times the absolute
value of the oriented height of P (v1, . . . , vn) with respect to this base; this oriented
height is the oriented length of the projection of the j-th column onto a, which
is indeed additive in the j-th column. This is depicted in Figure 10.1 for R3. In
the first picture we see the base B and in the second and third pictures we see
two parallelotopes with base B and third vector x and y, respectively. The fourth
picture has these two parallelotopes stacked on top of each other and the final
picture shows a parallelotope with base B and third vector x + y. One way to
think about these parallelotopes in R3 is as stacks of sheets of paper, each sheet
having the shape as the base B. We start with two skew stacks, put them on top
of each other, and straighten them to one (still skew) stack, keeping the top and
bottom sheet in place. Of course, the total volume of paper does not change in
the process. Clearly, any decent person would immediately make all the stacks
straight and vertical; a stack of papers with third vector z then becomes a stack
with third vector πa(z). The three straight (but skew) stacks in Figure 10.1 then
become stacks with third vector equal to πa(x), πa(y), and πa(x+ y), respectively.
Since πa is linear, we see again that the volumes of the first two stacks add up to
the volume of the big stack.

Over any field, the two properties (10.1) and (10.2) can be stated simply by saying
that D is linear in each column separately, when the other n− 1 columns are held
constant. That is, for each n × n matrix A and each 1 ≤ j ≤ n, the function
F n → F, x 7→ D(rj(A, x)) is linear. Such a function D : Mat(n, F ) → F is said
to be multilinear as a function in the columns.

Still inspired by the case F = R, another property of D should certainly be
that the n-dimensional volume D(A) vanishes when the parallelotope spanned by
the columns of A is of lower dimension, that is, when the columns are linearly
dependent. Together with multilinearity, it suffices to only require the special
case when two of the columns are equal (see Lemma 10.3(1)), that is,

(10.3) D(rij(A, x, x)) = 0 for all 1 ≤ i, j ≤ n with i ̸= j and all x ∈ F n.

A function D : Mat(n, F ) → F that is multilinear in the columns and that satisfies
this third property (10.3) is said to be alternating. So these are the functions we
are looking for. Note that it makes sense over any field F to talk about functions
Mat(n, F ) → F that are multilinear and alternating in the columns.
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L(a)

0

H = a⊥

B

πa(x)

0

x πa(y)

0

y

πa(x)

πa(y)

0

x

y

πa(x+ y)

0

x+ y

Figure 10.1. For a fixed base, the volume is additive in the final vector

Definition 10.2. Let F be a field and let n be a positive integer. A function
Mat(n, F ) → F is called a determinantal function if it is multilinear and alter-
nating as function in the columns.

How many determinantal functions are there? First, it is pretty clear that the set
of all determinantal functions on V forms an F -vector space. So the question we
should ask is, what is the dimension of this vector space?

Before we state the relevant theorem, let us first prove a few simple properties of
determinantal functions.
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Lemma 10.3. Let F be a field, n a positive integer, and A ∈ Mat(n, F ). Let
D : Mat(n, F ) → F be a determinantal function.

(1) If A is not invertible, then D(A) = 0.

(2) If we add a scalar multiple of the i-th column of a matrix A to the j-th
column, where i ̸= j, then D(A) is unchanged, that is,

D(rij(A, x, y)) = D(rij(A, x, y + λx)).

(3) If we interchange two of the columns, then D(A) changes sign, that is,
for i ̸= j we have

D(rij(A, x, y)) = −D(rij(A, y, x)).

Proof. For (1), assume that A ∈ Mat(n, F ) is not invertible. Then its columns
v1, v2, . . . , vn are linearly dependent, so one of them, say vj, is a linear combi-
nation of the others, say

vj =
∑
i ̸=j

λivi.

By linearity of D in the j-th column, this implies

D(A) = D(rj(A, vj)) = D
(
rj

(
A,

∑
i ̸=j

λivi

))
=

∑
i ̸=j

λiD(rj(A, vi)) =
∑
i ̸=j

λi·0 = 0,

where the second-to-last equality follows from the fact that for i ̸= j, the matrix
rj(A, vi) has two identical columns, namely the i-th and the j-th.

We now prove (2). By linearity of D in the j-th column and the fact that D is
alternating, we have

D(rij(A, x, y + λx)) = D(rij(A, x, y)) + λD(rij(A, x, x)) = D(rij(A, x, y)).

Finally, for (3), suppose we have x, y ∈ F n. Then we obtain

0 = D(rij(A, x+ y, x+ y)) =D(rij(A, x, x)) +D(rij(A, x, y)) +D(rij(A, y, x))

+D(rij(A, y, y)) = D(rij(A, x, y)) +D(rij(A, y, x)),

so D(rij(A, x, y)) = −D(rij(A, y, x)). □

Proposition 10.4. For any field F , non-negative integer n, and element λ ∈ F ,
there is at most one determinantal function D : Mat(n, F ) → F with D(In) = λ.

Proof. SupposeD : Mat(n, F ) → F is a determinantal function withD(In) = λ.
Lemma 10.3(1) gives D(A) = 0 if A is not invertible. Otherwise, the matrix A
is invertible, and we can transform it into the identity matrix In by elementary
column operations. The multilinearity of D and Lemma 10.3 tell us how the
value of D changes in the process: we see that

D(A) = (−1)kδ−1D(In) = (−1)kδ−1λ ,

where k is the number of times we have swapped two columns and δ is the
product of all the scaling factors we have used when scaling a column. This
shows that D is uniquely determined, as D(A) is determined for any matrix A.

□

We cannot use the observation made in the proof of Proposition 10.4 easily to
show the existence of a determinantal function on F n, as we would have to show
that (−1)kδ−1 does not depend on the sequence of elementary column operations
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we have performed in order to obtain In. Instead, we define an explicit function
and show that it is determinantal.

Definition 10.5. We define the functions

dn : Mat(n, F ) → F

(for n ≥ 0) inductively. We set d0(I0) = 1 for the unique 0 × 0 matrix I0. For
n > 0 we choose an index 1 ≤ i ≤ n and set

(10.4) dn(A) =
n∑
j=1

(−1)i+jaij · dn−1(Aij),

where aij is the entry in the i-th row and j-th column of A and Aij is the submatrix
of A obtained by deleting the i-th row and the j-th column from A.

Note that we have d1
(
(λ)

)
= λ, which could also have been used as the base case

in the inductive definition of the functions dn.

A priori, the function dn might depend on the choice of the index i, and the
analogous choices made to define d1, . . . , dn−1). The following proposition says
that dn does not depend on these choices.

Proposition 10.6. For any integer n ≥ 0, the function dn : Mat(n, F ) → F is a
determinantal function with dn(In) = 1 that is independent of the choice of i in
Definition 10.5.

Proof. We use induction on n. For n = 0 the statement is trivial. (If you suffer
from horror vacui, that is, you are afraid of the empty set, you can consider
n = 1; then d1 : Mat(1, F ) → F sends the 1 × 1 matrix (λ) to λ.) For the
induction step, we assume n ≥ 1 and let i be the corresponding choice from
Definition 10.5.

We first show that dn is linear in each of its columns. Indeed, note that the
function F n → F n−1 that deletes the i-th coordinate is linear. By the induction
hypothesis, this implies that for 1 ≤ j, k ≤ n, the function Mat(n, F ) → F that
sends A to dn−1(Aij) is linear as a function in the k-th column of A for k ̸= j
and constant for k = j; the function A 7→ aij is the opposite, constant as a
function in the k-th column of A for k ̸= j and linear for k = j. So the j-th
term in the right-hand side of (10.4) is linear in all columns. Therefore, so is
the sum dn.

To see that dn is alternating, we will show that for any n×n matrix A of which
the k-th and l-th column are the same for some k < l, we have dn(A) = 0. Let
A be such a matrix. Then for 1 ≤ j ≤ n with j ̸= k, l, the submatrix Aij also
has two identical columns, so dn−1(Aij) = 0 by the induction hypothesis. We
conclude

dn(A) = (−1)i+kc · dn−1(Aik) + (−1)i+lc · dn−1(Ail)

with c = aik = ail. The matrices Aik and Ail have the same columns, but in
a different order: the matrix Aik can be obtained from Ail by shifting the k-th
column l − k − 1 positions to the right, or, equivalently, swapping this column
with its right neighbor l− k− 1 times. Since dn−1 is an alternating multilinear
function in the columns, we find dn−1(Aik) = (−1)l−k−1dn−1(Ail) by Lemma
10.3(3). This means that the two terms for j = k and j = l cancel and we have
dn(A) = 0.
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We conclude that dn is indeed a determinantal function. It is easy to check
that dn(In) = 1. From Proposition 10.4, we conclude that these two properties
already determine dn uniquely, so it is independent of the choice of i, which
finishes the proof. □

Corollary 10.7. The determinantal functions Mat(n, F ) → F form an F -vector
space of dimension 1.

Proof. From Proposition 10.4, it follows that the dimension is at most 1, while
Proposition 10.6 implies it is at least 1. □

Definition 10.8. For any field F and any non-negative integer n, we let

det : Mat(n, F ) → F

be the unique determinantal function with det(In) = 1; for A ∈ Mat(n, F ), we
call det(A) the determinant of the matrix A.

Note that the field F and the dimension n are not explicit in the notation det; by
Proposition 10.6, we have det = dn. If A = (aij) is written as an n× n array of
entries, we also write

det(A) =

∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣
and by (10.4) we have

(10.5) det(A) =
n∑
j=1

(−1)i+jaij det(Aij)

for all 1 ≤ i ≤ n; this is called the expansion of the determinant along the i-th
row.

Example 10.9. For 2× 2 matrices and 3× 3 matrices, we find∣∣∣∣a b
c d

∣∣∣∣ = ad− bc,∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = aei+ bfg + cdh− afh− bdi− ceg.

A mnemonic to remember the formula for 3 × 3 matrices is to repeat the first
two columns after the third, and to add the products of the entries along the
diagonals in one direction and subtract the products of the entries along the
diagonals in the other direction.

a b c a b
d e f d e
g h i g h

Note that for n > 3 this does not directly generalise to n×n matrices! We will
see in Exercise 10.1.5 that for n > 1 there is a way to write the determinant of
an n× n matrix as a sum of n! terms.
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Example 10.10. If one of the rows of a square matrix contains many zeros,
then it is useful to expand the determinant along that row. If we expand the
following determinant along the second row, then we get∣∣∣∣∣∣∣∣

1 −1 2 1
1 0 2 0
2 1 2 1
3 −1 1 0

∣∣∣∣∣∣∣∣ = −1 ·

∣∣∣∣∣∣
−1 2 1
1 2 1
−1 1 0

∣∣∣∣∣∣− 2

∣∣∣∣∣∣
1 −1 1
2 1 1
3 −1 0

∣∣∣∣∣∣ = −1 · 2− 2 · (−7) = 12.

Example 10.11. Using induction, it is easy to show that the determinant of a
diagonal matrix 

λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn


equals the product

∏n
i=1 λi of the diagonal elements. The same holds for upper

triangular matrices, which are matrices of which all entries below the diagonal
are zero. See Exercise 10.1.2.

The proof of Proposition 10.4 gives us a second procedure to compute deter-
minants: we perform elementary column operations on A, keeping track of the
scalings and swappings, until we get a zero column (then det(A) = 0), or we reach
the identity matrix.

Example 10.12. We compute a determinant by elementary column opera-
tions. Note that we can avoid divisions (and hence fractions) by choosing the
operations cleverly, cf. Example 6.15.∣∣∣∣∣∣∣∣
1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 0 0 0
2 −3 −2 −5
3 −2 −7 −11
4 −5 −11 −14

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 0 0 0
2 1 −2 −5
3 12 −7 −11
4 17 −11 −14

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0

−21 12 17 49
−30 17 23 71

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0

−21 12 17 −2
−30 17 23 2

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0

−21 12 1 17
−30 17 −1 23

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0

−51 29 −1 40

∣∣∣∣∣∣∣∣
= 2 · 40

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣ = 80
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Exercises

10.1.1. Determine the determinants of the following matrices, both by expansion
along a row and by using elementary column operations.(

−1 −2
−3 −2

)  −2 −3 2
0 1 2

−3 −3 0

  2 −2 −2
1 3 −1
2 −2 0




1 −2 −2 −1
1 −1 −1 2

−2 −2 0 −1
0 0 −1 1




−3 2 1 2
−1 −1 −3 1
3 −2 −3 −2
3 −2 −1 −1


10.1.2. An upper triangular matrix is a square matrix of which all entries below

the main diagonal are 0. Show that the determinant of an upper triangular
matrix is equal to the product of its diagonal entries. The same is true for
lower triangular matrices.

10.1.3. For each x, y ∈ R, determine the determinant of the matrix1 x y
1 x2 y2

1 x3 y3

 .

In Exercise 10.2.6 this will be generalised to Vandermonde matrices of arbitrary
size.

10.1.4. Let Mn denote the n × n matrix over R of which the entry in the i-th row
and the j-th column equals 1 if |i− j| ≤ 1 and 0 otherwise. For example,

M6 =


1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1

 .

(1) Compute the determinant of Mn for 2 ≤ n ≤ 5.
(2) Give (with proof) a general formula in terms of n for the determinant of

Mn.

10.1.5. Let n ≥ 1 be an integer, and let Sn be the set of all permutations of the set
{1, 2, . . . , n}. (A permutation of a set is a bijection from that set to itself.) For
any such permutation σ : {1, . . . , n} → {1, . . . , n}, we define the sign ε(σ) of σ

by ε(σ) = (−1)m(σ) with

m(σ) = #{ (i, j) : 1 ≤ i < j ≤ n and σ(i) > σ(j) }.

(1) Suppose σ ∈ Sn is a permutation, and k, l ∈ {1, 2, . . . , n} two different
elements. Let σ′ be the permutation obtained by composing σ with the
permutation that just switches k and l, so

σ(i) =


σ(i) if σ(i) ̸= k, l,

k if σ(i) = l,

l if σ(i) = k.

Show that ε(σ′) = −ε(σ).
(2) Show that for any n× n matrix A =

(
ai,j

)
i,j

we have

detA =
∑
σ∈Sn

ε(σ) · a1,σ(1)a2,σ(2) · · · an,σ(n).
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10.2. Some properties of the determinant

Proposition 10.13. For any n× n matrices A and B, we have

det(AB) = (detA) · (detB).

Proof. LetA be an n×nmatrix. Consider the functionsD1, D2 : Mat(n, F ) → F ,
given by

D1(M) = (detA) · (detM),

D2(M) = det(AM).

Then D1 is a multiple of det, so D1 is a determinantal function and it satisfies
D1(In) = detA. Note that in Section 5.5, just under (5.5), we have seen
that the j-th column of AM equals (A times the j-th column of M). This
implies A ·rj(M,x) = rj(AM,Ax), from which it is easily seen that the function
D2 is linear in each column of M . It is also alternating, because if M has
two identical columns, then so does AM and so det(AM) = 0. We conclude
that D2 is a determinantal function satisfying D2(In) = detA as well. By
Proposition 10.4 we conclude D1 = D2 and in particular D1(B) = D2(B), that
is, det(AB) = (detA) · (detB). □

Remark 10.14. We look back at our earlier motivation for the determinant:
oriented volumes. For two real n × n matrices A and B, we can interpret
detB as the oriented volume of the parallelotope P spanned by the columns
of B, and det(AB) as the oriented volume of the image fA(P ) of P under
the map fA, namely the parallelotope spanned by the columns of AB. Then
Proposition 10.13 states that the oriented volume of fA(P ) is (detA) times the
oriented volume of P . Hence, instead of viewing detA as the volume of the
one parallelotope spanned by the columns of A, that is, the image of the unit
cube, we can view detA as the factor by which the endomorphism fA scales the
volumes of all polytopes.

Corollary 10.15. If A is an invertible matrix, then detA ̸= 0 and
det(A−1) = (detA)−1.

Proof. Let n be the number of rows (and thus also the number of columns) of
A. By Proposition 10.13, we have

(det(A−1)) · (detA) = det(A−1A) = det(In) = 1,

from which the statement follows. □

Theorem 10.16. A square matrix A is invertible if and only if detA ̸= 0.

Proof. If A is not invertible, then detA = 0 by Lemma 10.3, and if A is invert-
ible, then detA ̸= 0 by Corollary 10.15. □

Theorem 10.17. Let A ∈ Mat(n, F ). Then det(A⊤) = det(A).

Proof. We show that A 7→ det(A⊤) is a determinantal function. First, if A
has two columns that are the same, then we have rkA < n, so we also have
rk(A⊤) < n by Theorem 8.12(3) (see Remark 8.13) and therefore det(A⊤) = 0
by Lemma 10.3(1).
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This implies that our function is alternating. Second, we have to show that
det(A⊤) is linear in each of the columns of A. This is obviously equivalent to
saying that det(A) is linear in each of the rows of A. To check that this is the
case for the i-th row, we expand det(A) along the i-th row according to (10.5).
For A = (aij), we have

det(A) =
n∑
j=1

(−1)i+jaij det(Aij) .

Now in Aij the i-th row of A has been removed, so det(Aij) does not depend
on the i-th row of A; linearity is then clear from the formula. Finally, we have
det(I⊤n ) = det(In) = 1, so det(A⊤) must coincide with det(A) because of the
uniqueness of determinantal functions (see Proposition 10.4). □

Corollary 10.18 (Expansion along Columns). We can also expand deter-
minants along columns. Let n ≥ 1 and A = (aij) ∈ Mat(n, F ); we use the
notation Aij as before. Then for 1 ≤ j ≤ n,

det(A) =
n∑
i=1

(−1)i+jaij det(Aij) .

Proof. We expand the determinant of A⊤ along the j-th row as in (10.5),
with the roles of i and j switched. The elements in the j-th row of A⊤ are
a1j, a2j, . . . , aij, so we get

det(A) = det(A⊤) =
n∑
i=1

(−1)i+jaij det
(
(A⊤)ji

)
=

n∑
i=1

(−1)i+jaij det
(
(Aij)

⊤) = n∑
i=1

(−1)i+jaij det(Aij) .

□

Remark 10.19. Just as Lemma 10.3 tells us how the determinant of a matrix
behaves under elementary column operations, we conclude from Theorem 10.17
that it behaves similarly under elementary row operations.

Example 10.20. A matrix A ∈ Mat(n, F ) is said to be orthogonal if AA⊤ = In.
What can we deduce about det(A)? Well,

1 = det(In) = det(AA⊤) = det(A) det(A⊤) = det(A)2 ,

so det(A) = ±1.

Exercises

10.2.1. Determine (again) the determinants of the matrices of Exercise 10.1.1, this
time using elementary row operations or expansion along a column.

10.2.2. Let A,B be two n× n matrices. True or not true?
(1) Tr(AB) = Tr(BA).
(2) Tr(AB) = (TrA)(TrB).
(3) Tr(A+B) = TrA+TrB.
(4) det(AB) = detBA.
(5) det(AB) = (detA)(detB).
(6) det(A+B) = detA+ detB.
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(7) detA ̸= 0 if and only if A is invertible.

10.2.3. Let M be a block matrix

M =

(
A B
0 C

)
over a field F withA and C square matrices, sayA ∈ Mat(m,F ) and C ∈ Mat(n, F ),
and B ∈ Mat(m×n, F ) and where 0 denotes the zero matrix in Mat(n×m,F ).
Show that detM = (detA) · (detC).

10.2.4. Show that for any block matrix

A =


A11 A12 · · · A1t

0 A22 · · · A2t
...

...
. . .

...
0 0 · · · Att


with square blocks and zeros below the diagonal blocks, we have

detA = (detA11)(detA22) · · · (detAtt).
10.2.5. Let Mn denote the n× n matrix over R with zeros on the diagonal and ones

for every entry off the diagonal.
(1) Compute the determinant of Mn for 2 ≤ n ≤ 5.
(2) Guess a general formula in terms of n for the determinant of Mn.
(3) Can you prove your guess?

10.2.6. Let F be a field containing k distinct elements α1, α2, . . . , αk ∈ F . By Exer-
cise 9.1.3, the square Vandermonde matrix

1 α1 α2
1 · · · αk−1

1

1 α2 α2
2 · · · αk−1

2
...

...
...

. . .
...

1 αk α2
k · · · αk−1

k

 .

is invertible, so it has nonzero determinant. Prove that the determinant equals∏
i<j

(αj − αi).

10.3. Cramer’s rule

Definition 10.21. Let A ∈ Mat(n, F ) with n ≥ 1. Then the adjugate matrix
of A (sometimes called the adjoint matrix, but this also has other meanings) is
the matrix Ã ∈ Mat(n, F ) whose (i, j)-entry ãij is (−1)i+j det(Aji). Here Aij is,
as before, the matrix obtained from A by removing the i-th row and j-th column.
Note the reversal of indices: ãij = ± det(Aji) and not ± det(Aij)!

Proposition 10.22 (Cramer’s rule). Let A ∈ Mat(n, F ) with n ≥ 1. Then

AÃ = ÃA = det(A)In .

If A is invertible, then det(A) ̸= 0, and

A−1 = det(A)−1Ã .

Proof. We denote the (i, j)-th entry of A by aij. The (i, k)-th entry of AÃ is
n∑
j=1

aij(−1)j+k det(Akj) .
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Let A′ = (a′ij) be the matrix that we obtain from A by replacing the k-th row
by the i-th row. Expanding the determinant of A′ by the k-th row, we find

det(A′) =
n∑
j=1

(−1)k+ja′kj det(A
′
kj) =

n∑
j=1

(−1)j+kaij det(Akj),

which equals the (i, k)-th entry of AÃ mentioned above. The claimed identity
AÃ = det(A)In now follows from the fact that for i = k we have A′ = A, so
detA′ = detA, while for i ̸= k, we have detA′ = 0, as the i-th and k-th row of
A′ are equal.

The assertion on ÃA is proved in the same way (or by applying what we have
just proved to A⊤). The final claim of the proposition follows immediately. □

Example 10.23. The inverse of a 2× 2 matrix(
a b
c d

)
with determinant ad− bc ̸= 0 is

1
ad−bc

(
d −b
−c a

)
.

Exercises

10.3.1. Let A ∈ Mat(n, f) be invertible, with n ≥ 1. Let b ∈ Fn be a vector. Then
the equation Ax = b has a unique solution s ∈ Fn. Show that if we write
s = (s1, s2, . . . , sn) for this solution, then for all indices 1 ≤ i ≤ n we have

si =
detAi(b)

detA
,

where Ai(b) denotes the n × n matrix obtained from A by replacing the i-th
column by b.

10.4. Determinants of endomorphisms

Proposition 10.24. Two similar n× n matrices have the same determinant.

Proof. Let A and A′ be similar n×n matrices. Then there is an invertible n×n
matrix P such that A′ = PAP−1. Then

detA′ = det(PAP−1) = (detP )(detA)(detP−1) = (detP )(detA)(detP )−1 = detA

by Proposition 10.13. □

Corollary 10.25. Let f : V → V be an endomorphism of a finite-dimensional
vector space V with two bases B and B′. Then we have det[f ]B

′

B′ = det[f ]BB.

Proof. For P = [id]BB′ we have P−1 = [id]B
′

B and [f ]B
′

B′ = P · [f ]BB · P−1 by
Proposition 9.19, so [f ]BB and [f ]B

′

B′ are similar matrices. They have the same
determinant by Proposition 10.24. □

Corollary 10.25 shows that the following definition makes sense.
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Definition 10.26. Let f : V → V be an endomorphism of a finite-dimensional
vector space V with basis B. Then we define the determinant of f , written det f ,
to be the determinant det[f ]BB of the matrix associated to f with respect to B.

Example 10.27. If V is a finite-dimensional vector space, then for the identity
idV : V → V we have det idV = 1.

Example 10.28. By Example 9.2, we of course have det fA = det[fA]
E
E = detA

for any square matrix A.

Example 10.29. Let V ⊂ R3 be a plane and s : R3 → R3 the reflection in V , cf.
Examples 9.11 and 9.20. To compute the determinant of s, we may choose any
basis. Take a basis (v1, v2) for V and a normal v3 of V . Then B = (v1, v2, v3) is
a basis for R3 (why?), and as in Example 9.11, we find

[s]BB =

1 0 0
0 1 0
0 0 −1

 .

We conclude det s = det([s]BB) = −1. Note that this is consistent with the
fact that the reflection s preserves volumes and changes the orientation of the
volumes.

Proposition 10.30. For any finite-dimensional vector space V and any two en-
domorphisms f, g : V → V , we have det(f ◦ g) = (det f) · (det g).

Proof. Choose a basis B for V . From Propositions 9.14 and 10.13 we find

det(f ◦g) = det([f ◦g]BB) = det([f ]BB ·[g]BB) = (det[f ]BB)(det[g]
B
B) = (det f)(det g).

□

Proposition 10.30 implies that if f : V → V is an automorphism of a finite-
dimensional vector space V , then det f ̸= 0 and det(f−1) = (det f)−1. Indeed,
apply the proposition with g = f−1. The following proposition shows that the
converse holds as well.

Proposition 10.31. Let f : V → V be an endomorphism of a finite-dimensional
vector space V . Then f is an isomorphism if and only if det f ̸= 0.

Proof. Choose a basis for B and set n = dimV . By Proposition 4.41 and
Definition 5.22, the map f is an isomorphism if and only if the matrix [f ]BB is
invertible. By Theorem 10.16, this is the case if and only if the determinant
det f = det([f ]BB) is nonzero. □

Exercises

10.4.1. Determine the determinant of the following linear maps. [Hint: for some of
these you can use Proposition 10.31 to avoid long computations.]
(1) f : R3 → R3, (x, y, z) 7→ (2x+ z, y − 3z,−x+ 2y + 3z),
(2) the rotation R2 → R2 about 0 over an angle φ,
(3) the orthogonal projection R3 → R3 of R3 onto the plane given by the

equation x− 2y + z = 0,
(4) the map R[x]3 → R[x]3 given by f 7→ xf ′ with f ′ the derivative of f ,
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10.4.2. Let φ : V → W be an isomorphism of finite-dimensional vector spaces, and
f : V → V an endomorphism of V . Show that f ′ = φ ◦ f ◦ φ−1 is an endomor-
phism of W satisfying det f ′ = det f .

10.4.3. Let f : V → V be an endomorphism of a finite-dimensional vectorspace V .
Let σ : V → W be a linear map. Suppose that f(kerσ) ⊂ kerσ. Let f ′ be the
restriction of f to kerσ and let f ′′ be the endomorphism of imσ induced by f
(see Exercise 4.5.1). Show that det f = (det f ′) · (det f ′′).

[Hint: use Exercise 10.2.3.]

10.4.4. For every positive integer n, let Mn denote the matrix over R of Exer-
cise 10.2.5.
(1) Show that for every 2 ≤ i ≤ n, the element vi = ei − ei−1 satisfies

Mnvi = −vi.
(2) Show that v1 = (1, 1, . . . , 1) satisfies Mn(v1) = (n− 1)v1.
(3) Show that B = (v1, v2, . . . , vn) is a basis for Rn.
(4) Set f = fMn : Rn → Rn. Show that [f ]BB is a diagonal matrix with its

(1, 1)-entry equal to n− 1 and the other diagonal entries equal to −1.
(5) Show that detMn = (−1)n−1(n− 1).

10.5. Linear equations with parameters

The determinant is very useful in studying systems of linear equations with pa-
rameters.

Example 10.32. For any c ∈ R we set

Ac =

 1 −1 c
1 1 −2
−1 c 2

 and b =

 2
1
−1

 .

For each c ∈ R, we want to know whether the linear equation Ac · x = b has
no solutions, exactly one solution, or more than one solution. We first compute
the determinant by expanding it along the first column.

detAc =

∣∣∣∣1 −2
c 2

∣∣∣∣−∣∣∣∣−1 c
c 2

∣∣∣∣−∣∣∣∣−1 c
1 −2

∣∣∣∣ = (2+2c)−(−2−c2)−(2−c) = (c+1)(c+2).

We see that for c ̸= −2,−1, the determinant detAc is nonzero, so the matrix
Ac is invertible and there is exactly one x with Ac · x = b. For c = −1, the
extended matrix is  1 −1 −1 2

1 1 −2 1
−1 −1 2 −1


with reduced row echelon form 1 0 −3

2
3
2

0 1 −1
2

−1
2

0 0 0 0

 .

It follows immediately that a = (3
2
,−1

2
, 0) satisfies A−1 ·a = b. The kernel of A−1

is generated by z = (3, 1, 2), so the complete solution set is { a+ rz : r ∈ R }.
Finally, for c = −2, the extended matrix is 1 −1 −2 2

1 1 −2 1
−1 −2 2 −1





10.5. LINEAR EQUATIONS WITH PARAMETERS 193

with reduced row echelon form 1 0 −2 0
0 1 0 0
0 0 0 1

 .

Here, the last column does contain a pivot, so there is no solution.

Exercises

10.5.1. For any real numbers a, b ∈ R, we define the matrix Ca and the vector vb by

Ca =

 a a 2
1 0 a
−2 −3 1

 and vb =

2
1
b

 .

(1) For each a ∈ R, determine the rank of the matrix Ca.
(2) Is Ca invertible for a = 2? If no, explain why not; if yes, give the inverse.
(3) For which pairs (a, b) does the equation Cax = vb have more than one

solution x ∈ R3?
(4) Describe the complete solution set for the pair of part (3) with the smallest

value of a.





CHAPTER 11

Eigenvalues and Eigenvectors

In Example 10.29 we saw that for a reflection s : R3 → R3 in a plane V ⊂ R3,
there is a special basis B such that the associated matrix [s]BB with respect to B
is a diagonal matrix. It allowed us to compute the determinant very easily as
the product of the diagonal entries, but it also makes other computations easier.
The k-th power of a diagonal matrix D, for instance, is just the diagonal matrix
of which the diagonal entries are the k-th power of the corresponding entries
of D. In this chapter we will investigate these special bases consisting of so-called
eigenvectors.

11.1. Eigenvalues and eigenvectors

Definition 11.1. Let f : V → V be an endomorphism of a vector space V . For
any λ ∈ F , we define the λ-eigenspace of f by Eλ(f) = { v ∈ V : f(v) = λv };
we say that λ is an eigenvalue of f if Eλ(f) contains a nonzero vector, and we call
such a vector an eigenvector for the eigenvalue λ. The spectrum Ω(f) of f is the
set of eigenvalues of f .

Example 11.2. Let V = R2 and consider the map f : V → V given by
f(x, y) = (y, x). Then 1 and −1 are eigenvalues of f , and we have

E1(f) = {(x, x) : x ∈ R},
E−1(f) = {(x,−x) : x ∈ R}.

The eigenvectors (1, 1) and (1,−1) form a basis B of V , and the matrix of f
relative to that basis is

[f ]BB =

(
1 0
0 −1

)
.

Example 11.3. Let V = C∞(R) be the space of infinitely differentiable func-
tions on R. Consider the endomorphism D : f 7→ f ′′. Then every λ ∈ R is an
eigenvalue, and all eigenspaces are of dimension two:

Eλ(D) =


L(x 7→ 1, x 7→ x) if λ = 0

L(x 7→ eµx, x 7→ e−µx) if λ = µ2 > 0

L(x 7→ sinµx, x 7→ cosµx) if λ = −µ2 < 0

Example 11.4. Let s : R3 → R3 be the reflection in a plane W ⊂ R3. Then
1 is an eigenvalue with eigenspace E1(s) = W , and −1 is an eigenvalue with
eigenspace E−1(s) = W⊥.

If π : R3 → R3 is the orthogonal projection ontoW , then 1 is an eigenvalue with
eigenspace E1(π) = W , and 0 is an eigenvalue with eigenspace E0(π) = W⊥.

195
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Since any matrices A ∈ Mat(n, F ) can be identified with the associated linear
map fA : F

n → F n, it makes sense to speak about eigenvalues, eigenvectors, and
eigenspaces of a square matrix.

Proposition 11.5. Let f : V → V be an endomorphism of a vector space V .
Suppose v ∈ V is an eigenvector of f for eigenvalue λ. Then for every positive
integer k, the vector v is an eigenvector for eigenvalue λk of the endomorphism

fk = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k

: V → V.

If f is an automorphism, then v is an eigenvector of f−1 with eigenvalue λ−1.

Proof. Exercise. □

Proposition 11.6. Let f : V → V be an endomorphism of a vector space V over
a field F . Then for any λ ∈ F , we have

Eλ(f) = ker(f − λ · idV ).

Proof. This follows immediately from the fact that for every v ∈ V we have
f(v) = λv if and only if (f − λ · idV )(v) = 0. □

It follows that eigenspaces are indeed linear subspaces, as kernels are. We also
conclude that the scalar λ is an eigenvalue of an endomorphism f if and only if
ker(f −λ · idV ) ̸= {0}. If V is finite-dimensional, then we can use the determinant
to find out whether this is the case.

Proposition 11.7. Let f : V → V be an endomorphism of a finite-dimensional
vector space V over a field F with an element λ ∈ F . Then λ is an eigenvalue
of f if and only if det(f − λ · idV ) = 0.

Proof. Proposition 11.6 gives that λ is an eigenvalue of f if and only if we have
ker(f − λ · idV ) ̸= {0}, so if and only if f − λ · idV is not injective, which is
equivalent by Corollary 8.5 to the fact that f − λ · idV is not an isomorphism.
By Proposition 10.31 this is the case if and only if det(f − λ · idV ) = 0. □

Exercises

11.1.1. Prove Proposition 11.5.

11.1.2. Let V = C∞(R) be the space of infinitely differentiable functions on R. Con-
sider the endomorphism D : f 7→ f ′. Show that every λ ∈ R is an eigenvalue
of D. Cf. Example 11.3 and Proposition 11.5.

11.1.3. For each matrix A of the following real matrices, find a basis for the eigenspace
Eλ(A) of each eigenvalue λ.

(
5 −4
8 −7

)  3 2 0
−1 0 0
0 0 −3


11.1.4. Let V and W be vector spaces over F . Suppose f : V → V is an endomor-

phism of V and let φ : V →W be an isomorphism. Define the endomorphism g
of W as g = φ ◦ f ◦φ−1. Show that for every scalar λ ∈ F , the map φ restricts
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to an isomorphism Eλ(f) → Eλ(g) of eigenspaces.

W
g // W

V

φ∼=

OO

f
// V

φ∼=

OO

11.2. The characteristic polynomial

How do we find all eigenvalues (and eigenvectors) of an endomorphism? Of course,
we can not just try all elements of F . If we want to find all eigenvalues of an
endomorphism f : V → V of a finite-dimensional vector space V , then we can use
the characteristic polynomial of f , defined as follows.

Definition 11.8. Let A be an n×n matrix over F . The characteristic polynomial
PA ∈ F [t] of A is a polynomial over F (see Example 2.13) in the variable t, defined
by

PA(t) = det(t · In − A).

Remark 11.9. This entire book, including the definition of determinants, we
have worked over a field F . So what do we mean by the determinant of t·In−A,
which involves a variable t?

One answer we could give is that we temporarily work over the field F (t) of
rational functions in t, which are quotients of polynomials in t (of course with
nonzero denominator). Rational functions are added and multiplied as you
would expect, so if f1, f2, g1, g2 ∈ F [t] are polynomials with g1, g2 nonzero, then

f1
g1

· f2
g2

=
f1f2
g1g2

and
f1
g1

+
f2
g2

=
f1g2 + f2g1

g1g2
.

We leave it as an exercise to show that this does indeed make the set F (t) into a
field (with the same 0 and 1 as in F ), over which we can do everything we have
done so far. The fact that the determinant of t · In − A is not just a rational
function, but in fact a polynomial, follows from the formula for the determinant
given in Definition 10.5: we never divide to create denominators.

However, this answer would not satisfy the readers who have assumed through-
out the book that our base field F has been (contained in) R or C (see the
introduction of Chapter 2). If all of a sudden we are expected to apply the
theory over R(t), then that assumption no longer holds. For those readers we
refer again to the formula for the determinant given in Definition 10.5. If we
write A = (aij)ij ∈ Mat(n, F ), then we can apply this formula to the matrix

t · In − A =


t− a11 −a12 · · · −a1n
−a21 t− a22 · · · −a2n
...

...
. . .

...
−an1 −an2 · · · t− ann


to define the characteristic polynomial PA of A. A very careful reader would
still protest, as we now do not know whether the polynomial we obtain from
the formula in Definition 10.5 depends on the choice of the index i that was
made in that formula. After all, a priori, the proof that the determinant does
not depend on that choice when we work over a field may have made crucial
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use of the fact that we were working over a field. However, we claim that the
choice still does not matter. Indeed, suppose that for two different choices, we
got two polynomials, say PA and P ′

A. For each scalar λ ∈ F , the evaluations
PA(λ) and P

′
A(λ) both equal det(λ · In − A), which of course is well defined as

the matrix λ · In − A is defined over the field F . Hence, every λ ∈ F is a zero
of the difference PA − P ′

A. Because every nonzero polynomial has only finitely
many zeroes (cf. Example 7.50) and every subfield of C has infinitely many
elements, we conclude that PA − P ′

A = 0, so PA = P ′
A, and the characteristic

polynomial is indeed independent of the choice of the index i in Definition 10.5.

This second answer can in fact be applied for any field, except for the final
step, where we need infinitely many scalars λ ∈ F . For finite fields, this can be
resolved by taking an infinite field extension F ′ of F (for example, the field of
rational functions over F ).

Example 11.10. The characteristic polynomial of the matrix

A =

(
2 3
−1 4

)
is

det(t · I2 − A) = det

(
t− 2 −3
1 t− 4

)
= (t− 2)(t− 4)− (−3) · 1 = t2 − 6t+ 11.

Proposition 11.11. Let n a non-negative integer and A,Q ∈ Mat(n, F ) matrices
with Q invertible. Set A′ = QAQ−1. Then the characteristic polynomials PA and
PA′ are equal.

Proof. We have

t · In − A′ = t ·QInQ−1 −QAQ−1 = Q(t · In − A)Q−1.

Taking the determinant of both sides gives

PA′(t) = det
(
Q(t · In − A)Q−1

)
= det(Q) · PA(t) · det(Q−1).

From det(Q) det(Q−1) = 1, we find PA′(t) = PA(t). Note that we used the
multiplicativity of the determinant, which we proved in Proposition 10.13, but
strictly speaking only over fields. This means that our proof here is not quite
complete yet. As in Remark 11.9, we make it complete by either working over
the field F (t) of rational functions over F , or by noting that every element of
F and of any field extension of F is a zero of the difference PA′ − PA, which
also implies PA′ = PA. □

Proposition 11.11 implies that the following definition makes sense.

Definition 11.12. Let f : V → V be an endomorphism of a finite-dimensional
vector space V . Then we define the characteristic polynomial Pf ∈ F [t] of f to be
the characteristic polynomial of [f ]BB for any basis B of V .

By Propositions 9.19 and 11.11, the characteristic polynomial Pf is well defined,
as it does not depend on the choice of the basis B.

Example 11.13. If V is an n-dimensional vector space, then for the identity
idV : V → V we have PidV = (t− 1)n.
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Example 11.14. By Example 9.2, we of course have PfA = PA for any square
matrix A.

Remark 11.15. Let V be an n-dimensional vector space with basis B and let
f : V → V be an endomorphism. Set A = [f ]BB. If we write A = (aij)ij, then

Pf (t) = PA(t) = det(t · In − A) =

∣∣∣∣∣∣∣∣
t− a11 −a12 · · · −a1n
−a21 t− a22 · · · −a2n
...

...
. . .

...
−an1 −an2 · · · t− ann

∣∣∣∣∣∣∣∣ .
Expanding the determinant, we find (Exercise 11.2.1)

Pf (t) = PA(t) = tn − Tr(A)tn−1 + · · ·+ (−1)n det(A)

= tn − Tr(f)tn−1 + · · ·+ (−1)n det(f) .

Proposition 11.16. Let V be a finite-dimensional vector space over F and let
f : V → V be an endomorphism. Then an element λ ∈ F is an eigenvalue of f if
and only if λ is a root of the characteristic polynomial Pf , that is, Pf (λ) = 0.

Proof. Set n = dimV and let B be a basis for V . Set A = [f ]BB. We have

Pf (λ) = PA(λ) = det(λ · In − A) = det(λ · idV −f) = (−1)n · det(f − λ · idV ),
so Pf (λ) = 0 if and only if det(f −λ · idV ) = 0. The statement therefore follows
immediately from Proposition 11.7. □

Example 11.17. Let us come back to the earlier example f : (x, y) 7→ (y, x)
on R2 of Example 11.2. With respect to the canonical basis E, the associated
matrix is

[f ]EE =

(
0 1
1 0

)
,

so the characteristic polynomial is

Pf (t) =

∣∣∣∣ t −1
−1 t

∣∣∣∣ = t2 − 1

and the eigenvalues are the two roots 1 and −1.

Example 11.18. Let us consider the real matrix

A =

 5 2 −6
−1 0 1
3 1 −4

 .

What are its eigenvalues and eigenspaces? We compute the characteristic poly-
nomial:

PA(t) =

∣∣∣∣∣∣
t− 5 −2 6
1 t −1
−3 −1 t+ 4

∣∣∣∣∣∣
= (t− 5)

(
t(t+ 4)− 1

)
+ 2

(
(t+ 4)− 3

)
+ 6

(
−1 + 3t

)
= t3 − t2 − t+ 1 = (t− 1)2(t+ 1) .



200 11. EIGENVALUES AND EIGENVECTORS

The roots are 1 and −1; these are therefore the eigenvalues. To find (bases of)
the eigenspaces, note that Eλ(A) = ker(A− λI3). For λ = 1, we have

A− I3 =

 4 2 −6
−1 −1 1
3 1 −5

⇝
1 0 −2
0 1 1
0 0 0


(by elementary row operations), so E1(A) = ker(A−I3) is generated by (2,−1, 1).
For λ = −1, we obtain

A+ I3 =

 6 2 −6
−1 1 1
3 1 −3

⇝
1 0 −1
0 1 0
0 0 0


and so E−1(A) = ker(A+ I3) is generated by (1, 0, 1).

Exercises

11.2.1. Let A be an n× n matrix. Show that we have

PA(t) = tn − Tr(A)tn−1 + · · ·+ (−1)n det(A),

that is, the coefficients of tn−1 equals −Tr(A) and the constant coefficient
equals (−1)n det(A).

11.2.2. What is the characteristic polynomial of the reflection s : R3 → R3 in some
plane V ⊂ R3?

11.2.3. For each matrix A of the following real matrices, find a basis for the eigenspace
Eλ(A) of each eigenvalue λ.(

−6 −4
8 6

) (
1 1

−4 5

)
 7 0 8

0 3 0
−4 0 −5

  0 −1 0
4 4 0
2 1 2




3 1 0 0
−2 0 0 0
−2 −2 1 0
−9 −9 0 −3




2 −1 0 3
0 1 0 2

−2 1 1 −6
0 0 0 2


11.2.4. Let φ : V → W be an isomorphism of finite-dimensional vector spaces, and

f : V → V an endomorphism of V . Show that f ′ = φ ◦ f ◦ φ−1 is an endomor-
phism of W satisfying Pf ′ = Pf , cf. Exercise 10.4.2.

11.2.5. Let A be a square matrix and A⊤ its transpose.
(1) Show that the characteristic polynomials PA and PA⊤ are equal.
(2) Show that A and A⊤ have the same eigenvalues.

11.2.6. Let F be a field and a0, a1, . . . , ad−1 ∈ F . Show that there is a matrix
A ∈ Mat(d, F ) with PA = td + ad−1t

d−1 + . . .+ a1t+ a0.

11.2.7. Let f : V → V be an endomorphism of a finite-dimensional vectorspace V .
Let σ : V → W be a linear map. Suppose that f(kerσ) ⊂ kerσ. Let f ′ be the
restriction of f to kerσ and let f ′′ be the endomorphism of imσ induced by f
(see Exercises 4.5.1 and 10.4.3). Show that Pf = Pf ′ · Pf ′′ .

11.2.8. (1) Let A and B be two n × n matrices. Show that if A or B is invertible,
then the characteristic polynomials PAB and PBA are equal.

*(2) Show that in fact the same is true if both A and B are not invertible.
*(3) Suppose A is an m × n matrix and B an n × m matrix. Show that we

have tnPAB(t) = tmPBA(t).
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11.3. Diagonalization

Definition 11.19. Let f : V → V be an endomorphism of a finite-dimensional
vector space V . Then f is diagonalizable if there exists a basis B for V such that
the matrix [f ]BB associated to f with respect to B is diagonal. A matrix A is
diagonalizable if the associated linear map fA is diagonalizable.

Recall from Proposition 9.19 that for any two bases B and C for V we have

[f ]BB = P−1 · [f ]CC · P
with P = [id]BC . In particular, for V = F n, C = E, and f = fA for some matrix
A, we have [f ]CC = [fA]

E
E = A, and we find that A is diagonalizable if and only if

there is an invertible matrix P such that P−1AP is diagonal (see Lemma 9.27).
We also conclude that, in general, the endomorphism f is diagonalizable if and
only if the matrix [f ]CC is diagonalizable for some (and thus every) basis C for V .

Proposition 11.20. Let f : V → V be an endomorphism of a finite-dimensional
vector space V with basis B = (v1, . . . , vn). Then [f ]BB is a diagonal matrix with
diagonal entries λ1, . . . , λn if and only if for all 1 ≤ j ≤ n, the vector vj is an
eigenvector of f for eigenvalue λj.

Proof. The j-th column of [f ]BB is the sequence (f(vj))B of coefficients of f(vj)
with respect to B by Lemma 9.7. Hence, the matrix [f ]BB is diagonal with
diagonal entries λ1, . . . , λn if and only if, for each j, the j-th column (f(vj))B
equals λjej, which happens if and only if, for each j, we have f(vj) = λjvj, that
is, vj is an eigenvector of f for eigenvalue λj. □

It follows that f : V → V is diagonalizable if and only if there exists a basis for V
consisting of eigenvectors of f .

The big question is now: when is a matrix or endomorphism diagonalizable?

This is certainly not always the case. In Example 11.18, for instance, we found
only two linearly independent eigenvectors in R3, and so there cannot be a basis
of eigenvectors. Another example is f : (x, y) 7→ (−y, x) on R2. The characteristic
polynomial equals t2+1 and does not have roots in R, so there are no eigenvalues
and therefore no eigenvectors. (If we take C instead as the field of scalars, then
we do have two roots ±i, and f becomes diagonalizable.)

Lemma 11.21. Let V be an F -vector space and f : V → V an endomorphism.
Let λ1, . . . , λm ∈ F be distinct, and for i = 1, . . . ,m, let vi ∈ Eλi(f). If

v1 + v2 + · · ·+ vm = 0 ,

then vi = 0 for all i.

Proof. We use induction on m. The case m = 0 (or m = 1) is trivial. So assume
the claim is true for m, and consider the case with m+1 eigenvalues. We apply
the endomorphism f − λm+1 idV to the equation

v1 + v2 + · · ·+ vm + vm+1 = 0

and obtain (note (f − λm+1 idV )(vm+1) = 0)

(λ1 − λm+1)v1 + (λ2 − λm+1)v2 + · · ·+ (λm − λm+1)vm = 0 .
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By induction, we find that (λi−λm+1)vi = 0 for all 1 ≤ i ≤ m. Since λi ̸= λm+1,
this implies vi = 0 for 1 ≤ i ≤ m. But then we must also have vm+1 = 0. □

Alternative proof. Set C = (v1, . . . , vm). Set v = v1+v2+· · ·+vm = 0. Then for
every integer k, we have fk(v) = 0, where fk = f ◦ f ◦ · · · ◦f is the composition
of k copies of f ; this gives

0 = fk(v) = λk1v1 + · · ·+ λkmvm,

so the vector ak = (λk1, . . . , λ
k
m) is contained in the kernel of the linear map

φC : F
m → V that sends ej to vj. By Example 9.5 and Exercise 9.1.3, the Van-

dermonde matrix with columns a0, a1, . . . , am−1 is invertible, so these columns
span Fm. We conclude kerφC = Fm, so φC is the zero map and vj = 0 for
all j. □

Example 11.22. We can use this to show once again that the power functions
fn : x 7→ xn for n ∈ Z≥0 are linearly independent as elements of the space P of
polynomial functions on R. Namely, consider the endomorphism D : P → P ,
f 7→ (x 7→ xf ′(x)). Then D(fn) = nfn, so the fn are eigenvectors of D for
eigenvalues that are pairwise distinct, hence they must be linearly independent
by Lemma 11.21.

Corollary 11.23. Let V be an F -vector space and f : V → V an endomorphism.
Let λ1, . . . , λm ∈ F be distinct, and for each 1 ≤ i ≤ m, let Bi be a basis for Eλi(f).
Then the concatenation of B1, B2, . . . , Bm is a sequence of linearly independent
vectors.

Proof. Let v be a linear combination of the elements in B1, B2, . . . , Bm. Then
v can be written as v = v1 + v2 + · · · + vm with vi the part of the linear
combination that uses elements in Bi, so vi ∈ Eλi(f). Suppose v = 0. Then
by Lemma 11.21, we have vi = 0 for all i. Since the elements of Bi are linearly
independent, all the coefficients in the linear combination that gives vi vanish.
We conclude that all coefficients in the original linear combination that gives v
vanish, so indeed, the concatenation of B1, B2, . . . , Bm is a sequence of linearly
independent vectors. □

Corollary 11.24. Let V be a finite-dimensional F -vector space and f : V → V
an endomorphism. Then we have∑

λ∈F

dimEλ(f) ≤ dimV

and equality holds if and only if f is diagonalizable.

Proof. Since every polynomial of degree d has at most d zeros, it follows from
Proposition 11.16 that f has only finitely many eigenvalues, say λ1, λ2, . . . , λm.
For each 1 ≤ i ≤ m, let Bi be a basis of the eigenspace Eλi(f). By Corol-
lary 11.23, the concatenation of B1, B2, . . . , Bm is a sequence of linearly inde-
pendent vectors of length

∑
λ∈F dimEλ(f). It follows from Theorem 7.47(1)

that this is at most dimV , which proves the inequality. If f is diagonalizable,
then there is a basis consisting of eigenvectors, and so we must have equality.
Conversely, if we have equality, then the union of bases of the eigenspaces will
be a basis of V that consists of eigenvectors of f . □
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The following proposition gives sufficient, though not necessary, conditions for an
endomorphism to be diagonalizable.

Proposition 11.25. Let V be an n-dimensional F -vector space and f : V → V
an endomorphism. If Pf (t) has n distinct roots in F , then f is diagonalizable.

Proof. In this case, there are n distinct eigenvalues λ1, . . . , λn. Therefore, Eλi(f)
is nontrivial for 1 ≤ i ≤ n, which means that dimEλi(f) ≥ 1. So

dimV = n ≤
n∑
i=1

dimEλi(f) ≤ dimV ,

and we must have equality. The result then follows by the previous corollary.
□

The converse of this statement is false in general, as the identity endomorphism
idV shows (for dimV ≥ 2).

Example 11.26. Consider the real matrix

A =

−5 6 6
0 1 0
−3 3 4

 .

We want to know if A is diagonalizable and, if so, find an invertible 3×3 matrix
P such that P−1AP is diagonal. This means we want to know whether there
exists a basis of eigenvectors. We first compute the characteristic polynomial
to determine the eigenvalues. We expand along the second row to get

PA(t) =

∣∣∣∣∣∣
t+ 5 −6 −6
0 t− 1 0
3 −3 t− 4

∣∣∣∣∣∣ = (t− 1) ·
(
(t+ 5)(t− 4) + 18

)
= (t− 1)2(t+ 2).

This shows that the eigenvalues are λ1 = 1 and λ2 = −2. To find the eigenspaces
Eλ(A) = ker(A−λI3), we apply elementary row operations to A−λI3 to obtain
the reduced row echelon form. We get

A− I3 =

−6 6 6
0 0 0
−3 3 3

⇝
1 −1 −1
0 0 0
0 0 0


and

A+ 2I3 =

−3 6 6
0 3 0
−3 3 6

⇝
1 0 −2
0 1 0
0 0 0

 .

We conclude that the eigenspace E1(A) = ker(A − I3) has a basis (v1, v2) and
the eigenspace E−2(A) = ker(A+ 2I3) has a basis (v3) with

v1 =

1
1
0

 , v2 =

1
0
1

 , v3 =

2
0
1

 .

The vectors v1, v2, v3 are linearly independent by Corollary 11.23, so they form
a basis B = (v1, v2, v3) for R3 of eigenvectors of A, which already shows that A
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is diagonalizable. The corresponding eigenvalues are 1, 1, −2, respectively, so
we get

[fA]
B
B =

1 0 0
0 1 0
0 0 −2


by Proposition 11.20. Furthermore, if we set D = [fA]

B
B and (see Example 9.13)

P = [id]BE =

 | | |
v1 v2 v3
| | |

 =

1 1 2
1 0 0
0 1 1

 ,

then we find
D = [fA]

B
B = [id]EB · [fA]EE · [id]BE = P−1AP.

Remark 11.27. Let A be an n × n matrix over a field F . Assume that,
analogously to Example 11.26, there is a basis B = (v1, . . . , vn) for F

n consisting
of eigenvectors of A, corresponding to eigenvalues λ1, . . . , λn, respectively. Set

D = [fA]
B
B =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 and P = [id]BE =

 | | |
v1 v2 · · · vn
| | |

 .

Then again we have

D = [fA]
B
B = [id]EB · [fA]EE · [id]BE = P−1AP.

We can verify the equivalent identity PD = AP also differently. Note that for
each 1 ≤ j ≤ n, we have A · vj = λjvj. This implies

AP =

 | | |
Av1 Av2 · · · Avn
| | |

 =

 | | |
λ1v1 λ2v2 · · · λnvn
| | |

 = PD.

Example 11.28. Let F be a field, n a positive integer, and letD : F [x]n → F [x]n
be the linear map that sends a polynomial f ∈ F [x]n to its derivative f ′. Note
that Dn+1 is the zero map, so the only eigenvalue of Dn+1 is 0. It follows from
Proposition 11.5 that D can have no other eigenvalue than 0. The correspond-
ing eigenspace E0(D) = kerD consists of only the constant polynomials. This
implies that there is no basis of eigenvectors, so D is not diagonalizable.

Example 11.29. Let a, b ∈ Rn be two nonzero vectors with ⟨a, b⟩ = 0. Let
T : Rn → Rn be the map defined by T (x) = ⟨x, a⟩ · b. Then T 2 = T ◦ T is the
zero map, so as in the previous example, the map T has no eigenvalue other
than 0. The eigenspace E0(T ) = kerT is the hyperplane a⊥, which is a proper
subspace of Rn, so there is no basis of eigenvectors and T is not diagonalizable.

Note that for any n× n matrices D,P , with P invertible, and A = PDP−1, and
any positive integer k, we find

Ak = (PDP−1)k = (PDP−1)(PDP−1) · · · (PDP−1)︸ ︷︷ ︸
k

= PDkP−1.

In fact, if D is invertible, then the identity Ak = PDkP−1 holds for every integer
k, also if k is negative (Exercise 11.3.1). If D is a diagonal matrix with diagonal
entries λ1, . . . , λn, and k ≥ 0, then Dk is a diagonal matrix with diagonal entries
λk1, . . . , λ

k
n. This gives an efficient way to compute Ak if A is diagonalizable.
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Example 11.30. Take the matrixA as in Example 11.26. We foundA = PDP−1

with

D =

1 0 0
0 1 0
0 0 −2

 and P =

1 1 2
1 0 0
0 1 1

 .

We conclude that for any integer k, we have

Ak = PDkP−1 =

1 1 2
1 0 0
0 1 1

1 0 0
0 1 0
0 0 (−2)k

 0 1 0
−1 1 2
1 −1 −1


=

2(−2)k − 1 (−2)k+1 + 2 (−2)k+1 + 2
0 1 0

(−2)k − 1 1− (−2)k 2− (−2)k

 .

Proposition 11.25 only gives sufficient conditions for an endomorphism to be diag-
onalizable. Before we give necessary and sufficient conditions for a matrix (or an
endomorphism of a finite-dimensional vector space) to be diagonalizable, we will
do some preparations.

Definition 11.31. Let V be a finite-dimensional F -vector space, f : V → V an
endomorphism and λ ∈ F . Then dimEλ(f) is called the geometric multiplicity of
the eigenvalue λ of f . (So the geometric multiplicity is positive if and only if λ is
indeed an eigenvalue.)

Recall that if F is a field, then the degree of a nonzero polynomial p =
∑d

i=0 ait
i ∈ F [t]

with ad ̸= 0 is d; the coefficient ad is called the leading coefficient of p. A monic
polynomial is a nonzero polynomial with leading coefficient equal to 1.

For example, if V is an n-dimensional vector space and f : V → V is an endomor-
phism, then the characteristic polynomial Pf of f is monic of degree n.

Proposition 11.32. Let p ∈ F [t] be a monic polynomial and α ∈ F . Then there
is a largest m ∈ Z≥0 such that p = (t − α)mq for some polynomial q ∈ F [t]; we
then have q(α) ̸= 0.

Proof. If we have p = (t − α)mq for some m ≥ 0 and q ∈ F [t], then from
deg(p) = m+ deg(q) we obtain m ≤ d. Hence m is bounded and we can write
p = (t− α)mq with m as large as possible. Then we must have q(α) ̸= 0, since
otherwise we could write q = (t − α)r for some r ∈ F [t] by Example 8.4 (for
k = 1), which would yield p = (t− α)m+1r, contradicting our choice of m. □

Definition 11.33. Given p and m as in the corollary above, the number m is
called the multiplicity of the root α of p; we have m > 0 if and only if p(α) = 0.

Now we can make another definition.

Definition 11.34. Let V be a finite-dimensional F -vector space and f : V → V
an endomorphism. Then the multiplicity of λ ∈ F as a root of the characteristic
polynomial Pf is called the algebraic multiplicity of the eigenvalue λ of f .

Note that the following statements are then equivalent.

(1) λ is an eigenvalue of f ;
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(2) the geometric multiplicity of λ is ≥ 1;

(3) the algebraic multiplicity of λ is ≥ 1.

We also know that the sum of the geometric multiplicities of all eigenvalues is
bounded by dimV . The following result shows that the same holds for the sum
of the algebraic multiplicities of all eigenvalues.

Lemma 11.35. Let f : V → V be an endomorphism of an n-dimensional vector
space V over F , and let Pf be its characteristic polynomial. Then the sum of the
algebraic multiplicities of the eigenvalues of f is at most n; it is equal to n if and
only if Pf is a product of linear factors t− λ (with λ ∈ F ).

Proof. By Example 8.4 (for k = 1), if λ is a root of Pf , we can write Pf = (t−λ)q
for a monic polynomial q of degree n− 1. Continuing in this way, we can write

Pf = (t− λ1)
m1 · · · (t− λk)

mkq

for a monic polynomial q that does not have roots in F and distinct elements
λ1, . . . , λk ∈ F . If µ ∈ F , then

Pf (µ) = (µ− λ1)
m1 · · · (µ− λk)

mkq(µ) ,

so if Pf (µ) = 0, then µ ∈ {λ1, . . . , λk} (since q(µ) ̸= 0). Therefore the eigenval-
ues are exactly λ1, . . . , λk, with algebraic multiplicities m1, . . . ,mk, and

m1 +m2 + · · ·+mk ≤ m1 +m2 + · · ·+mk + deg(q) = n .

We have equality if and only if deg(q) = 0, that is, q = 1; this holds if and only
if

Pf = (t− λ1)
m1 · · · (t− λk)

mk

is a product of linear factors. □

There is one further important relation between the multiplicities.

Theorem 11.36. Let V be a finite-dimensional F -vector space, f : V → V an
endomorphism, and λ ∈ F . Then the geometric multiplicity of λ as an eigenvalue
of f is not larger than its algebraic multiplicity.

Proof. We can choose a basis v1, . . . , vk, vk+1, . . . , vn of V such that v1, . . . , vk
form a basis of the eigenspace Eλ(f); then k is the geometric multiplicity. The
matrix associated to f relative to this basis then has the form

A =



λ 0 . . . 0 ∗ . . . ∗
0 λ . . . 0 ∗ . . . ∗
...

...
. . .

...
...

...
0 0 . . . λ ∗ . . . ∗
0 0 . . . 0 ∗ . . . ∗
...

...
...

...
. . .

...
0 0 . . . 0 ∗ . . . ∗


=

(
λIk B
0 C

)
.

We then have

Pf = det(t · In − A) = det

(
(t− λ) · Ik −B

0 t · In−k − C

)
.

Expanding this determinant along the first column shows, by induction, that

Pf = (t− λ)k · det(t · In−k − C) = (t− λ)k · PC(t),
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which could alternatively also be obtained by Exercise 10.2.3. We see that λ
has multiplicity at least k as a root of Pf , which proves the theorem. □

Corollary 11.37. Let V be a finite-dimensional F -vector space and f : V → V
an endomorphism. Then f is diagonalizable if and only if

(1) Pf is a product of linear factors, and

(2) for each λ ∈ F , its geometric and algebraic multiplicities as an eigenvalue
of f agree.

Proof. By Corollary 11.24, the map f is diagonalizable if and only if the sum
of the geometric multiplicities of all eigenvalues equals n = dimV. By Theo-
rem 11.36, this implies that the sum of the algebraic multiplicities is at least n;
however it cannot be larger than n, so it equals n as well. This already shows
that geometric and algebraic multiplicities agree. By Lemma 11.35, we also see
that Pf is a product of linear factors.

Conversely, if we can write Pf as a product of linear factors, this means that
the sum of the algebraic multiplicities is n. If the geometric multiplicities equal
the algebraic ones, their sum must also be n, hence f is diagonalizable. □

Remark 11.38. If F is an algebraically closed field, for example F = C, then
condition (1) in the corollary is automatically satisfied (by definition!). However,
condition (2) can still fail. It is then an interesting question to see how close we
can get to a diagonal matrix in this case. This is what the Jordan Normal Form
Theorem is about, which will be a topic in Linear Algebra II (cf. Example 9.31).

Example 11.39. We will check whether the matrix

A =

−3 1 0
0 −3 0
0 0 5


is diagonalizable. The characteristic polynomial of A is PA = (t + 3)2(t − 5),
so the eigenvalues of A are −3 and 5 with algebraic multiplicities 2 and 1,
respectively. Theorem 11.36 shows that the geometric multiplicity of 5 is 1
as well, so it suffices to check whether the geometric multiplicity of −3 is 2.
One easily checks that the eigenspace E−3(A) = ker(A + 3I3) is generated
by (1, 0, 0), so the geometric multiplicity of −3 is 1, which does not equal its
algebraic multiplicity, so A is not diagonalizable.

Exercises

11.3.1. Show that for any integer k, and any invertible n× n matrices D,P , we have
(PDP−1)k = PDkP−1.

11.3.2. Determine whether the following real matrices are diagonalizable. If not,
explain why. If so, then determine an invertible matrix P and a diagonal
matrix D, such that the matrix equals PDP−1; also give a closed expression
as in Example 11.30 for the k-th power of the matrix, where k is an arbitrary
integer (in the case it is diagonalizable).(

1 1
0 1

)
,

(
6 −2
6 −1

)
,

 3 −1 −1
4 −2 −4
−2 2 4

 .
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11.3.3. For each matrix A of the real matrices in Exercises 11.1.3 and 11.2.3, deter-
mine whether A is diagonalizable, and, if it is, determine a diagonal matrix D
and an invertible matrix P , such that A = PDP−1.

11.3.4. Consider the matrix

M =

 4 6 2
0 −3 0

−4 −12 −2

 .

(1) Determine an invertible matrix P and a diagonal matrix D such that
M = PDP−1.

(2) Determine Mk for all positive integers k.

11.3.5. Determine Mk for the following matrices M and all integers k.(
7 −10
5 −8

)  −2 3 −7
0 −4 6
0 −3 5


11.3.6. Define the sequence F0, F1, F2, F3, . . . of Fibonacci numbers by F0 = 0, F1 = 1,

and
Fn = Fn−1 + Fn−2

for all n ≥ 2.
(1) Show that for the matrix

A =

(
0 1
1 1

)
and the vectors

xn =

(
Fn
Fn+1

)
,

we have Axn = xn+1 for all n ≥ 0.
(2) Find constants α1, α2, β1, β2 ∈ R such that for every n ≥ 0 we have

Fn = α1β
n
1 + α2β

n
2 .

11.3.7. Show that a polynomial of degree n over a field F has at most n roots in F .

11.3.8. Let F be an infinite field, that is, |F | = ∞, and consider the map φ : F [x] → FF

of Exercise D.2.1, cf. Exercises 4.1.9, 7.4.6, and 7.4.7.
(1) Show that φ is injective.
(2) Show that φ induces an isomorphism from F [x] to the subspace P (F ) of

FF consisting of polynomial functions.
(3) Show that dimP (F ) = ∞.

11.3.9. Determine for each of the following matrices M whether they are diagonaliz-
able over F for F = R and F = C. If so, then give an invertible matrix P and
a diagonal matrix D such that M = PDP−1.(

2 1
−5 −2

)  2 −3 −2
0 1 0
4 −2 −2

 .

11.3.10. The same as the previous exercise for
1 0 0 0
0 2 1 0
0 0 1 0
0 0 0 2




1 1 0 0
0 2 1 0
0 0 1 1
0 0 0 2


11.3.11. For which angle θ is the rotation R2 → R2 about 0 over θ diagonalizable over

R?
11.3.12. Let n ≥ 2 be an integer. LetMn be as in Exercise 10.2.5 and setNn =Mn+In,

so that Nn is an n× n matrix with all entries equal to 1.
(1) Show rkNn = 1 and dimkerNn = n− 1.
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(2) Show that the eigenvalues of Nn are 0 and n.
(3) Show that Nn is diagonalizable.
(4) Show that the characteristic polynomial of Nn equals tn − ntn−1.
(5) Show detMn = (−1)n−1(n− 1).





APPENDIX A

Review of maps

Let X, Y and Z be sets.

A map or function f : X → Y is a ‘black box’ that for any given x ∈ X gives
us back some f(x) ∈ Y that only depends on x. More formally, we can define
functions by identifying f with its graph

Γf = {(x, f(x)) : x ∈ X} ⊂ X × Y .

In these terms, a function or map from X to Y is a subset f ⊂ X×Y such that for
every x ∈ X there is a unique y ∈ Y such that (x, y) ∈ f ; we then write f(x) = y.
It is important to keep in mind that the data of a function include the domain X
and target (or codomain) Y .

If the domain of f equals X1 ×X2 × · · · ×Xn for some sets X1, X2, . . . , Xn, then
we often write f(x1, x2, . . . , xn) instead of f((x1, x2, . . . , xn)).

If f : X → Y is a map, then we call {f(x) : x ∈ X} ⊂ Y the image of f , im(f).
The map f is called injective if no two elements of X are mapped to the same
element of Y . More formally, if x, x′ ∈ X and f(x) = f(x′), then x = x′. The
map f is called surjective if its image is all of Y . Equivalently, for all y ∈ Y there
is some x ∈ X such that f(x) = y. The map f is called bijective if it is both
injective and surjective. In this case, there is a unique inverse map g : Y → X
such that g(y) = x ⇐⇒ f(x) = y for all x ∈ X and y ∈ Y ; this is equivalent
to the statement that both f ◦ g = idY and g ◦ f = idX hold, and in this case we
write f−1 for the function g.

We denote the set of all functions fromX to Y by Map(X, Y ) or Y X . The following
proposition shows how the latter notation relates to more familiar notation.

Proposition A.1. Let n ≥ 0 be an integer, and Y a set. Set I = {1, 2, . . . , n}.
The map

T : Y I → Y n

that sends a function f to the sequence (f(1), f(2), . . . , f(n)) is a bijection. Its
inverse sends a sequence (y1, y2, . . . , yn) to the function given by i 7→ yi.

Proof. One easily checks that the two maps are each other’s inverses. □

Exercise A.0.1 will give more justification for the notation Y X .

A map f : X → Y induces maps from subsets of X to subsets of Y and conversely,
which are denoted by f and f−1 again (so you have to be careful to check the
‘datatype’ of the argument). Namely, if A ⊂ X, we set f(A) = {f(x) : x ∈ A}
(for example, the image of f is then f(X)), and for a subset B ⊂ Y , we set
f−1(B) = {x ∈ X : f(x) ∈ B}; this is called the preimage of B under f . Note
that when f is bijective, there are two meanings of f−1(B) — one as just defined,
and one as g(B) where g is the inverse map f−1. Fortunately, both meanings agree
(exercise), and there is no danger of confusion.
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Maps can be composed: if f : X → Y and g : Y → Z, then we can define a map
X → Z that sends x ∈ X to g(f(x)) ∈ Z. This map is denoted by g ◦ f (“g after
f”) — keep in mind that it is f that is applied first!

Composition of maps is associative: if f : X → Y , g : Y → Z and h : Z → W ,
then (h ◦ g) ◦ f = h ◦ (g ◦ f). Every set X has a special map, the identity map
idX : X → X, x 7→ x. It acts as a neutral element under composition: for
f : X → Y , we have f ◦ idX = f = idY ◦f . If f : X → Y is bijective, then its
inverse satisfies f ◦ f−1 = idY and f−1 ◦ f = idX .

If f : X → Y and g : Y → X are maps that satisfy f ◦g = idY , then f is surjective
and g is injective. If, moreover, h : Y → X is a map that satisfies h ◦ f = idX ,
then f is also injective, and therefore bijective; we then have g = h = f−1. We
can apply this in particular to the case where f is invertible and g or h equals f−1.
We then obtain that if f is invertible, then any right or left inverse equals f−1.

If f : X → X is a map from a set X to itself, then we often write f 2 instead of
f ◦ f . More generally, for every positive integer n we set

fn = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n

.

When talking about several sets and maps between them, we often picture them
in a diagram like the following.

X
f //

g
��

Y

g′

��
U

f ′ // V

X

f
��

h

  
Y

g // Z

We call such a diagram commutative if all possible ways of going from one set to
another lead to the same result. For the left diagram, this means that g′◦f = f ′◦g,
for the right diagram, this means that h = g ◦ f .

Exercises

A.0.1. Let W,X,X1, X2, Y be sets.
(1) Show that there is a natural bijection

(Y X)W → Y W×X .

(2) Denote the disjont union of X1 and X2 by X1
∐
X2. Show that there is a

natural bijection

Y X1
∐
X2 → Y X1 × Y X2 .

(3) Assume that X and Y are finite. Show that we have

#
(
Y X

)
= (#Y )(#X).



APPENDIX B

Fields

B.1. Definition of fields

Definition B.1. A field is a set F , together with two distinguished elements
0, 1 ∈ F with 0 ̸= 1 and four maps

+: F × F → F, (x, y) 7→ x+ y (‘addition’),

− : F × F → F, (x, y) 7→ x− y (‘subtraction’),

· : F × F → F, (x, y) 7→ x · y (‘multiplication’),

/ : F × (F \ {0}) → F, (x, y) 7→ x/y (‘division’),

such that, for all x, y, z ∈ F , the addition and multiplication satisfy

x+ y = y + x, x+ (y + z) = (x+ y) + z, x+ 0 = x,

x · y = y · x, x · (y · z) = (x · y) · z, x · 1 = x,

x · (y + z) = (x · y) + (x · z),
the subtraction is related to the addition through

x+ y = z ⇔ x = z − y,

and, if y ̸= 0, the division is related to the multiplication through

x · y = z ⇔ x = z/y.

Example B.2. The set R of real numbers, together with its 0 and 1 and the
ordinary addition, subtraction, multiplication, and division, obviously form a
field.

Example B.3. Also the field Q of rational numbers, together with its 0 and
1 and the ordinary addition, subtraction, multiplication, and division, form a
field.

Example B.4. Consider the subset

Q(
√
2) = { a+ b

√
2 : a, b ∈ Q }

of R, which contains 0 and 1. The ordinary addition, subtraction, and multi-
plication of R clearly give addition, subtraction, and multiplication on Q(

√
2),

as we have

(a+ b
√
2)± (c+ d

√
2) = (a± c) + (b± d)

√
2,

(a+ b
√
2) · (c+ d

√
2) = (ac+ 2bd) + (ad+ bc)

√
2.

To see that for any x, y ∈ Q(
√
2) with y ̸= 0 we also have x/y ∈ Q(

√
2),

we first note that if c and d are integers with c2 = 2d2, then c = d = 0, as
otherwise c2 would have an even and 2d2 an odd number of factors 2. Now for
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any x, y ∈ Q(
√
2) with y ̸= 0, we can write x/y as

a+ b
√
2

c+ d
√
2

with integers a, b, c, d, where c and d are not both 0; we find

x

y
=
a+ b

√
2

c+ d
√
2
=

(a+ b
√
2) · (c− d

√
2)

(c+ d
√
2) · (c− d

√
2)

=
(ac− 2bd) + (bc− ad)

√
2

c2 − 2d2

=
ac− 2bd

c2 − 2d2
+
bc− ad

c2 − 2d2

√
2 ∈ Q(

√
2).

We conclude that we also have division by nonzero elements on Q(
√
2). Since

the requirements of Definition B.1 are fulfilled for all real numbers, they are
certainly fulfilled for all elements in Q(

√
2) and we conclude that Q(

√
2) is a

field.

In any field with elements x and y, we write −x for 0 − x and y−1 for 1/y if y
is nonzero; we also often write xy for x · y. The rules of Definition B.1 require
that many of the properties of the ordinary addition, subtraction, multiplication,
and division hold in any field. The following proposition shows that automatically
many other properties hold as well.

Proposition B.5. Suppose F is a field with elements x, y, z ∈ F .

(1) We have x+ z = y + z if and only if x = y.
(2) If z is nonzero, then xz = yz if and only if x = y.
(3) If x+ z = z, then x = 0.
(4) If xz = z and z ̸= 0, then x = 1.
(5) We have 0 · x = 0 and (−1) · x = −x and (−1) · (−1) = 1.
(6) If xy = 0, then x = 0 or y = 0.

Proof. Exercise. □

Example B.6. The smallest field F2 = {0, 1} has no more than the two
required elements, with the only ‘interesting’ definitions being that 1 + 1 = 0
and 0− 1 = −1 = 1. One easily checks that all requirements of Definition B.1
are satisfied.

Warning B.7. Many properties of sums and products that you are used to from
the real numbers hold for general fields. There is one important exception: in
general there is no ordering and it makes no sense to call an element positive or
negative, or bigger than an other element. The fact that this is possible for R and
for fields contained in R, means that these fields have more structure than general
fields. In Chapter 1 this extra structure is used to our advantage.

Exercises

B.1.1. Prove Proposition B.5.

B.1.2. Check that F2 is a field (see Example B.6).

B.1.3. Which of the following are fields?
(1) The set N together with the usual addition, multiplication, subtraction,

division, 0, and 1.
(2) The set Z together with the usual operations, and the usual 0 and 1.
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(3) The set Q together with the usual operations, and the usual 0 and 1.
(4) The set R≥0 together with the usual operations, and the usual 0 and 1.

(5) The set Q(
√
3) = {a+b

√
3 : a, b ∈ Q} together with the usual operations,

and the usual 0 and 1.

B.1.4. Suppose F is a field. Show that the 0, 1, the subtraction, and the division are
completely determined by the addition and the multiplication and the fact that
F is a field. In other words, once you know the addition and multiplication on a
set F , there is no choice anymore for the elements 0 and 1, and the subtraction
and division, if you want to make F into a field.

B.1.5. Consider the set F3 = {0, 1, 2} with the usual addition, subtraction, and
multiplication, but where each is followed by taking the remainder after division
by 3. Is there a division that makes F3 into a field?

B.2. The field of complex numbers.

The first motivation for the introduction of complex numbers is a shortcoming of
the real numbers: while positive real numbers have real square roots, negative real
numbers do not. Since it is frequently desirable to be able to work with solutions
to equations like x2 + 1 = 0, we introduce a new number, called i, that has the
property i2 = −1. The set C of complex numbers then consists of all expressions
a+ bi, where a and b are real numbers. If z = a+ bi, then we call Re z = a the real
part and Im z = b the imaginary part of z. (More formally, one considers pairs of
real numbers (a, b) and so identifies C with R2 as sets.) In order to turn C into a
field, we have to define addition, multiplication, subtraction, and division.

If we want the multiplication to be compatible with the scalar multiplication on R2,
then (bearing in mind the field axioms) there is no choice: we have to set

(a+ bi)± (c+ di) = (a± c) + (b± d)i

and
(a+ bi)(c+ di) = ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i

(remember i2 = −1). It is then an easy, but tedious, matter to show that the
axioms of Definition B.1 regarding the addition, subtraction, and multiplication
hold. (The theory of rings and fields in later courses provides a rather elegant way
of doing this.)

We still need to show there is also a division, or, equivalently, we need to show the
existence of multiplicative inverses. In this context, it is advantageous to introduce
the notion of conjugate complex number.

Definition B.8. If z = a+ bi ∈ C, then the complex conjugate of z is z̄ = a− bi.
Note that z z̄ = a2 + b2 is real and satisfies zz̄ ≥ 0. We set |z| =

√
zz̄; this is

called the absolute value or modulus of z. It is clear that |z| = 0 only for z = 0;
otherwise |z| > 0. We obviously have ¯̄z = z and |z̄| = |z|.

Proposition B.9.

(1) For all w, z ∈ C, we have w + z = w̄ + z̄ and wz = w̄ z̄.

(2) For all z ∈ C \ {0}, the element z′ = |z|−2 · z̄ satisfies z′ · z = 1.

(3) For all w, z ∈ C, we have |wz| = |w| · |z|.
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Proof. (1) Exercise.

(2) First of all, |z| ≠ 0, so the expression makes sense. Now note that

z′ · z = |z|−2z̄ · z = |z|−2 · zz̄ = |z|−2|z|2 = 1 .

(3) Exercise.

□

By Proposition B.9(2), the division on C has to satisfy 1/z = |z|−2·z̄, and therefore

y

z
= y · 1

z
=

yz̄

|z|2

for all y, z ∈ C with z ̸= 0. For example:

1

1 + 2i
=

1− 2i

(1 + 2i)(1− 2i)
=

1− 2i

12 + 22
=

1− 2i

5
=

1

5
− 2

5
i .

In general, we get

a+ bi

c+ di
=

(a+ bi)(c− di)

(c+ di)(c− di)
=
ac+ bd

c2 + d2
+
bc− ad

c2 + d2
· i,

for a, b, c, d ∈ R with c and d not both 0.

Remark B.10. Historically, the necessity of introducing complex numbers was
realized through the study of cubic (and not quadratic) equations. The reason
for this is that there is a solution formula for cubic equations that in some cases
requires complex numbers in order to express a real solution. See Section 2.7
in Jänich’s book [J].

The importance of the field of complex numbers lies in the fact that they pro-
vide solutions to all polynomial equations. This is the ‘Fundamental Theorem of
Algebra’:

Every non-constant polynomial with complex coefficients has a root in C.
Unfortunately, a proof is beyond the scope of this course.

Exercises

B.2.1. Prove Remark B.9.

B.2.2. Show that for every complex number z we have

Re(z) = 1
2(z + z) and Im(z) = 1

2i(z − z).



APPENDIX C

Labeled collections

Let X be a set and n ≥ 0 an integer. An n-tuple is an ordered sequence of
n objects. The Cartesian product Xn consists of all n-tuples or sequences of n
elements in X. A sequence

(x1, x2, . . . , xn) ∈ Xn

could also be written as

(xi)
n
i=1 = (xi)1≤i≤n = (xi)i∈{1,...,n}.

This sequence consists of one element in X for each i ∈ {1, . . . , n}, so it can be
identified with the function {1, . . . , n} → X that sends i to xi. Indeed, this was
made precise in Proposition A.1. Recall that for any set I, we denote the set
of all maps from I to X by Map(I,X) or XI . Proposition A.1 states that for
I = {1, 2, . . . , n}, the map

T : XI → Xn

that sends a function f to the sequence (f(1), f(2), . . . , f(n)) is a bijection.

We can think of an n-tuple as a collection of elements labeled by the set {1, 2, . . . , n}.
For each i ∈ {1, 2, . . . , n} we have chosen an element in X, namely xi. Motivated
by this viewpoint and Proposition A.1, we give the following definition.

Definition C.1. Let I be a set. A (labeled) collection, labeled by I, of elements
in X is a map f : I → X. We also write the collection as (xi)i∈I with xi = f(i).

As for the sequences that we started with, a collection consists of one element xi
in X for each i ∈ I. The elements of I are called the indices or labels.

Example C.2. For I = {1, 2, . . . , n} we recover n-tuples: finite sequences of
length n.

Example C.3. For I = Z≥0 we obtain infinite sequences (x0, x1, x2, x3, . . .).
Cf. Remark 2.12.

Example C.4. For I = Z we obtain doubly infinite sequences

. . . , x−2, x−1, x0, x1, x2, x3, . . . .

Example C.5. Let V = Map(R,R) be the vector space of all functions from
R to R. Let I denote the set of all closed intervals [a, b] ⊂ R. For each interval
I ∈ I, we let hI denote the function given by

hI(x) =

{
1 if x ∈ I,

0 if x ̸∈ I.

This yields a collection
(
hI
)
I∈I of functions from R to R, labeled by the set I

of all bounded closed intervals (See Exercise 7.1.7).
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Suppose (xi)i∈I is a collection of elements in X, corresponding to the function
f : I → X. Then its set of elements is

{xi : i ∈ I} = im f ⊂ X.

As opposed to its set of elements, the collection (xi)i∈I may have repetitions, that
is, we may have xi = xj for i, j ∈ I with i ̸= j.

Conversely, we can associate to any subset S ⊂ X a natural collection that is
labeled by the set S itself. The map S → X that this collection corresponds to is
the inclusion and it can be written as (s)s∈S.

In other pieces of literature, (labeled) collections are sometimes called labeled sets.
Given that they are not sets (they may contain some elements more than once),
we will refrain from using this terminology.



APPENDIX D

Polynomials

Many books that define polynomials state something along the lines of them being

finite sums of terms, each term being a product of a coefficient and a monomial,
where monomials are products of nonnegative integral powers of the variables.

But without making precise what a variable is, or which addition this sum refers
to, this is not a satisfying definition. Authors that recognise this may attempt to
make it sound better by calling the variables indeterminates, which are supposed
to be just symbols or placeholders in some sense, and by calling the sum a formal
sum, which does not make it more clear at all, unless perhaps one defines this
notion of formal sum in terms of the more advanced notion of external direct
sums.

In an attempt to comfort the reader, such books give some examples, such as

x2 + 1, x7 − 13x+ 4, x2y2z2 − xy2 + 2x2y + 17z4,

where the first two are polynomials in the one variable x, and the last one is a
polynomial in the three variables x, y, z. If F is a field, then the obvious addition
and scalar multiplication make the set of polynomials with coefficients in F a
vector space over F . There is also a multiplication of polynomials, which works
just as you expect, for example

(x− y)(x4 + x3y + x2y2 + xy3 + y4) = x5 − y5.

While these examples may indeed seem like polynomials are simple enough objects,
we do want to give a better definition. For simplicity, we restrict ourselves to
polynomials in one variable. Each can be identified with the sequence of (all
infinitely many of) its coefficients, so x7 − 13x+ 4 is identified with the sequence

(4,−13, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .).

In the next section, we will define polynomials in terms of such sequences.

D.1. Polynomials in one variable

We assume that the reader has read Chapter 2 at least up to Remark 2.12.

Let F be a field, and let F∞ be the vector space of all infinite sequences of
elements in F as in Example 2.6. As in that example, we will use indices starting
at 0, so the component with index n of the vector (an)n≥0 = (a0, a1, a2, . . .) is an.
Besides the addition and scalar multiplication that come with the vector space F∞,
we also define a multiplication between two vectors: for f = (f0, f1, . . .) and
g = (g0, g1, . . .) in F

∞ we let the product f ·g ∈ F∞ be the vector whose component
with index n ≥ 0, is

(D.1)
n∑
k=0

fkgn−k.
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For the first terms, we obtain

f · g =
(
f0g0, f0g1 + f1g0, f0g2 + f1g1 + f2g0, . . .

)
.

Note that we can also write (D.1) as∑
0≤k,ℓ≤n
k+ℓ=n

fkgℓ.

This shows immediately that for f, g as above, we have

(D.2) f · g = g · f ;
it also makes it easy to verify that, for h = (h0, h1, . . .) ∈ F∞, we have

(D.3) (f · g) · h = f · (g · h),
as the component with index n of both products equals∑

0≤k,ℓ,m≤n
k+ℓ+m=n

fkgℓhm.

So we don’t need to write parentheses in products of more than two vectors. One
also quickly checks that for f, g, h ∈ F∞ we have

(D.4) f · (g + h) = f · g + f · h,
and for all λ ∈ F we have

(D.5) (λf) · g = λ(f · g).
Furthermore, for all integers n ≥ 0, let en ∈ F∞ be the sequence consisting of only
zeroes, except for a 1 at index n. Then for all integers m,n ≥ 0 we have

(D.6) em · en = em+n,

and for all f ∈ F∞ we have

(D.7) e0 · f = f.

We denote the element e1 by x. By (D.6) we have xn = en for all n ≥ 1, and we
set x0 = e0. By abuse of notation, we will identify F with its image under the
map

ι : F → F∞, λ 7→ λe0 = (λ, 0, 0, 0, 0, 0, , . . .).

This means that for any λ ∈ F , we may denote λe0 by λ, which for λ = 1 yields
the usual identity x0 = 1. Any critical reader should now worry, as for any λ ∈ F
and f ∈ F∞, the notation λ · f might refer to the scalar multiplication of the
scalar λ and the vector f , but it might also refer to the new multiplication of the
vectors λe0 and f . Fortunately, the two coincide by (D.5) and (D.7), so this will
not lead to any confusion.

Definition D.1. A monomial is a power of x with a nonnegative integral expo-
nent. A polynomial over F is a finite sum of terms, where each term is the product
of a scalar in F and a monomial. We let F [x] ⊂ F∞ be the set of all polynomials.

A real polynomial is a polynomial over the field R. A complex polynomial is a
polynomial over the field C.
Note that for coefficients a0, a1, a2, . . . , ad ∈ F we have

(D.8)
d∑

n=0

anx
n = (a0, a1, a2, . . . , ad, 0, 0, 0, 0, 0, . . .).
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Proposition D.2. An element of F∞ is a polynomial if and only if all but finitely
many of its coefficients are zero. The set F [x] is a vector space over F .

Proof. Every polynomial can be written as the left-hand side of (D.8), possibly
by adding terms with coefficient zero. For every vector a = (an)n≥0 ∈ F∞ of
which all but finitely many coefficients are zero, there is a d such that for all
n > d we have an = 0, that is, a can be written as the right-hand side of (D.8).
Therefore, both directions of the first statement follow from (D.8). The second
statement is a good exercise for any reader who has just read Chapter 2, or at
least Section 2.1, and preferably some examples from Section 2.2. The theory
of Section 3.1 may be used to significantly reduce the amount of work. □

By Proposition D.2, the following notions are well defined.

Definition D.3. Let f = (fn)n≥0 be a polynomial. The constant coefficient of f
is f0. If f is nonzero, then the degree deg(f) of f is the largest index n for which
fn is nonzero; the main coefficient of f is then fd with d = deg(f). The degree of
the zero polynomial is −∞.

From (D.8) it follows immediately that for every nonzero polynomial f ∈ F [x]
there is a unique integer d ≥ 0 and there are unique coefficients a0, a1, . . . , ad ∈ F
with ad ̸= 0 such that f =

∑d
n=0 anx

n; this integer d is the degree of f and the
coefficients a0, a1, . . . , ad are just the first d+ 1 coefficients of the vector f ∈ F∞.
Also, a polynomial f =

∑d
n=0 anx

n ∈ F [x] is zero if and only if for all n with
0 ≤ n ≤ d we have an = 0.

Warning D.4. (††) The polynomials x and x2 in F2[x] are different; one has
degree 1 and the other degree 2. However, by substituting elements of F2 for x,
the two polynomials induce the same function F2 → F2 as we have α = α2 for all
α ∈ F2.

Because for some fields we can not use analysis, we define the derivative of a
polynomial directly in terms of its coefficients.

Definition D.5. Let f =
∑d

n=0 anx
n be a polynomial. Then the derivative of f

is the polynomial
∑d

n=1 nanx
n−1.

Remark D.6. In terms of Chapter 7, the collection (xn)n≥0 = (1, x, x2, x3, . . .)
is a basis for F [x]. Indeed, if we set I = Z≥0, then under the isomorphism

χ : F I → F∞

that sends φ : I → F to (φ(0), φ(1), φ(2), . . .) (cf. Remark 2.12 and Exam-
ple C.3), the subspace F [x] ⊂ F∞ corresponds to F (I), and the collection
(xn)n≥0 = (en)n∈I corresponds to the basis for F (I) given in part (2) of Ex-
ercise 7.2.5.

Under the same isomorphism χ, the new multiplication on F∞ corresponds with
a new multiplication on F I , which can be expressed, analogously to (D.1), by
defining the product of φ ∈ F I and ψ ∈ F I to be the function φ · ψ : I → F
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given by

(φ · ψ)(n) =
n∑
k=0

φ(k)ψ(n− k).

Remark D.7. The properties (D.2), (D.3), (D.4), (D.7), with the first four
axioms for a vector space, imply that F∞, together with its addition and mul-
tiplication, carries the structure of what is called a commutative ring, with unit
element e0. In fact, together with the embedding ι : F → F∞ it is a so-called
F -algebra.

Exercises

D.1.1. Define a polynomial ring in two variables.

D.2. Polynomial functions

We assume the reader has read up to Section 3.4. We generalise Example 3.35 to
arbitrary fields.

Let F be a field. We consider the power functions pn : x 7→ xn inside the vector
space F F of all functions from F to F . Their linear hull L({pn : n ∈ Z≥0}) ⊂ F F

is the linear subspace of polynomial functions from F to F , i.e, functions that are
of the form

x 7−→ anx
n + an−1x

n−1 + · · ·+ a1x+ a0

with n ∈ Z≥0 and a0, a1, . . . , an ∈ F . By definition, the power functions pn
generate the subspace of polynomial functions, which we denote by P (F ).

Warning D.8. In Example 2.13 we defined polynomials as formal sums of powers
xi, each multiplied by a scalar, and in the previous section we gave a more precise
definition. These are not to be confused with the polynomial functions f : F → F ,
even though over subfields of C there will not be much confusion (see Remark 3.36).
In fact, the same is true over infinite fields (cf. Exercise 11.3.8).

(††) As stated in Warning D.4, though, over finite fields the difference between
polynomials, as defined in Example 2.13, and polynomial functions, as defined in
Example 3.35, is clear, as there may be many more polynomials than polynomial
functions. For instance, the polynomial x2 + x and the zero polynomial 0, both
with coefficients in the field F2, are different polynomials: the first has degree 2,
the second degree −∞. However, the polynomial function F2 → F2 that sends
x to x2 + x is the same as the zero function.

Warning D.9. †† Although the vector space of real polynomial functions is
infinite-dimensional, over finite fields this is not the case (see Exercise 7.4.6). The
vector space F [x] of polynomials, however, is infinite-dimensional for any field F
(see Example 7.44 and Warning D.8).

Exercises

D.2.1. We expand on Remark 3.36 over a general field F . Let F [x] be the vector
space of polynomials over F . Consider the map φ : F [x] → FF that sends a
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polynomial f =
∑d

i=0 cix
i to the function that sends an element a ∈ F to the

evaluation of f at a, that is, to f(a) :=
∑d

i=0 cia
i, cf. Warning D.4.

(1) Show that the image of φ is exactly the subspace of FF consisting of
polynomial functions.

(2) (††) Is φ injective for F = F2?
(3) Is there a field F for which φ is injective?
[Remark: By abuse of notation, the function φ(f) is often also denoted by f .]

D.3. Polynomials in more variables

Let F be a field. Let S be a set. We call the elements of S variables. A monomial
in S is a function m : S → Z≥0 that is zero at all but finitely many elements of S.
We write the evaluation of a monomial m at a variable v with square brackets; we
call the image m[v] the exponent of v in m.

LetM(S) denote the set of all monomials in S. By abuse of notation, we identify S
with its image under the map S → M(S) that sends each v ∈ S to its associated
indicator function; that is, if v denotes an element in S, then v also denotes the
monomial in which the variable v has exponent 1 and every other variable has
exponent 0.

The addition on Z≥0 induces an addition on M(S), which we will write multi-
plicatively; we also write 1 for the trivial monomial that sends every w ∈ S to 0.
In particular, for every v ∈ S and every non-negative integer n, the monomial in
which v has exponent n and every other variable w ∈ S \ {v} has exponent 0, is
written as vn.

It is easy to verify that if m ∈M(S) is a monomial, then we have

m =
∏
v∈S

vm[v],

where this a priori potentially infinite product should be taken only over all finitely
many v ∈ S with m[v] ̸= 0; the factors that we leave out are all equal to 1.

A polynomial in S over F is a function f : M(S) → F that is zero at all but finitely
many monomials. We write the evaluation of a polynomial f at a monomial m
with an index; we call the image fm the coefficient ofm in f . Hence we can write f
as a labelled collection

f =
(
fm

)
m∈M(S)

.

Let F [S] denote the set of all polynomials in S over F ; this is exactly the vector
space F (M(S)) (see Exercise 3.1.9). By abuse of notation, we identify M(S) with
its image under the mapM(S) → F [S] that sends a monomial m to its associated
indicator function; that is, if m denotes a monomial, then m also denotes the
polynomial in which the coefficient of the monomial m is 1 and the coefficient of
every other monomial is 0.

In this way, the monomials form a basis for the vector space F [S] (see Exer-
cise 7.2.5), and we have

f =
∑

m∈M(S)

fm ·m.

In other words, the coefficients of the monomials in f are also the coefficients of f
with respect to the basis formed by the monomials. A polynomial f is zero if and
only if for all monomials m the coefficient of m in f is zero.
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We define the total degree of a monomial m by

deg(m) =
∑
v∈S

m[v],

which is well defined as this sum has only finitely many nonzero terms. We define
the total degree of a nonzero polynomial f to be the maximum of the total degrees
of all monomials that have a nonzero coefficient in f , and the total degree of the
zero polynomial to be −∞.

We define a multiplication on the vector space F [S] as follows. For two polynomials
f, g ∈ F [S] we set

f · g =

 ∑
m1,m2∈M(S)
m1m2=m

fm1gm2


m∈M(S)

Note that this multiplication restricts to the natural multiplication on monomi-
als. Also, since the multiplication on monomials is commutative, it follows that
this multiplication on polynomials is commutative as well: for two polynomials
f, g ∈ F [S] we have f · g = g · f .

The multiplication on monomials is also associative, so the multiplication on poly-
nomials is associative as well, as for three polynomials f, g, h ∈ F [S] we have

(f · g) · h =

 ∑
m1,m2,m3∈M(S)
m1m2m3=m

fm1gm2hm3


m∈M(S)

= f · (g · h).

It is also easy to check that for f, g, h ∈ F [S] we have f · (g+h) = f ·g+f ·h, that
is, the multiplication is distributive over the addition, and for all λ ∈ F we have
(λf)·g = λ(f ·g). Together with commutativity this implies that the multiplication
is bilinear: it is linear in both arguments. In fact, bilinearity, together with the
fact that the multiplication on polynomials restricts to the natural multiplication
on monomials, completely determines the multiplication on polynomials.

By abuse of notation, we identify F with its image under the linear map ι : F → F [S]
that sends the scalar λ to λ · 1, where 1 stands for the trivial monomial, viewed
as polynomial. We call the elements in the image of ι constant polynomials. Since
the polynomial 1 acts as a unit for the multiplication on polynomials, we find that,
for all λ ∈ F , multiplication by the constant polynomial λ · 1 coincides with scalar
multiplication by λ, so identifying λ with its associated constant polynomial will
not cause any confusion.

Remark D.10. The properties above imply that F [S], together with its addi-
tion and multiplication, and the special polynomials 0 and 1, carries the struc-
ture of a so-called commutative ring. In fact, the map ι gives this ring F [S] the
structure of a so-called F -algebra.

We now define the evaluation of a polynomial at a collection labelled by S. Let
a = (av)v∈S be a collection of elements in F labelled by S. Then for every mono-
mial m =

∏
v∈S v

m[v] we define

m(a) =
∏
v∈S

am[v]
v .
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For any polynomial f =
∑

m∈M(S) fm ·m we define

f(a) =
∑

m∈M(S)

fm ·m(a).

Remark D.11. In fact, for any commutative F -algebra A, we can similarly
define the evaluation of a polynomial f ∈ F [S] at a collection of elements in A
labelled by S. Recall that we have identified S with a subset of the commutative
F -algebra F [S] in the sense that each variable can be viewed as a polynomial.
If we label the set S ⊂ by itself, then we obtain f(S) = f .

Remark D.12. We can now explain why we chose non-standard notations for
the evaluation of a monomial m at a variable v, yielding the exponent of v in
m, and for the evaluation of a polynomial f at a monomial m, yielding the
coefficient of m in f . Suppose S = {x}, and we have a monomial m = x2 and
variable v = x. Then

(1) we have m[v] = 2, the exponent of v in m;
(2) we have mv = 0, the coefficient of the monomial v = x in the polyno-

mial m = x2;
(3) we havem(v) = x2, the evaluation of the polynomial/monomialm = x2

at the element x ∈ F [S].

Remark D.13. We now compare polynomials in more variables with polyno-
mials in one variable. If S consists of one element, say S = {x}, thenM(S) con-
sists of the non-negative integral powers of x, that is, M(S) = {1, x, x2, x3, . . .}.
There is a natural bijection with Z≥0, with n ∈ Z≥0 corresponding to xn.
Through this bijection, we can identify a polynomial f ∈ F [S], which is a
collection of elements in F labelled by M(S), with a collection of elements
in F labelled by Z≥0. Such a collection corresponds naturally with an element
of F∞ (cf. Remark 2.12 and Example C.3), which actually lies in the subspace
F [x] ⊂ F∞.

Exercises

D.3.1. Define the derivative of a polynomial with respect to one of its variables.





APPENDIX E

Infinite-dimensional vector spaces and Zorn’s Lemma

We have seen that a finitely generated vector space V has a finite basis and so has
finite dimension. What can we say about the existence of a basis in an infinite-
dimensional vector space?

We have seen examples of an infinite-dimensional vector space that have a basis.
For example, the space F [t] of polynomials over the field F (Example 7.49), or
the space of polynomial functions on R (Example 7.50), with basis given by the
monomials x 7→ xn, for n ∈ Z≥0.

On the other hand, you would be very hard put to write down a basis for C(R),
or a basis for R as a Q-vector space.

In order to prove the existence of a basis and other related results, we would need
an ‘infinite’ version of the Basis Extension Theorem.

Theorem E.1 (General Basis Extension Theorem). Let V be a vector space,
J an index set, and (vj)j∈J a collection of elements that generates V . Suppose that
for a subset I ⊂ J , the subcollection (vi)i∈I is linearly independent. Then there is
a subset I ′ ⊂ J with I ⊂ I ′ such that the collection (vi)i∈I′ is a basis for V .

Now, how can we prove such a statement? One idea, which also works for the
finite-dimensional case, would be to choose a maximal subset I ′ ⊂ J containing I
for which the collection (vi)i∈I′ is linearly independent, and then show that this
collection also generates V and is therefore a basis.

This last step will work fine: assume that I ′ is maximal as above, then for every
j ∈ J \ I ′, the collection (vi)i∈I′′ with I

′′ = I ′ ∪ {j} is linearly dependent, and so
vj ∈ L

(
(vi)i∈I′

)
. This implies that

V = L
(
(vi)i∈J

)
⊂ L

(
(vi)i∈I′

)
,

so (vi)i∈I′ generates V and is therefore a basis.

However, the key point is the existence of a maximal set I ′ with the required
property. Note that if S is an arbitrary set of subsets of some set, S need not
necessarily have maximal elements. For example, S could be empty. Or consider
the set of all finite subsets of Z. So we need some extra condition to ensure the
existence of maximal elements. (Of course, when S is finite (and nonempty), then
there is no problem — we can just take a set of maximal size.)

This condition is formulated in terms of chains.

Definition E.2. Let X be a set, and let S be a set of subsets of X. A subset
C ⊂ S is called a chain if all elements of C are comparable, i.e., if for all U, V ∈ C,
we have U ⊂ V or V ⊂ U . (Note that this is trivially true when C is empty.)

The notion of ‘chain’ (as well as Zorn’s Lemma below) applies more generally to
(partially) ordered sets: a chain then is a subset that is totally ordered.

227
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Now a statement of the kind we need is the following.

Zorn’s Lemma. Let X be a set, and let S be a collection of subsets of X. If for
every chain C ⊂ S, there is a set U ∈ S such that Z ⊂ U for all Z ∈ C, then S
has a maximal element.

Note that the condition, when applied to the empty chain, ensures that S ̸= ∅.
Also note that there can be more than one maximal element in S.

Let us see how we can apply this result to our situation. The set S we want to
consider is the set of all subsets I ′ ⊂ J containing I such that (vi)i∈I′ is linearly
independent. We have to verify the assumption on chains. So let C ⊂ S be a
chain. We have to exhibit a set U ∈ S containing all the elements of C. In such
a situation, our first guess is to try U =

⋃
C (the union of all sets in C); usually

it works. In our case, we have to show that this U ⊂ J has the property that
(vi)i∈U is linearly independent. Assume it is not. Then there is a finite non-trivial
linear combination of elements of (vi)i∈U that gives the zero vector. This linear
combination will only involve finitely many elements of U , which come from finitely
many sets I ′ ∈ C. Since C is a chain, there is a maximal set I∗ among these finitely
many, and our nontrivial linear combination only involves elements from (vi)i∈I∗ .
But I∗ is in S, and so (vi)i∈I∗ is linearly independent, a contradiction. Therefore
our assumption must be false, and (vi)i∈U must be linearly independent.

Hence, Zorn’s Lemma implies that our set S contains a maximal element, which by
the discussion before Definition E.2 implies the general Basis Extension Theorem.
In particular, this shows that every vector space must have a basis (take I = ∅
and J = V and (vj)j∈J = (v)v∈V ). However, Zorn’s Lemma is an extremely
inconstructive result; it does not give us any information on how to find a maximal
element. And in fact, nobody has ever been able to ‘write down’ (or explicitly
construct) a Q-basis of R, say. Still, such bases must exist.

The next question then is, how does one prove Zorn’s Lemma? It turns out that
it is equivalent (given the more ‘harmless’ axioms of set theory) to the Axiom of
Choice, which states the following.

Let I be a set, and let (Xi)i∈I be a collection of nonempty sets indexed by I. Then
there is a ‘choice function’ f : I →

⋃
i∈I Xi such that f(i) ∈ Xi for all i ∈ I.

In other words, if all the Xi are nonempty, then the product
∏

i∈I Xi of these sets
is also nonempty. This looks like a natural property, however it has consequences
like the existence of Q-bases of R that are not so intuitive any more. Also, as
it turned out, the Axiom of Choice is independent from the other axioms of set
theory: it is not implied by them.

For some time, there was some discussion among mathematicians as to whether
the use of the Axiom of Choice (and therefore, of Zorn’s Lemma) should be al-
lowed or forbidden (because of its inconstructive character). By now, a pragmatic
viewpoint has been adapted by almost everybody: use it when you need it. For
example, interesting parts of analysis and algebra need the Axiom of Choice, and
mathematics would be quite a bit poorer without it.

Finally, a historical remark: Zorn’s Lemma was first discovered by Kazimierz
Kuratowski in 1922 (and rediscovered by Max Zorn about a dozen years later), so
it is not really appropriately named. In fact, when Michael Stoll was a student,
one of his professors told them that he talked to Zorn at some occasion, who said
that he was not at all happy that the statement was carrying his name. . .
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Exercises

E.0.1. Use Zorn’s Lemma to prove that for every subset X of a vector space V
such that X contains the zero vector, there is a maximal linear subspace of V
contained in X.

E.0.2. Show that Zorn’s Lemma implies that every linear subspace U of a vector
space V has a complementary subspace in V .

E.0.3. Suppose V is a vector space with subspaces U and U ′ satisfying U ∩U ′ = {0}.
Show that Zorn’s Lemma implies that we can extend U ′ to a complementary
space of U , that is, there exists a subspace W ⊂ V containing U ′ that is a
complementary subspace of U in V .
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Index of notation

R, 5
Rn, 5
F (in R), 5
Q, 5
Fn (with F ⊂ R), 5
x⊕ y (in Rn), 5
x⊖ y (in Rn), 5
x+ y (in Rn), 6
x− y (in Rn), 6
λ · x (in Rn), 6
λx (in Rn), 6
R2, 6
R3, 6
⟨x, y⟩ (in Rn), 9
L(a) (in Rn), 13
∥x∥, 14
d(x, y), 15
⊥ (in Rn), 16
S⊥ (in Rn), 17
a⊥ (in Rn), 17
πa, 20
πa⊥ , 20
πL(v), 20
πH(v), 20
πW , 25
d(v,W ), 27
a× b, 29
sW , 31
sW , 34
F , 39
†, 39
††, 39
0V , 40
λ⊙ x, 40
x⊕ y, 40
(V, 0V ,⊕,⊙), 40
0 (in a vector space), 41
Fn, 41
F∞, 43
Map(A,B), 43
BA, 43
Map(R,R), 44
FX , 44
Map(X,F ), 44
∞, 45
F [x], 45
R[x], 45
V X , 47

Map(X,V ), 47
U × V , 48
−x, 49
x⊖ y, 49
x+ y, 50
x− y, 50
λ · x, 50
λx, 50
Ux, 52
C(R), 53
Cn(R), 53
F (X), 54
V (X), 54
⟨x, y⟩, 54
⊥, 55
S⊥ (in Rn), 55
a⊥, 55
L(v1, v2, . . . , vt), 58
LF (S), 58
L(S), 58
ei, 60
P (F ), 62
U1 + U2, 63∑
Ui, 63

Hom(V,W ), 69
im(f), 70
ker(f), 70
0 (linear map), 72
idV , 72
C∞(R), 77
eva, 77
D, 77
Ia,b, 77
Ia, 77
Ta, 77
φC , 83
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

, 88

(aij)1≤i≤m,1≤j≤n, 88 | | |
w1 w2 · · · wn

| | |

, 88

Mat(m× n, F ), 88
Mat(n, F ), 88
In, 88
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−v1−
−v2−

...
−vm−

, 89

Ax, 90
fA, 92
kerA, 93
imA, 93
A+B, 94
AB, 94
A−1, 96
Ak, 97
A⊤, 99
R(A), 100
C(A), 100
Li(λ), 105
Mij(λ), 105
Nij , 105
dimV , 136
dimF V , 136
rk f , 147
rkA, 150
[f ]BC , 165
vB , 166
Tr(A), 174
Tr(f), 175
P (v1, . . . , vn), 179
detA, 184
Sn, 186
det f , 191
Ω(f), 195
fk, 196
PA, 197
F (t), 197
Pf , 198
im(f), 211
f−1, 211
f−1, 211
Y X , 211
Map(X,Y ), 211
f−1(B), 211
g ◦ f , 212
fn, 212
X1

∐
X2, 212

0 (in a field), 213
1, 213
Q(

√
2), 213

F2, 214
i, 215
C, 215
Re z, 215
Im z, 215
z̄, 215
|z|, 215
F [x], 220
P (F ), 222
m[v], 223
M(S), 223
F [S], 223
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absolute value, 215
accelaration, 21
addition
in Rn, 5
in a field, 213
in a vector space, 40
point-wise, 44

adjoint, 188
adjugate, 188
algebra
linear, 37

F -algebra, 222, 224
algebraic multiplicity, 205
algebraically closed field, 207
alternating, 180
altitude, 24
angle, 37
between hyperplanes, 37
between vectors, 37

arrow, 6, 8
head, 7
tail, 7

associative, 40, 212
automorphism, 69
axiom, 39

base, 180
basis, 127
canonical, 127
standard, 127

basis change matrix, 172
Basis Extension Theorem, 134
bijective, 211
bilinear, 69, 224
scalar product is, 69

cancellation rule, 48
canonical basis, 127
canonical isomorphism, 149
Cartesian product, 48
Cauchy-Schwarz inequality, 35
characteristic polynomial, 197
classical mechanics, 8
classification
up to equivalence, 177
up to similarity, 175

closed
under addition, 51

under scalar multiplication, 51
codomain, 211
coefficient, 45, 223
constant, 221
leading, 205
main, 221
of a polynomial, 219

coefficients
of a linear combination, 58

collection, 217
set associated to, 218

collections, 121
collinear, 8, 37
column, 88
column equivalent, 105
column expansion of determinant, 187
column operation, 105
column rank, 150
equals row rank, 150

column space, 100
combination
linear, 58

commutative, 40, 212
commutative ring, 222, 224
complement
orthogonal, 153

complementary subspace, 65, 143
complex conjugate, 215
complex number, 215
complex polynomial, 220
complex vector space, 40
composition, 212
conjugate
complex, 215

consistent, 80
constant coefficient, 221
constant polynomial, 224
continuous function, 53
coordinate, 5
coordinate-wise, 6
cosine rule, 15, 37
Cramer’s rule, 188
cross product, 29, 30

definite integration, 77
degree, 45, 205, 221
total, 224

derivative, 221

235



236 INDEX

determinant, 179, 183, 190
expansion along a column, 187
expansion along a row, 183
is multiplicative, 186
of an endomorphism, 190

determinantal function, 181
diagonal matrix, 184
diagonalizable, 201
necessary and sufficient conditions, 207

diagram, 212
commutative, 212

differentiable function, 53
differential equation, 57
differentiation, 77
dimension, 136
dimension formula for linear maps, 147
dimension formula for subspaces, 142
direct sum, 219
direction, 7
distance, 15, 26, 38
between points, 15
to a line or hyperplane, 27

distributive, 40
division, 213
domain, 211
dot product, 10, 54, see also scalar product

edge
living on the, 112

eigenspace, 195
λ-eigenspace, 195
eigenvalue, 195
eigenvector, 195
elementary column operation, 105
elementary matrix, 105, 161
elementary row operation, 105
elimination
Gaussian, 105, 162

endomorphism, 69
trace, 175

equation, 79, 153
differential, 57
functional, 57
linear, 38, 80, see also linear equation

equivalent
column, 105
matrices, 177
row, 105

Euclidean plane, 6
Euclidean space, 5
Euclidean three-space, 6
evaluation
of a polynomial, 224

evaluation map, 77
even, 62, 67
Exchange Lemma, 136
expansion of determinant along a column,

187
expansion of determinant along a row, 183
exponent, 223

extended matrix, 160

Fibonacci, 48, 208
field, 39, 213
algebraically closed, 207
finite, 214
of two elements, 214

finite field, 214
finite-dimensional, 136
finitely generated, 59
force, 8, 21
formal sum, 219
function, 211, see also map
associated to a matrix, 92
continuous, 53
determinantal, 181
differentiable, 53
periodic, 53
polynomial, 61, 222
rational, 197
real valued, 53

functional equation, 57
Fundamental Theorem of Algebra, 216
Fundamental Theorem of Calculus, 78

Gaussian elimination, 105, 162
generate, 59
generating set, 59
minimal, 121

generators
standard, 60

geometric multiplicity, 205
graph, 211
gravity, 21

head, 7, 9
homogeneous linear equation, 80
homogeneous system of linear equations, 80
homomorphism, 69
horror vacui, 182
hyperplane, 11, 55

identity map, 72, 212
identity matrix, 88
image, 70, 211
is subspace, 71

imaginary part, 215
indefinite integration, 77
indeterminates, 219
index, 121, 217
induction, 138
induction base, 138
induction hypothesis, 139
induction step, 139
inequality
Cauchy-Schwarz, 35
triangle, 36

infinite matrix, 99
infinite-dimensional, 136
inhomogeneous linear equation, 80
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inhomogeneous system of linear equations,
80

injective, 71, 148, 211
inner product, 10, 54
standard, 10

integration, 77
definite, 77
indefinite, 77

intersection, 38
intersection of subspaces, 56, 154
intimidation, 45
invariant, 174
inverse
left, 97, 212
map, 211
matrix, 96
right, 97, 212

invertible, 96
isomorphic, 69
isomorphism, 69, 84, 148
canonical, 149
natural, 149
preserves determinant, 191
preserves image, 84
preserves kernel, 84

Jordan normal form, 176, 207

kernel, 70
generators, 114
is subspace, 71

label, 121, 217
labeled set, 218
Lagrange polynomial, 150
leading coefficient, 205
left inverse, 97, 212
length, 7, 14
line, 12, 55
in F 2, 11

Linear algebra, 39
linear algebra, 37
linear combination, 58
F -linear combination, 58
linear equation, 79, 80
homogeneous, 80
homogeneous system, 80
inhomogeneous, 80
inhomogeneous system, 80
system of, 38

linear hull, 59
linear map, 38, 69
associated to a matrix, 92
dimension formula, 147

F -linear map, 69
linear relation, 121, 137
linear space, 40
over F , 40

linear span, 59
linear subspace, 51, see also subspace

linearly dependent, 121
linearly independent, 121
over F , 121

F -linearly independent, 121
living on the edge, 112
lower triangular matrix, 185

magic square, 43
main coefficient, 221
map, 211, see also function
bijective, 211
evaluation, 77
identity, 72, 212
injective, 211
inverse, 211
linear, 69
projection, 72
surjective, 211

matrix, 38, 87, 88
addition, 94
associated to a linear map, 89, 165
basis change, 172
diagonal, 184
elementary, 105
equivalent, 177
extended, 160
identity, 88
infinite, 99
lower triangular, 185
multiplication, 94
product, 94
sum, 94
trace, 174
upper triangular, 184, 185
Vandermonde, 166

m× n matrix, 88
matrix multiplication, 94
is associative, 96
is distributive, 96
is not commutative, 96

mechanics
classical, 8

Michael Stoll, 228
minimal generating set, 121
modulus, 215
monic, 205
monomial, 45, 219, 220, 223
multilinear, 180
multiplication
by λ, 72
in a field, 213
of matrices, 94, see also matrix
multiplication

scalar, 40
in Rn, 5

multiplicity
algebraic, 205
geometric, 205
of a root, 205
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natural isomorphism, 149
negative, 40
is unique, 49

nilpotent, 79
normal, 17
number
complex, 215
rational, 213
real, 213

odd, 62, 67
operation
column, 105
row, 105

oriented volume, 179, 186
orthogonal, 14, 16, 55, 187
orthogonal complement, 153
orthogonal projection, 20, 38, 72, 75
onto a, 20
onto a⊥, 20
onto L(a), 20
onto any line or hyperplane, 25

ortocenter, 24

parallel, 19
parallelogram, 8
parallelotope, 179
parameter, 12
parametrisation, 12
periodic function, 53
permutation, 112, 185
perpendicular, 14, 16
physics, 8, 42
pivot, 108
plane
determined by three points, 23
Euclidean, 6
in F 3, 11
pointed, 6

point, 8
point-wise addition, 44
pointed plane, 6
pointed space, 6
polynomial, 45, 219, 220, 223
characteristic, 197
complex, 220
constant, 224
formal definition, 220
Lagrange, 150
over F , 45
real, 45, 220
versus polynomial function, 222

polynomial function, 61, 222
preimage, 211
product, 48
Cartesian, 48
dot, 10, 54, see also dot product
inner, 10, 54
of a matrix and a vector, 90
of matrices, 94

scalar, 9, 54, see also scalar product
projection, 73, 79

along a subspace, 79
orthogonal, 20, see also orthogonal

projection
projection map, 72
Pythagoras, 17

rank, 147, 150
rational function, 197
rational number, 213
real number, 213
real part, 215
real polynomial, 45, 220
real vector space, 40
real-valued function, 53
reduced row echelon form, 117
reflection, 31, 38, 67, 73, 75

in a line, 76
in any line or hyperplane, 34

relation
linear, 121, 137

relativity
theory of, 42

represent
a vector, 7, 9

right inverse, 97, 212
ring, 222, 224

commutative, 224
risk, 112
row, 88
row echelon form, 108

algorithm, 111
reduced, 117

row equivalent, 105
row expansion of determinant, 183
row operation, 105
row rank, 150

equals column rank, 150
row space, 100
rule

cancellation, 48
cosine, 15, 37
Cramer’s, 188

scalar, 6, 39
scalar multiplication, 40

in Rn, 5
scalar product, 9, 54

is bilinear, 69
is symmetric, 10, 55
on Rn, 9
on general F , 54
standard, 9, 54

sequence, 217
sequence of coefficients, 166
set

associated to a collection, 218
generating, 59
labeled, 218
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symmetric difference, 46
sign, 185
similar, 174
space, 6
Euclidean, 5
linear, 40
pointed, 6

span, 59
spectrum, 195
standard basis, 127
standard basis vectors, 127
standard generators, 60
standard inner product, 10
standard scalar product, 9, 54
Stoll
Michael, 228

subfield, 5, 39
subspace, 38, 51
complementary, 65, 143
dimension, 141
dimension formula, 142
image is, 71
intersection, 56
is a vector space, 51
kernel is, 71
sum, 63

subtraction, 49, 213
in Rn, 5

sum
direct, 219
formal, 219

sum of
matrices, 94
subspaces, 63
vectors, 50

surjective, 148, 211
symmetric difference, 46

tail, 7, 9
target, 211
term, 45, 219, 220
theory of relativity, 42
three-space
Euclidean, 6

total degree, 224
trace of a matrix, 174
trace of an endomorphism, 175
translate, 27, 28
translation, 47, 77
transpose, 99
triangle inequality, 36
n-tuple, 5, 217

union, 57
conditions to be a subspace, 57
is not a subspace in general, 57

unit, 222
upper triangular matrix, 184, 185

Vandermonde matrix, 166

determinant, 188
is invertible, 168

variable, 45, 219, 223
vector, 5, 40
vector space, 37, 40
complex, 40
over F , 40
real, 40

F -vector space, 40
vector subspace, 51, see also subspace
volume, 179
oriented, 179, 186

warning, 10, 17, 34, 56, 66, 70, 76, 113,
153, 214, 221, 222

zero, 40, 51
is unique, 48

zero homomorphism, 72
zero space, 41
Zorn’s Lemma, 133, 139, 141
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