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Or quel che t’era dietro t’e’ davanti:
ma perche’ sappi che di te mi giova,
un corollario voglio che t’ammanti.

(Dante Alighieri, Paradiso, VIII)

1 Introduction

So far, we have been assuming (with no motivation) that: (1) our base field is
C, (2) the topology on complex vector spaces is discrete.

At a first glance, this is unsatisfactory if we wish to deal with Galois repre-
sentations: they have usually coefficients in fields like Q̄` and, moreover:

Lemma 1.0.1. Every continuous homomorphism from a profinite group G to
GLn(C) has finite image.

Proof. Choose an open subgroup U < G with image in the ball B with center 1
and radius 1/2. The topology on GLn(C) ⊂ End(Cn) is induced by the norm:
‖ T ‖= supv|Tv|. Assume ρ(U) 6= 1. If, for any T , we can find N such that
‖ TN − 1 ‖> 1/2, we get a contradiction. Indeed, if all the eigenvalues of T are
1, it is clear from the Jordan form of T . If T has an eigenvalue λ 6= 1, then
|λN − 1| > 1/2 for some N .

This fact leads us to introduce the Weil group.

2 Weil groups

Fix a separable algebraic closure F̄ of F . Let k be the residue field of F , of
characteristic p. We have a surjective map ΓF → Gal(k̄/k) whose kernel is the

inertia subgroup I of ΓF . The arithmetic Frobenius σ ∈ Gal(k̄/k) ' Ẑ sends x
to xq and generates topologically Gal(k̄/k).

Definition 2.0.2. The Weil group WF of F is the inverse image of < σ > in
ΓF . Then we have the exact sequence:
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1→ I →WF →< σ >→ 1 (2.0.1)

We topologize WF by asking that the projection WF →< σ >' Z is contin-
uous with respect to the discrete topology on Z and the induced topology on
I ⊂WF equals the profinite topology induced by that of ΓF .

Remark 2.0.3. Note that the inclusion WF ↪→ ΓF is continuous and has dense
image.

Definition 2.0.4. A n-dimensional representation of WF is a continuous ho-
momorphism WF → GLn(C) (with discrete topology on the latter group).

Remark 2.0.5. By class field theory, we have an isomorphism: W ab
F ' F

∗.

Remark 2.0.6. If E is a finite extension of F , then WE is an open subgroup of
WF and WF /WF ' Gal(E/F ) when E/F is Galois.

Remark 2.0.7. Any representation of ΓF gives by restriction a representation of
WF .

We define a character of WF by ωs(I) = 1 and ωs(σ) = q−s, for a complex
number s. Note that ωs is continuous. Then:

Proposition 2.0.8. Every irreducible representation of WF is of the form ρ =
ωs ⊗ ρ

′, with ρ′ irreducible of finite image.

Proof. An irreducible representation ρ of WF has to be trivial on some subgroup
J of I of finite index. Then some twist of ρ by a character trivial on I has finite
image. In fact, conjugation by σ induces an automorphism of the finite group
I/J , so conjugation by some power σt is the identity. Now, ρ(σt) commutes
with ρ(WF ), therefore it acts as a scalar. Choose s such that (ωs ⊗ ρ)(σ

t) = 1.
Then the kernel of ωs ⊗ ρ contains J and σt and thus has finite index. This
proves that the image of ρ′ = ωs ⊗ ρ is finite.

Proposition 2.0.9. A representation of WF extends to a representation of ΓF
if and only if it has finite image.

Proof. This follows immediately from lemma 2.0.1 and the density of WF in
ΓF .

Theorem 2.0.10. If (n, p) = 1, every irreducible representation ρ of WF of
dimension n over an algebraically closed field is induced by a character of a
subgroup of index n of WF .

This is deduced from the following facts (see Koch, Inv.Math.40). Let P be
the wild inertia subgroup of ΓF , i.e. the pro-p Sylow of the inertia group I .
Then I/P '

∏
`6=p Z` and ρ|P splits as a sum of 1-dimensional representations.

If ρ is not induced from a proper subgroup, then ρ|P is irreducible.
We prove the following simple case:

2



Proposition 2.0.11. Let ρ : WF → GL2(C) be an irreducible representation,
p 6= 2. Then ρ is induced from a character of a subgroup of index 2.

Proof. We can assume that ρ has finite image. Then it factors through some
finite extension E/F and ρ(WF ) = ρ(Gal(E/F )) by remark 2.1.5. A finite
subgroup of PGL2(C) can be: cyclic, dihedral, A4, S4 orA5. Now, ρ(Gal(E/F ))
is not cyclic by irreducibility. Recall:

1 ⊂ G1 ⊂ I ⊂ Gal(E/F ) (2.0.2)

where G1 is a p-group, Gal(E/F )/I and I/G1 are cyclic. Since Gal(E/F )
is solvable, we can exclude A5.

If p 6= 2, 2.0.2 is incompatible with the structure of A4 and S4.
Therefore Im(ρ) is dihedral, so it has a cyclic subgroup of index 2 and ρ is

induced from a character of this subgroup.
For the classification of irreducible representations of the dihedral group, see

Serre’s book, Linear representations of finite groups.

3 Weil-Deligne representations

We start with some general facts about `-adic representations of WF .

Lemma 3.0.12. There is a unique (up to a constant multiple) nonzero homo-
morphism t : I → Q` if ` 6= p.

Proof. It suffices to note that I/P '
∏
`6=p Z`

We fix a choice of t. Note that t(wgw−1) = ω1(w)t(g), w ∈WF , g ∈ I .

Theorem 3.0.13. Let ρ : WF → GL(V ) be a continuous representation on
a finite dimensional V over a finite extension of Q`, ` 6= p. Then there is a
nilpotent endomorphism N of V such that ρ(g) = exp(t(g)N) for g in an open
subgroup of I.

For the proof, see Serre,Tate (Ann.Math.88). We call N the monodromy
operator of ρ.

Corollary 3.0.14. With hypothesis as above, if ρ is semisimple some open
subgroup of I acts trivially on V .

Proof. If ρ is irreducible, N = 0. A semisimple representation is a direct sum
of irreducible representations.

Definition 3.0.15. Let K be a topological field. An n-dimensional Weil-
Deligne representation of WF over K is a pair (ρ,N), with:

1. ρ : WF → GL(V ) a representation on a n-dimensional K-vector space V ,
continuous for the discrete topology of V ;
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2. N is a nilpotent endomorphism of V , such that ρ(w)Nρ(w)−1 = ω1(w)N
for any w ∈WF .

Let ` 6= p and V be a finite-dimensional vector space over a finite extension
E of Q`. We will call a `-adic representation of WF over E any continuous
homomorphism ρ : WF → GL(V ).

Theorem 3.0.16. There is a bijection between the set of `-adic representations
of WF over E and the set of W-D representations over E.

Let us fix an isomorphism C ' Q̄`. Then a semisimple continuous W-D
representation ρ : WF → GLn(Q̄`) is continuous as a complex representation.

Example 3.0.17. The “special” W-D representation sp(n) of WF : V = Qn,
ρ(w)ei = ωi(w)ei, Nei = ei+1, Nen−1 = 0, where e0, ..., en−1 is the standard
basis.

Define (ρ,N)⊗ (ρ′, N ′) = (ρ⊗ ρ′, N ⊗ 1 + 1⊗N ′).

Proposition 3.0.18. Every semisimple indecomposable W-D representation of
WF is of the form ρ′ ⊗ sp(n), with ρ′ irreducible.

4 L-functions and epsilon factors

For a W-D representation (ρ,N) of WF we define:

L(s, ρ) = det(1− q−sρ(σ)|ker(N)I )−1 (4.0.3)

where σ is the Frobenius as before.

Example 4.0.19. In the case of a 1-dimensional representation, this gives:

L(s, ρ) = (1− ρ(σ)q−s)−1

if ρ is unramified (i.e. ρ(I) = 1), and

L(s, ρ) = 1

if ρ is ramified.

Example 4.0.20. The L-function of the special representation is:

L(s, sp(n)) = (1− q−s)−1

independently on n.

Definition 4.0.21. The conductor of a continuous representation ρ : ΓF →
GL(V ) is the number:

c(ρ) =

∞∑

i=0

|Gi|

|G0|
codimV Gi (4.0.4)

where Gi is the ith ramification subgroup of G0 = I (cf. Serre, Corps
Locaux).
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The sum is of course finite and actually defines an integer. For a representa-
tion ρ⊗ωs of WF , we define cond(ρ⊗ωs) = cond(ρ). For a W-D representation
ρ′ = (ρ,N) we define the conductor as

c(ρ′) = c(ρ) + dimV I − dim(KerN)I (4.0.5)

so that it equals c(ρ) when N = 0.
The definition of the epsilon factors is more subtle than in the case of GL(n).

We will denote by V a finite-dimensional complex representation of WF , by ψ
a non-trivial additive character of F , by dx an additive Haar measure on F .

Recall that, for GL(1) over a global field, we have a global functional equa-
tion for Hecke L-functions:

L(s, χ) = ε(s, χ)L(1− s, χ−1) (4.0.6)

with L(s, χ) =
∏
v L(s, χv) (product over all the places) and ε(s, χ) =∏

v ε(s, χv , ψv) independent of the choice of the local ψv. Here χ is a Hecke
character of a global field (we will take a function field to avoid to consider the
infinite primes).The local ε factors enter in the local functional equations:

Z(s, χv,Φ)

L(s, χv)
=
ε(s, χv, ψv)Z(1− s, χ−1

v , Φ̂)

L(1− s, χ−1
v )

(4.0.7)

as was explained in the previous lecture. We show how to deduce 4.0.6 from
4.0.7: first of all we have:

LS(s, χ) = (
∏

v∈S

γ(s, χv, ψv))L
S(1− s, χ−1

v ) (4.0.8)

where S is the set of places containing the archimedean ones and the ram-
ifications places of χ or ψ; LS denotes the prime-to-S Euler product. Recall
that

γ(s, χv , ψv) = ε(s, χv, ψv)L(1− s, χ−1
v )L(s, χv)

−1

If v 6∈ S, then ε(s, χv, ψv) = 1.
Then we multiply by LS(s, χv , ψv) and find immediately 4.0.6.
One can prove in general a global functional equation:

L(s, ρ) = ε(s, ρ)L(1− s, ρ̂) (4.0.9)

and the question is whether one can factor ε(s, ρ) as before. The answer is
affirmative and the following theorem defines the local epsilon factors (at s = 0,
for general s one can twist by a power of the norm character); V denotes a
representation of WF :

Theorem 4.0.22. There is a unique map (V, ψ, dx) 7→ ε(V, ψ, dx) ∈ C∗ such
that:

1. if dimV = 1, it is the epsilon factor defined by Tate;
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2. it is multiplicative in exact sequences of representations;

3. for a finite separable extension E/F , a representation VE of WE, there is
a factor λ(E/F, ψ, dxE , dxF ) ∈ C∗ such that

ε(IndFEVE , ψ) = λ(E/F, ψ, dxE , dxF )dimVEε(VE , ψ ◦ TrE/F , dxE)
(4.0.10)

The basic idea here is the Brauer’s induction theorem: if r is a represen-
tation of a finite group G then there exist nilpotent subgroups Hi of G and
1-dimensional representations ψi of Hi such that r is an integral linear combi-
nation of the IndGHi

ψi.
Throughout, we will consider dx as fixed. We record the formula:

ε(s, V, ψ) = ε(0, V, ψ)q−s(c(ψ)+c(V )dimV ) (4.0.11)

For a W-D representation, we put:

ε(0, ρ′, ψ) = ε(0, ρ, ψ)det(−ρ(σ)|V I/(KerN)I) (4.0.12)

This is not multiplicative in exact sequences. This looks like an ad hoc
definition, we’ll see that it is motivated by the fundamental example of the
elliptic curves with split multiplicative reduction.

5 The Langlands correspondence

Fix n ≥ 1.
The Langlands correspondence is a bijection between the isomorphism classes

of smooth irreducible supercuspidal representations of GL(n, F ) and the isomor-
phism classes of n-dimensional irreducible representations of WF . Write A(n)
and G(n) these two sets.

Theorem 5.0.23. For any n ≥ 1 there is a map σ : A(n)→ G(n) such that:

σ(π̂) = σ̂(π) (5.0.13)

ε(s, π, π′, ψ) = ε(s, σ(π)⊗ σ(π′), ψ) (5.0.14)

L(s, π, π′) = L(s, σ(π)⊗ σ(π′)) (5.0.15)

for any π′ ∈ A(m). Moreover, the determinant of ρ corresponds to the
central character of σ(ρ). When n = 1, the map σ is the usual Artin map of
(local) class field theory.

The proof is due to Harris & Taylor and, later, Henniart, when char(F ) = 0;
to Laumon, Rapoport, Stuhler when char(F ) > 0.
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Remark 5.0.24. Henniart’s theorem (see previous lecture) implies the uniqueness
of σ.

Remark 5.0.25. The map σ extends (in a unique way) to a bijection of the set of
semisimple W-D representations of WF (not necessarily irreducible), with the
set of all the irreducible admissible representations of GL(n).

Theorem 5.0.26. The map σ preserves the conductors.

This is theorem 2 in Bushnell, Henniart, Kutzko (Ann.E.N.S.31).
From theorem 2.0.10, if p is odd and n = 2, the only irreducible repre-

sentations of WF are those induced from a character of a separable quadratic
extension of F . In this case the map σ is given by the Weil representation (see
§6).

Remark 5.0.27. Proposition 2.0.8 corresponds to the fact that any element of
A(n) is of the form π ⊗ χ, with π having central character of finite order.

But when p|n, there are representations of WF which are not induced from
any proper subgroup (Weil, Inv.Math. 27, Koch, Inv.Math.40). In these cases,
no explicit construction of σ is known (as far as I know).

Remark 5.0.28. Suppose ρ, ρ′ are irreducible representations of ΓF such that
σ−1(ρ) ' σ−1(ρ′). It is known that L(s, σ−1(ρ), σ−1(ρ̂′)) has a pole in s = 0 if

and only if σ̂−1(ρ) ' σ−1(ρ′). Then L(s, ρ ⊗ ρ̂′) has a pole at s = 0 and this
implies ρ ' ρ′.

Theorem 5.0.29. Let char(F ) = p and n ≥ 2. Let ρ : ΓF → GLn(C) an
irreducible representation and π ∈ A(n). If ε(s, ρ⊗ τ, ψ) = ε(s, π ⊗ σ(τ), ψ) for
any τ ∈ A(m),m < n, then π ' σ(ρ).

Proof. See Henniart, Inv.Math.113.

The correspondence stated in theorem 5.0.23 is not rational, due to the
unitary normalization of the induction. However, one can choose a different
normalization as follows: replace π by π ⊗ |det|−1/2. For example, when n = 2
the smooth representation of GL(2) corresponding to the sum of characters
µ1⊕µ2 is the induced representation realized in the space of C-valued functions

such that f(

(
a ∗
0 b

)
g) = µ1(a)µ2(b)|b|

−1f(g).

5.1 Example: Abelian varieties with good reduction

Let A be an abelian variety over a global field K, v a finite place of K, ` a prime
different fomr the residue characteristic at v, ρ` the representation of Gal(K̄/K)
on T`A.

Theorem 5.1.1. A has potential good reduction at v if and only if the image
by ρ` of the inertia group I is finite.
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For the proof, see Serre & Tate, Ann.Math.88.
Noe let A be an abelian variety with good reduction over a non archimedean

local field K of mixed characteristic, and let ρ : Gal(K̄/K) → GL(V`A) the
representation on the Tate module with ` 6= residue characteristic of K.

Proposition 5.1.2. ρ is semisimple.

Proof. We have to show: ρ(σ) is diagonalizable (σ is the Frobenius). If Ā is the
special fiber of the Neron model of A, we have V`A ' V`Ā as Galois modules.
It is well known that Gal(k̄/k) acts semisimply on V`Ā and thus ρ splits as a
direct sum of characters.

Actually, the same is true in case of potential good reduction.

6 Elliptic curves and special representations

Convention: in the following, the Frobenius automorphism is the geometric
one.

We recall some facts on special representations: if µ1, µ2 are characters of

F ∗, then π = Ind
GL(2)
P (µ1 ⊗ µ2) is reducible if and only if µ1µ

−1
2 = | |±1, so we

have two cases:

• if µ1µ
−1
2 = | |, then we have a non-split exact sequence:

0→ π1 → π → π2 → 0

with π2 one-dimensional and π1 is the unique irreducible subrepresentation
of π. Moreover, the Kirillov model of π1 consists of the locally constant
functions f on F ∗ that vanish for large x and such that there is a constant
C for which f(x) = C|x|1/2µ1(x) if |x| is small. In particular, L(s, π1) =
L(s, µ1). It is customary to denote π1 by σ(µ1, µ2).

• if µ1µ
−1
2 = | |−1, then we have a non-split exact sequence:

0→ π3 → π → π4 → 0

with π3 one-dimensional and π4 is the unique irreducible quotient of π.
Moreover, the Kirillov model of π4 consists of the locally constant functions
f on F ∗ that vanish for large x and such that there is a constant C
for which f(x) = C|x|1/2µ2(x) if |x| is small. In particular, L(s, π4) =
L(s, µ2). It is customary to denote π4 by σ(µ1, µ2).

Consider the elliptic curve over Q: E = Γ0(11)\H. We want to write down
the smooth representations corresponding to the local Galois representations on
the torsion points of E at all the finite places. There are two cases to consider.
The curve E has split multiplicative reduction at 11. Let ` 6= p be rational
prime.
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6.1 Bad reduction

Fix p = 11; then we have an exact sequence of GQp
-modules:

1→ T`µ→ T`E → Z` → 0 (6.1.1)

where µ = lim
←−

µ`n , the projective limit of the groups of roots of unity of
`-power order, so that the Galois representation ρ : GQp

→ Aut(V`E) has the
form:

ρ =

(
χ c

1

)
(6.1.2)

where χ is the p-adic cyclotomic character. We get from this a W-D repre-
sentation (ρ′, N), as in theorem 3.0.16. Note that it is reducible, so we cannot
take N = 0. A look at conductors shows that σ−1(ρ) must be a special repre-
sentation.

Since p = 11, ρ is indecomposable, N 6= 0 and we claim that ρ′ has conductor
p, so that σ−1(ρ) is a special representation. More precisely, we have N =(

0 1
0 0

)
. This is the special representation of WF of dimension 2. Let us

compute the conductor of ρ: from the definition we see that c(ρ′) = c(ρ) in this
case and c(ρ) = 1 because the wild inertia acts trivially.

We know that σ(ρ) is a quotient or a subrepresentation of an induced: π =U

IndGP (µ1⊗µ2), for some characters µ1, µ2 of Q∗
p. The central character of σ−1(ρ)

must correspond to χ−1, so it is ||. Therefore:

µ1µ2 = | | (6.1.3)

Moreover, we know that µ1µ
−1
2 = | |±1 because π is reducible, thus we have

either

µ1 = 1, µ2 = | | (6.1.4)

or

µ1 = | |, µ2 = 1 (6.1.5)

Note that σ(1, | |) ' σ(| |, 1) (by comparison of Kirillov models, for example).
We know that L(s, σ(1, | |)) = L(s, µ2) = (1− |p|q−s)−1.

Now,

L(s, ρ) = det(1− ρ(Frob)q−s|Ker(N)I)−1 = (1− χ(Frob)q−s)−1 (6.1.6)

so that

L(s, ρ) = L(s, σ(1, | |)) (6.1.7)

One can also check that
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L(s, ρ∨) = L(s, σ̂(1, | |)) (6.1.8)

Moreover, the epsilon factor of σ(1, | |) is:

ε(s, σ(1, | |), ψ) = ε(s, 1, ψ)ε(s, | |, ψ)L(1− s, | |−1)L(s, 1)−1 = −q−s (6.1.9)

if ψ is unramified and this equals the epsilon factor of ρ.

6.2 Good reduction

If p 6= 11, it is a place of good reduction, and we know that N = 0 (Neron-
Ogg-Shafarevich) in this case. Moreover, σ−1(ρ) is a principal series, induced
by two unramified characters, determined by the characteristic polynomial of ρ.
We must have:

µ1µ2(p) = p−1 (6.2.1)

and

L(s, π) = L(s, ρ) (6.2.2)

We see immediately that:

L(s, ρ) = det(1− ρ(Frob)p−s|V )−1 (6.2.3)

where V = V`E. Moreover, the characteristic polynomial of ρ(Frob) is
determined by:

det(ρ(Frob)) = p−1 (6.2.4)

trρ(Frob) = ap/p (6.2.5)

where ap = p+ 1− |E(Fp)|.
In order to compute L(s, π), we recall the formula for the unramified Whit-

taker function W : we have

W (

(
pm

1

)
) = (1− p−1α1α

−1
2 )p−m/2

αm+1
1 − αm+1

2

α1 − α2
(6.2.6)

if m ≥ 0, where αi = µi(p). If m < 0, W is 0.
Then we can compute:

L(s, π) = (1− µ1(p)p
−s)−1(1− µ2(p)p

−s)−1 (6.2.7)

Therefore we find:

µ1(p)µ2(p) = p−1 (6.2.8)
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and

µ1(p) + µ2(p) = app
−1 (6.2.9)

(note that exchanging µ1 and µ2 doesn’t change the isomorphism class of
π).

6.3 Example: some supercuspidal representations

Theorem 6.3.1. Let τ be a smooth irreducible representation of GL2(OF )Z,
with no vectors fixed by U(OF ). Then IndGGL2(OF )Zτ is supercuspidal.

Proof. We will prove only the first claim of the theorem.

• admissibility: we have to that the finite-dimensionality of the space of
functions f on G with values in the space of τ , such that f(γgk) =

τ(γ)f(g) for any γ ∈ GL2(OF )Z, k ∈ GL2(p
m). Put a =

(
1

$m

)
,

u ∈ U(OF ). Then

τ(k−1uk)f(k−1ak) = f(k−1uak) = f(k−1akk−1a−1uak) = f(k−1ak)

• supercuspidality: we prove that HomU (Ind(τ),C) = 0. Let φ : Ind(τ)→
C. There is a function F : G→ τ̂ such that F is U -invariant, F ∈ Ind(τ̂ ),
φ(f) =

∫
G/Z

< F (g), f(g) > dg for all f ∈ Ind(τ).

With a as before: τ̂(u)F (a) = F (ua) = F (a(a−1ua)) = F (a) for any
u ∈ U . Therefore F (a) = 0 and F = 0 by the Cartan decomposition.

7 Functoriality

If r : GLn(C) → GLm(C) is a homomorphism, then we have a map G(n) →
G(m) and thus, from 5.0.23, a map: A(n)→ A(m).

A trivial example of this is when r = det, m = 1, which corresponds to
taking the central character of a representation in A(n).

If E/F is a finite separable extension of degree d, then we must have maps:
AE(n)→ AF (dn) (induction) and AF (n)→ AE(n) (base-change). For a short
presentation of base-change, see my talk at the Intercity Seminar.

8 Weil representations

This section is intended to be an ultra-short introduction on Weil represen-
tations. For a serious introduction to this topic, we suggest D.Prasad ’Weil
representation, Howe duality, and the Theta correspondence’.
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Assume char(F ) 6= 2. Let W be a 2m-dimensional F -vector space with a
non degenerate symplectic form <,>: W × W → F . Define the Heisenberg
group:

H(W ) = {(w, t) ∈W × F} (8.0.1)

with composition law:

(w, t)(w′, t′) = (w + w′, t+ t′+ < w,w′ > /2) (8.0.2)

It fits in a central exact sequence:

0→ F → H(W )→W → 0 (8.0.3)

Theorem 8.0.2. For any non-trivial character ψ : F → C∗, there exists a
unique isomorphism class of irreducible smooth representations ρψ : H(W ) →
GL(V ) on which F acts via ψ.

This is a very general theorem due to Stone and von Neumann.
The symplectic group Sp(W ) acts on H(W ) by g(w, t) = (gw, t), therefore

there exists a map g 7→ ωψ(g) from H(W ) to PGL(V ) such that

ρψ(gw, t) = ωψ(g)ρψ(w, t)ωψ(g)−1 (8.0.4)

It is a crucial fact that, since W has even dimension, the map ωψ is actually
a ’true’ representation of Sp(W ). We will not prove this fact, we will content
ourselves to exhibit the resulting representation. Several models of this repre-
sentation are known, we describe the Schrodinger model: let W = X ⊕ Y be a
complete polarization, then we let H(W ) act on C∞

c (X) as follows:

ρψ(w1)f(x) = f(x+ w1) (8.0.5)

ρψ(w2)f(x) = ψ(< x,w2 >)f(x) (8.0.6)

ρψ(t)f(x) = ψ(t)f(x) (8.0.7)

where t ∈ F , x,w1 ∈W1, w2 ∈ W2.
Then let Sp(W ) act on C∞

c (X) as follows:

(
A

tA−1

)
f(x) = |det(A)|1/2f(tAx) (8.0.8)

(
1 B

1

)
f(x) = ψ(txBx/2)f(x) (8.0.9)

(
1

−1

)
f(x) = γf̂(x) (8.0.10)
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where γ8 = 1 (for the precise value, see Weil’s original paper ’Sur certains
groupes d’operateurs unitaires’, Acta Mathematica 111). It is not hard to check
that the action just defined satisfies 8.0.4.

If dimW = 2, then Sp(W ) = SL2(F ) and X = F . Let K be a separable
quadratic extension of F . One can extend this representation to a representation
of SL2(F ) on C∞

c (K): just replace the argument of ψ in 8.0.9 by its norm. It
extends even to a representation of GL2(F )+ (matrices with determinant in
N(K∗)): let Ω be a finite-dimensional irreducible representation of K∗ on a
complex vector space U . Then SL2(F ) acts on C∞

c (K)⊗CU with trivial action
of SL2(F ) on U and this action verifies:

(
A

1

)
f(x) = |det(A)|1/2Ω(h)f(xh) (8.0.11)

if A = N(h) is in the image of the normK∗ → F ∗. The groups GL2(F )+ has
index 2 in GL2(F ). We extend further this representation to a representation
of GL2(F ), by induction. One can prove that the isomorphism class of the
resulting representation doesn’t depend on the choice of ψ.

Moreover, this representation, say πΩ, is supercuspidal (and irreducible) if
and only if Ω doesn’t factor through the norm and we have:

L(s,Ω) = L(s, πΩ) (8.0.12)

πΩ̂ = π̂Ω (8.0.13)

Remark 8.0.3. This theory can be seen as a representation-theoretic view on
theta functions. If X is a complex abelian variety and L a line bundle on it, one
defines a Heisenberg group G(L) as the group of automorphisms of L induced
by translations on X . Then C∗ injects in the center of G(L). This Heisenberg
group acts on Γ(X,L) by:

(φ,Φ)f = Φ ◦ f ◦ φ−1 (8.0.14)

Assume for example the genus of X to be 1. If φ(z) = z − a, a ∈ C, and
Φ(w, z) = (wexp(πiIm(a)(2z − a)), z − a) and f is identified with a complex
function on C, then (φ,Φ) acts on f by

f 7→ f(z + a)exp(πiIm(a)(2z + a)) (8.0.15)

which is the usual action on theta functions.
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