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1 Introduction

In this lecture, we introduce the L-functions and the epsilon factors for GL(n).
We consider only generic representations; this suffices for the application to the
Langlands correspondence, because supercuspidals are generic and they corre-
spond to the irreducible Galois representations.

We warn the reader that this is not true for other groups: Piatetski-Shapiro
has found examples of supercuspidal representations of GSp4 which are not
generic. However, work of Gelbart, Piatetski-Shapiro and Rallis provides a large
supply of L-functions for smooth representations of classical groups (Lecture
Notes 1254). Their work extends the approach of Godement, Jacquet. We have
chosen to work with Whittaker models because they are rather explicit and we
are particularly interested in the characterization of supercuspidals in terms of
epsilon factors (Theorem 3.0.7).

2 Zeta integrals

Let π be a smooth irreducible representation of GL(n), n ≥ 2, and π′ a smooth
irreducible representation of GLm, m < n. We assume that both are generic.
Then, if W , W ′ are functions in the respective Whittaker models, we define:

Z(s,W,W ′) =

∫

Um\GLm

W (
h

In−m
)W ′(h)|det(h)|s−(n−m)/2dh (2.0.1)

where Um is the unipotent radical of the Borel subgroup of GL(m).
When m = 1, we replace W ′ by π′. For n = 1, the theory of zeta-integrals is

the subject of Tate’s thesis; for a Schwartz function φ on F ∗ and a quasicharacter
χ, one defines:

∫

F∗

χ(x)φ(x)|x|s−1dx (2.0.2)

When m = n, we define:

1



Z(s,W,W ′,Φ) =

∫

U\G

W (g)W ′(g)Φ(eng)|det(g)|
sdg (2.0.3)

where Φ is a Schwartz function on F n.

Remark 2.0.1. When n = 2, m = 1, the definition is simply the local analogue
of the Mellin transform. For general m,n, it is the local analogue of the global
integral:

∫

GLm(F )\GLm(A)

Pφ(
h

1
)φ′(h)|det(h)|s−1/2dh (2.0.4)

where φ, φ′ are automorphic forms on GLn, GLm respectively and

Pφ(
h

1
) = |det(h)|−(n−m−1)/2

∑

γ∈Um(F )\GLm(F )

W ′((
γ

1
)(
h

1
)

(2.0.5)
where W ′ on the right is a global Whittaker function.

Theorem 2.0.2. 1. the integrals 2.0.1 and 2.0.3 converge for re(s) >> 0.

2. 2.0.1, 2.0.3 define rational functions in q−s and hence extend meromor-
phically to C.

3. there is a polynomial P (X) in C[X ], with constant term =1, such that
Z(s,W,W ′)P (q−s) is an entire function for any W,W ′ and such that
Z(s,W,W ′) = P (q−s)−1 for an appropriate choice of W,W ′. The same
is true for Z(s,W,W ′,Φ).

We define:

L(s, π, π′) = P (q−s)−1 (2.0.6)

with P of minimal degree. Of course, L(s, π, π′) is uniquely determined.
The theorem is deduced from:

Theorem 2.0.3. Let A be the maximal torus in G. There are finitely many
finite functions xi on A such that, for any Whittaker function W there are
Schwartz-Bruhat functions φj on Fn−1 with:

W (a) =
∑

xi(a)φi(α1(a), ..., αn−1(a)) (2.0.7)

where a = diag(a1, ..., an−1, 1), αi(a) = ai/ai+1.

A finite function is a continuous function whose translates span a finite-
dimensional vector space.

This theorem (and the previous one ) is due to Jacquet, Piatetski-Shapiro,
Shalika (Am.J.Math. 105). In order to apply it, one has to use the Iwasawa
decomposition:
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GLn(F ) = GLn(OF )AGLn(OF ) (2.0.8)

and the fact that the GLn(OF )-translates of W,W ′ span finite-dimensional
spaces.

Here are some explicit formulae for L(s, π, π′):

Theorem 2.0.4. If π, π′ are unramified, we can write π = Ind(χ1 ⊗ ...⊗ χn),
π′ = Ind(µ1 ⊗ ...⊗ µm). Then:

L(s, π, π′) =
n∏

i=1

m∏

j=1

(1 − χi($)µj($))−1 (2.0.9)

If π, π′ are supercuspidal and n > m, then:

L(s, π, π′) = 1 (2.0.10)

If n = m we have:

L(s, π, π′) =
∏

(1 − αq−s)−1 (2.0.11)

with the product over all α = qs0 such that π̂ ' π′ ⊗ |det|s0 .
Examples:

• take n = 2, π unramified and π′ = χ an unramified character. Then π =U

IndGP (χ1⊗χ2). One can compute the Whittaker function W associated to
the normalized spherical vector for π (i.e. the GL2(OF )-invariant function
f with f(1) = 1): first of all

W (

(
$m

1

)
) = W (

(
$m

1

) (
1 x

1

)
) = ψ($mx)W (

(
$m

1

)
)

for any x ∈ OF . If we assume cond(ψ) = OF , then W (
$m

1
) = 0 for

m < 0.

For m ≥ 0, one can prove:

W (
$m

1
) = (1−q−1χ1χ

−1
2 ($))q−m/2(χ1($)m+1−χ2($)m+1)/(χ1($)−χ2($))

(2.0.12)

In general, assuming π irreducible and χ1 6= χ2, one can prove that the
Kirillov model of π consists of locally constant functions f on F ∗ such
that there are constants C1, C2 with:

f(x) = C1|x|
1/2χ1(x) + C2|x|

1/2χ2(x) (2.0.13)
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for x small and f(x) = 0 for x large.

From this, it is easy to compute L(s, π, χ) = Z(s,W, χ).

The formula for spherical Whittaker functions for general n can be found
in Casselman, Shalika (Comp.Math.41). In general, one can prove:

L(s, Ind(ρ⊗ ρ′)) = L(s, ρ)L(s, ρ′) (2.0.14)

for any ρ, ρ′.

The fact that L(s, π) = 1 for supercuspidal π follows from the fact that the
Kirillov model for π is precisely the space of locally constant, compactly
supported functions on F ∗, so that the zeta-integral is automatically a
polynomial in C[qs, q−s]. We recall some properties of Kirillov models in
an appendix.

• Choose an unramified character χ of F ∗; we form the induced represen-
tation: π =U IndGP (χ1 ⊗ χ2 ⊗ ... ⊗ χn), where χn = χ, χj = χj+1| |

−1.
This representation is reducible and, from the Bernstein-Zelevinsky clas-
sification, we know that it has a unique irreducible (ramified) quotient
and a unique irreducible (unramified) subrepresentation. The L-function
of the subrepresentation is L(s, χ) and the L-function of the quotient is
1. Again, this follows from the form of the Kirillov model of π; when
n = 2, it consists of locally constant functions f on F ∗ such that there is
a constant C with:

f(x) = C|x|1/2χ(x)

for x small and f(x) = 0 for large x.

Proposition 2.0.5. Let τ be a smooth irreducible generic representation of
GLm, m < n. Then, if π is a supercuspidal representation of GLn:

L(s, π, τ) = 1 (2.0.15)

This is lemma 3.3 of Henniart (Inv.Math. 113). The same paper contains
general formulae for L(s, π), according to the Bernstein-Zelevinsky classifica-
tion.

Now we turn to the functional equation: define

W̃ (g) = W (wtg−1) (2.0.16)

for any Whittaker function W on GL(n).

Theorem 2.0.6. • n > m. There is a unique function ε(s, π, π′, ψ) such
that:
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Z(s,W,W ′)

L(s, π, π′)
ε(s, π, π′, ψ) =

Z(1− s, W̃ , W̃ ′)

L(1 − s, π̂, π̂′)
(2.0.17)

• n = m. There is a unique function ε(s, π, π′, ψ) such that:

Z(s,W,W ′,Φ)

L(s, π, π′)
ε(s, π, π′, ψ) =

Z(1− s, W̃ , W̃ ′, Φ̂)

L(1− s, π̂, π̂′)
(2.0.18)

where Φ̂ is the Fourier transform of Φ.
Moreover, ε(s, π, π′, ψ) has the form cq−fs, where f is a non-negative integer.

Note that ε is independent of W,W ′. It is clear from the definition that
ε(s, π, π′, ψ) is a polynomial in qs, q−s. On the other hand, we have:

ε(s, π, π′, ψ)ε(1 − s, π̂, π̂′, ψ̄) = ω(−1) (2.0.19)

and this implies that ε(s, π, π′, ψ) is in fact a monomial in q−s.
If we change character, it is easy to see how the epsilon factor changes. For

example, if ψ′(x) = ψ(ax) for a fixed a 6= 0 and m = 1, π′ = 1, then:

ε(s, π, 1, ψ′) = ε(s, π, 1, ψ)ω(a)|a|n(s−1/2) (2.0.20)

where ω is the central character of π.
If π, π′, ψ are unramified, we can choose W,W ′ such that the zeta integrals

coincide with the L-functions and thus ε(s, π, π′) = 1 (one can also prove f = 0).
Example. In Tate’s thesis, section 2.5, one can find the computation of the

epsilon factors or characters:

•
ε(s, χ, ψ) = χ($)mq(1/2−s)m (2.0.21)

if m is the exponent of the conductor of ψ and χ is unramified;

• In general:

ε(s, χ, ψ) = ω($m+c)q(1/2−s)(m+c)g(χ, ψ) (2.0.22)

if χ is ramified with conductor pc and

g(χ, ψ) = V ol(O∗
F )−1

∫

O∗

χ−1ψ($−m−cx)dx (2.0.23)

where dx is now the self-dual measure w.r.t ψ.

It is also useful to consider the following local factor:

γ(s, π, π′, ψ) = ε(s, π, π′, ψ)
L(1 − s, π̂, π̂′)

L(s, π, π′)
(2.0.24)
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3 Henniart’s theorem

We have the following beautiful theorem (Henniart, Inv.Math.113)

Theorem 3.0.7. a)Let n ≥ 2, π1, π2 two smooth irreducible generic represen-
tations. Assume that:

γ(s, π1, π
′, ψ) = γ(s, π2, π

′, ψ) (3.0.25)

for any smooth irreducible generic representation π′ of GL(n − 1). Then
π1 ' π2.

b)Let n ≥ 2, π1, π2 two supercuspidal representations of GL(n). Assume
that, for any m < n, and for any supercuspidal representation π′ of GL(m), we
have:

ε(s, π1, π
′, ψ) = ε(s, π2, π

′, ψ) (3.0.26)

Then π1 ' π2.

This theorem implies the uniqueness of the local Langlands correspondence
(Henniart, loc.cit).

Proof. (sketch).We sketch the proof of part a). We define

S = {(W1,W2) ∈ Wπ1,ψ ⊕Wπ2,ψ;W1|GLn−1
= W2|GLn−1

} (3.0.27)

We want to prove that S is stable for GL(n), S 6= Wπ1,ψ ⊕ Wπ2,ψ and S
projects non-trivially on Wπ1,ψ and Wπ2,ψ. Then, by irreducibility of π1, π2, S
is the graph of an isomorphism π1 ' π2.

To begin with, we prove that S is G-stable. Define S̃ by analogy with S,
taking duals.

The subgroup Pn introduced in the previous lecture stabilizes S and S̃. From
lemma 3.0.8, if g ∈t Pn then: g(W1,W2) ∈ S if and only if (g̃W 1, g̃W 2) ∈ S̃.

Now:

g̃W i(h) = Wi(w
th−1g) = W̃i(h

tg−1) =t g−1W̃i(h)

shows, with the next lemma, that tPn stabilizes S. But Pn and tPn generate
GLn(F ).

It remains to prove that S 6= Wπ1,ψ⊕Wπ2,ψ and S projects non-trivially on
Wπ1,ψ and Wπ2,ψ. This follows from lemma 4.0.9.

Lemma 3.0.8. We have: (W1,W2) ∈ S if and only if (W̃1, W̃2) ∈ S̃.

Proof. We have the equalities:

Z(s,W1,W
′) = Z(s,W2,W

′) (3.0.28)

if (W1,W2) ∈ S. Similarly:
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Z(s, W̃1, W̃ ′) = Z(s, W̃2, W̃ ′) (3.0.29)

Consider the function Hr on GL(n− 1) such that Hr(g) = 0 if |det(g)| 6= qr

and Hr(g) = W̃1(
g

1
) − W̃2(

g
1

) if |det(g)| = qr. Then 3.0.28 implies:

∫

Un−1\GLn−1

Hr(g)W̃ ′(g)dg = 0 (3.0.30)

for any integer r. This implies Hr = 0 (Jacquet, Piatetski-Shapiro, Shalika,
Math.Ann. 256, lemma 3.5) and thus (W̃1, W̃2) ∈ S̃. The other implication
follows from the functional equation, together with the hypothesis on the epsilon
factors.

Part b) of theorem 3.0.7 follows immediately from a) and the proposition
2.0.5.

4 Three lemmas on Whittaker functions

Lemma 4.0.9. Let π be a smooth irreducible generic representation of G and
H a smooth function on GLn−1(F ), with compact support modulo Un−1 and
verifying:

H(ug) = ψ(u)H(g) (4.0.31)

Then there is a function W ∈ Wπ,ψ such that:

W (

(
g

1

)
) = H(g) (4.0.32)

The proof is in: Bernstein,Zelevinsky, Russ.Math.Surveys 31, §5.

Lemma 4.0.10. Let H be a smooth function on GL(n) such that:

H(ug) = ψ̄(u)H(g) (4.0.33)

and H is compactly supported modulo U . If

∫

U\G

H(g)W (g)dg = 0 (4.0.34)

for any Whittaker function W ∈ Wτ,ψ and for any irreducible generic τ ,
then H = 0.

Lemma 4.0.11. Let π be an irreducible generic representations of G and W ∈
Wπ,ψ. For any m there is a compact subset Cm of G such that if |det(g)| = qm

and W

(
g

1

)
6= 0, then g ∈ UCm.
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5 Appendix: Kirillov models

We discuss the theory for GL(2) (the theory for GL(n) is essentially the same).
Then K is a space of functions on F ∗ such that:

π

(
a

1

)
f(x) = f(ax) (5.0.35)

π

(
1 a

1

)
f(x) = ψ(ax)f(x) (5.0.36)

Since π is smooth, f is stabilized by an open subgroup of F ∗, therefore it is

locally constant. On the other hand f is stabilized by the matrices

(
1 a

1

)

with a small enough, therefore f(x) = ψ(ax)f(x) if a is small enough; this
implies that f(x) = 0 for |x| large.

Moreover,

π

(
1 a

1

)
f(x) − f(x) = (ψ(ax) − 1)f(x)

implies π

(
1 a

1

)
f(x) = f(x) for |x| small.

Therefore, if π is supercuspidal, its space V is contained in the space of
locally constant and compactly supported functions on F ∗. On the other hand,
the last space is irreducible under the action of P2. In fact, if f is in an invariant
subspace of C∞

c (F ∗), then we consider:

f ′(a) =

∫

F

φ(x)π(
1 x

1
)f(a)dx (5.0.37)

for φ ∈ C∞
c (F ∗). Then f ′(a) = φ̂(a)f(a) and we can choose φ such that

φ̂(a)f(a) is equal to the characteristic function of a neighborhood of a where f
is constant.
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