Whittaker models for GL(n)

Fabio Mainardi
1st May 2006

In this lecture, we will introduce the Whittaker models for $G L(n)$, which we will use in the next lecture to define the L-functions and epsilon factors of smooth representations.

Let F be a local non-archimedean field as usual, $\pi: G=G L(n, F) \rightarrow G L(V)$ a smooth irreducible representation. We fix a non trivial additive character ψ of F. Recall that all the other characters are obtained by multiplication: $x \mapsto \psi(a x)$, for some $a \in F$.

We extend ψ to a character of the unipotent radical as follows:

$$
\begin{equation*}
\psi(u)=\psi\left(\sum_{i=1}^{n-1} u_{i, i+1}\right) \tag{0.0.0.1}
\end{equation*}
$$

Definition 0.0.0.1. A Whittaker functional on V is a linear functional Λ : $V \rightarrow \mathbf{C}$ such that:

$$
\begin{equation*}
\Lambda(\pi(u) v)=\psi(u) \Lambda(v) \tag{0.0.0.2}
\end{equation*}
$$

for any $u \in U, v \in V$.
We say π is generic if it admits non-zero Whittaker functionals.
We have the following theorem, by Gelfand and Kazhdan:
Theorem 0.0.0.2. 1. if π is supercuspidal and infinite-dimensional, it is generic.
2. Whittaker functionals are unique up to scalars.
3. π is generic if and only if its contragredient is generic.
4. if π is generic and unramified, then $\pi \simeq \operatorname{Ind}_{P}^{G}\left(\chi_{1} \otimes \ldots \otimes \chi_{n}\right)$, where P is the Borel and χ_{i} are unramified characters.
5. if $n=2$, every irreducible, infinite-dimensional π is generic.
6. the above statements do not depend on the choice of $\psi \neq 1$.

We will only sketch the proof, for details, see Bernstein \& Zelevinsky, Russ.Math.Surveys 31.

First, we define the Whittaker models: consider the space:

$$
\begin{equation*}
\mathcal{W}_{\pi, \psi}=\left\{W_{v}: G \rightarrow \mathbf{C} ; W_{v}(g)=\Lambda(\pi(g) v), v \in V\right\} \tag{0.0.0.3}
\end{equation*}
$$

for a fixed Whittaker functional $\Lambda \neq 0$ (taking a different Λ, we get an isomorphic space, because of point 2 of the theorem).

We let G act on this space by right translation, then: $g W_{v}=W_{g v}$. Then $\mathcal{W}_{\pi, \psi}$ is irreducible and the map $v \mapsto W_{v}$ is a G-isomorphism. We call 0.0.0.3 the Whittaker model for π (it doesn't depend on ψ, up to isomorphisms).

An example of Whittaker functional: take $n=2, \pi=\operatorname{Ind} d_{P}^{G}\left(\chi_{1} \otimes \chi_{2}\right)$ and, assuming convergence, define Λ by:

$$
f \mapsto \int_{F} f\left(\begin{array}{cc}
1 & \tag{0.0.0.4}\\
x & 1
\end{array}\right) \psi(-x) d x
$$

Gelfand and Kazhdan proved the following theorem (B-Z, §7):
Theorem 0.0.0.3. If π is irreducible, $\hat{\pi} \simeq \tilde{\pi}$, where $\tilde{\pi}(g)=\pi\left(w^{t} g^{-1} w^{-1}\right)$ and

$$
w=\left(\begin{array}{ccc}
& & 1 \tag{0.0.0.5}\\
& -1 & \\
(-1)^{n-1} & \cdots &
\end{array}\right)
$$

The theorem is clear for unramified generic representations. For general π, one has to prove the equality of traces: $\operatorname{tr}(\hat{\pi})=\operatorname{tr}(\tilde{\pi})$ which follows from the fact that a distribution on G, invariant under inner automorphisms, is also invariant under transposition (see B-Z, $\S 7$).

Assuming this theorem, it is immediate to prove the third point of 0.0.0.3. In fact, the operation $g \mapsto w^{T} g^{-1} w^{-1}$ preserves both U and ψ, as can be easily verified.

Following Gelfand, Kazhdan, we look at the restriction of π to the subgroups:

$$
\begin{gather*}
P_{n}=\left\{\left(\begin{array}{cccc}
* & \ldots & * & * \\
* & \ldots & * & * \\
0 & \ldots & 0 & 1
\end{array}\right)\right\} \tag{0.0.0.6}\\
M_{n}=\left\{\left(\begin{array}{cc}
1_{n-1} & * \\
&
\end{array}\right)\right\} \tag{0.0.0.7}
\end{gather*}
$$

Note that $P_{n} \simeq M_{n} \times G L_{n-1}$.
Define: $V_{M, \psi}=V /<\pi(m) v-\psi(m) v ; m \in M_{n}, v \in V>$ (for $\psi=1$ and $n=2$ this is the Jacquet module). This is a representation of P_{n-1}, which we denote by $\Phi^{-}(\pi)$. Then $\left(\Phi^{-}\right)^{n-1}(\pi)$ is a representation of $P_{1}=1$ on $V_{U, \psi}$ and π is non-generic if and only if $\left(\Phi^{-}\right)^{n-1}(\pi)=0$.
Proposition 0.0.0.4. $\Phi^{-}(\pi)=0$ if and only if $\left.\pi\right|_{M_{n}}=1$.
From this, it is easy to proof the first claim of 0.0 .0 .3 . Remark that the functor Φ^{-}depends on ψ, but the previous proposition is true for any $\psi \neq 1$.

The proof of point 2 can be found in $\S 7$ of B-Z, loc.cit.
Point 4 is proven in Zelevinsky, Ann.E.N.S, 13.

0.0.1 Sheaves and representations

In this subsection, we introduce a geometric tool in the study of smooth representations and we prove point 5 of theorem 0.0.0.3.

Let $\pi: G \rightarrow G L(V)$ be smooth and irreducible. We look at the restriction of π to $M_{n} \simeq F^{n-1}$. We have an action of the algebra $C_{c}^{\infty}\left(F^{n-1}\right)$ of complex, locally constant, compactly supported functions on F^{n-1}, on V. It is convenient to take the following modified action:

$$
\begin{equation*}
\phi v=\int_{M_{n}} \hat{\phi}(m) \pi(m) v d m \tag{0.0.1.1}
\end{equation*}
$$

(with some abuse of notation, we identify M_{n} with F^{n-1}), where

$$
\hat{\phi}(y)=\int_{M_{n}} \phi(z) \psi\left(y^{t} z\right) d z
$$

with the self-dual measure $d z$ on $M_{n} \simeq F^{n-1}$ Then, since $\widehat{\phi_{1} * \phi_{2}}=\hat{\phi_{1}} \hat{\phi}_{2}$, we can take on $C_{c}^{\infty}\left(F^{n-1}\right)$ the product of functions, instead of convolution.

We want to prove:
Lemma 0.0.1.1. For any $v \in V$ there is a open compact subset $U \subset F^{n-1}$ such that $1_{U} v=v$.

Proof. Let \mathfrak{p}^{m} be the conductor of ψ and choose k such that $\pi\left(\begin{array}{cc}1_{n-1} & x \\ & 1\end{array}\right) v=v$ for any $x \in\left(\mathfrak{p}^{k} O_{F}\right)^{n-1}$. Then:

$$
\begin{aligned}
& 1_{\mathfrak{p}^{-k}} v=\int_{F^{n-1}} \hat{1}_{\mathfrak{p}^{-k}}(x) \pi\left(\begin{array}{cc}
1_{n-1} & x \\
& 1
\end{array}\right) v d x= \\
& \operatorname{vol}\left(\mathfrak{p}^{-k}\right) \int_{F^{n-1}} 1_{\mathfrak{p}^{m+k}}(x) \pi\left(\begin{array}{ll}
1_{n-1} & x \\
& 1
\end{array}\right) \operatorname{vdx}=\operatorname{vol}\left(\mathfrak{p}^{-k}\right) \operatorname{vol}\left(\mathfrak{p}^{m+k}\right) v=v
\end{aligned}
$$

where the last equality holds because of the self-duality of the measure.
This lemma allows us to attach to π a sheaf on F^{n-1} in the following way. We first define a pre-sheaf by $\mathcal{F}_{\pi}(U)=1_{U} V$, for any open compact subset $U \subset F^{n-1}$. It is not hard to check the sheaf axiom. Moreover, note that:

$$
\begin{equation*}
\mathcal{F}_{\pi, x} \simeq V /<v ; 1_{U} v=0 \text { for some } \mathrm{U} \text { containing } \mathrm{x}> \tag{0.0.1.2}
\end{equation*}
$$

Lemma 0.0.1.2. We have: $\mathcal{F}_{\pi, x} \simeq V_{M_{n}, \psi}$ for any character ψ. Moreover, $\mathcal{F}_{\pi, x} \simeq \mathcal{F}_{\pi, \mu}$ for two non-trivial characters ψ, μ.
Proof. We take $n=2$ for simplicity. Choose $U=x+\mathfrak{p}^{k}, k$ big enough. Then

$$
\hat{1}_{U}(y)=\int_{\mathfrak{p}^{k}} \psi(y(x+z)) d z=\psi(x y) \int_{\mathfrak{p}^{k}} \psi(y z) d z=\psi(x y) \operatorname{vol}\left(\mathfrak{p}^{k}\right) 1_{\mathfrak{p}^{m-k}}(y)
$$

Therefore $1_{U} v=0$ if and only if

$$
\int_{\mathfrak{p}^{m-k}} \pi\left(\begin{array}{cc}
1 & x \\
& 1
\end{array}\right) \psi(x t) d t=0
$$

and the proposition follows from the known characterization of Jacquet modules (indeed, the proof of that characterization applies also when ψ is not trivial).

The last statement follows from the F^{*}-equivariance of the sheaf \mathcal{F}_{π} : the ma$\operatorname{trix}\left(\begin{array}{cc}a & \\ & 1_{n-1}\end{array}\right)$ induces an isomorphism $\mathcal{F}_{\pi, \psi} \simeq \mathcal{F}_{\pi, \psi_{a}}$ by translation, where $\psi_{a}(x)=\psi(a x)$.

As an application, we can prove the following:
Theorem 0.0.1.3. If $n=2$, every irreducible, infinite-dimensional representation is generic.

Proof. If π is not generic, then $V_{M_{2}, \psi}=0$ for every $\psi \neq 1$. This means that the only stalk which can be nonzero, is $V_{M_{2}, 1}$. By construction V is the space of compactly supported sections of \mathcal{F}_{π}, so that $V \simeq V_{M_{2}}$ and this means that the unipotent radical $U=M_{2}$ acts trivially on V. Then the theorem follows from the next proposition.

Proposition 0.0.1.4. If $n=2$ and π is infinite-dimensional, then $V^{U}=0$.
Proof. Let $v \in V^{U}$. Use the following identity:

$$
\left(\begin{array}{ll}
1 & 0 \tag{0.0.1.3}\\
c & 1
\end{array}\right)=\left(\begin{array}{rr}
1 & 1 / c \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
0 & -1 / c \\
c & 0
\end{array}\right)\left(\begin{array}{rr}
1 & 1 / c \\
0 & 1
\end{array}\right)
$$

which implies that $\left(\begin{array}{rr}0 & -1 / c \\ c & 0\end{array}\right)$ fixes v if c is small enough. In particular:

$$
\left(\begin{array}{ll}
a & \tag{0.0.1.4}\\
& 1 / a
\end{array}\right) v=\left(\begin{array}{rr}
0 & -a / c \\
c / a & 0
\end{array}\right) v
$$

if c is small enough. Therefore $\left(\begin{array}{cc}a & \\ & 1 / a\end{array}\right) v=v$ for any $a \in F^{*}$. In turn, this implies:

$$
\left(\begin{array}{cc}
& 1 \tag{0.0.1.5}\\
-1 &
\end{array}\right) v=\left(\begin{array}{cc}
& 1 / a \\
-a &
\end{array}\right) v
$$

for any $a \neq 0$ and we can choose it small enough. Therefore $S L(2, F)$ fixes v, because of the Bruhat decomposition for $S L(2, F)$:

$$
S L(2, F)=B \bigsqcup B\left(\begin{array}{ll}
& 1 \tag{0.0.1.6}\\
-1 &
\end{array}\right) B
$$

where B is the Borel parabolic. By Schur's lemma, the center of G acts by scalars. But then $G v$ spans a finite-dimensional space and this contradicts our assumptions.

Another application:

Theorem 0.0.1.5. Take $n=2$. Let Λ be a nonzero Whittaker functional. Then for any $v \neq 0$ there is a $g \in F^{*}$ such that $\Lambda\left(\pi\left(\begin{array}{ll}g & \\ & 1\end{array}\right) v\right) \neq 0$. Proof. If $v \mapsto \Lambda\left(\pi\left(\begin{array}{cc}g & \\ & 1\end{array}\right) v\right)=0$ for any g, then v goes to zero in $V_{M, \psi}$ for any $\psi \neq 1$. Then $v-\pi(u) v$ has zero image in every $\mathcal{F}_{\pi, x}$, for any $u \in M_{2}$. This implies $v=0$, if we use again proposition 0.0.1.4.

This theorem implies that V is isomorphic to the space \mathcal{K} of functions on F^{*} of the form $x \mapsto W_{v}\left(\begin{array}{cc}x & \\ & 1\end{array}\right), v \in V$. We let G act on \mathcal{K} by right translation. The isomorphism is given by $v \mapsto f_{v}, f_{v}(g)=W_{v}\left(\begin{array}{cc}x & \\ & 1\end{array}\right)$. The space \mathcal{K} is called the Kirillov model.

For general n, consider the map which associates to $v \in V$ the restriction of W_{v} to P_{n}. One can prove that this map is injective. The image is the Kirillov model \mathcal{K}. It contains with finite codimension the space $C_{c}^{\infty}\left(P_{n}, \psi\right)$ of locally constant, compactly supported functions on P_{n} with M_{n} acting as ψ; moreover, $\mathcal{K}=C_{c}^{\infty}\left(P_{n}, \psi\right)$ if and only if π is supercuspidal.

