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In this lecture, we will introduce the Whittaker models for GL(n), which
we will use in the next lecture to define the L-functions and epsilon factors of
smooth representations.

Let F be a local non-archimedean field as usual, π : G = GL(n, F )→ GL(V )
a smooth irreducible representation. We fix a non trivial additive character
ψ of F . Recall that all the other characters are obtained by multiplication:
x 7→ ψ(ax), for some a ∈ F .

We extend ψ to a character of the unipotent radical as follows:

ψ(u) = ψ(

n−1∑

i=1

ui,i+1) (0.0.0.1)

Definition 0.0.0.1. A Whittaker functional on V is a linear functional Λ :
V → C such that:

Λ(π(u)v) = ψ(u)Λ(v) (0.0.0.2)

for any u ∈ U , v ∈ V .

We say π is generic if it admits non-zero Whittaker functionals.
We have the following theorem, by Gelfand and Kazhdan:

Theorem 0.0.0.2. 1. if π is supercuspidal and infinite-dimensional, it is
generic.

2. Whittaker functionals are unique up to scalars.

3. π is generic if and only if its contragredient is generic.

4. if π is generic and unramified, then π ' IndGP (χ1 ⊗ ...⊗ χn), where P is
the Borel and χi are unramified characters.

5. if n = 2, every irreducible, infinite-dimensional π is generic.

6. the above statements do not depend on the choice of ψ 6= 1.

We will only sketch the proof, for details, see Bernstein & Zelevinsky, Russ.Math.Surveys
31.

First, we define the Whittaker models: consider the space:

Wπ,ψ = {Wv : G→ C;Wv(g) = Λ(π(g)v), v ∈ V } (0.0.0.3)

for a fixed Whittaker functional Λ 6= 0 (taking a different Λ, we get an
isomorphic space, because of point 2 of the theorem).

We let G act on this space by right translation, then: gWv = Wgv . Then
Wπ,ψ is irreducible and the map v 7→ Wv is a G-isomorphism. We call 0.0.0.3
the Whittaker model for π (it doesn’t depend on ψ, up to isomorphisms).

An example of Whittaker functional: take n = 2, π = IndGP (χ1 ⊗ χ2) and,
assuming convergence, define Λ by:
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f 7→
∫

F

f(
1
x 1

)ψ(−x)dx (0.0.0.4)

Gelfand and Kazhdan proved the following theorem (B-Z, §7):

Theorem 0.0.0.3. If π is irreducible, π̂ ' π̃, where π̃(g) = π(wtg−1w−1) and

w =




1
−1
...

(−1)n−1


 (0.0.0.5)

The theorem is clear for unramified generic representations. For general π,
one has to prove the equality of traces: tr(π̂) = tr(π̃) which follows from the fact
that a distribution on G, invariant under inner automorphisms, is also invariant
under transposition (see B-Z, §7).

Assuming this theorem, it is immediate to prove the third point of 0.0.0.3.
In fact, the operation g 7→ wT g−1w−1 preserves both U and ψ, as can be easily
verified.

Following Gelfand, Kazhdan, we look at the restriction of π to the subgroups:

Pn = {



∗ ... ∗ ∗
∗ ... ∗ ∗
0 ... 0 1


} (0.0.0.6)

Mn = {
(

1n−1 ∗
1

)
} (0.0.0.7)

Note that Pn 'Mn ×GLn−1.
Define: VM,ψ = V/ < π(m)v − ψ(m)v;m ∈ Mn, v ∈ V > (for ψ = 1 and

n = 2 this is the Jacquet module). This is a representation of Pn−1, which we
denote by Φ−(π). Then (Φ−)n−1(π) is a representation of P1 = 1 on VU,ψ and
π is non-generic if and only if (Φ−)n−1(π) = 0.

Proposition 0.0.0.4. Φ−(π) = 0 if and only if π|Mn = 1.

From this, it is easy to proof the first claim of 0.0.0.3. Remark that the
functor Φ− depends on ψ, but the previous proposition is true for any ψ 6= 1.

The proof of point 2 can be found in §7 of B-Z, loc.cit.
Point 4 is proven in Zelevinsky, Ann.E.N.S, 13.

0.0.1 Sheaves and representations

In this subsection, we introduce a geometric tool in the study of smooth repre-
sentations and we prove point 5 of theorem 0.0.0.3.

Let π : G → GL(V ) be smooth and irreducible. We look at the restriction
of π to Mn ' Fn−1. We have an action of the algebra C∞c (Fn−1) of complex,
locally constant, compactly supported functions on F n−1, on V . It is convenient
to take the following modified action:
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φv =

∫

Mn

φ̂(m)π(m)vdm (0.0.1.1)

(with some abuse of notation, we identify Mn with Fn−1), where

φ̂(y) =

∫

Mn

φ(z)ψ(ytz)dz

with the self-dual measure dz on Mn ' Fn−1 Then, since φ̂1 ∗ φ2 = φ̂1φ̂2,
we can take on C∞c (Fn−1) the product of functions, instead of convolution.

We want to prove:

Lemma 0.0.1.1. For any v ∈ V there is a open compact subset U ⊂ F n−1 such
that 1Uv = v.

Proof. Let pm be the conductor of ψ and choose k such that π(
1n−1 x

1
)v = v

for any x ∈ (pkOF )n−1. Then:

1p−kv =

∫

Fn−1

1̂p−k(x)π(
1n−1 x

1
)vdx =

vol(p−k)

∫

Fn−1

1pm+k(x)π(
1n−1 x

1
)vdx = vol(p−k)vol(pm+k)v = v

where the last equality holds because of the self-duality of the measure.

This lemma allows us to attach to π a sheaf on F n−1 in the following way.
We first define a pre-sheaf by Fπ(U) = 1UV , for any open compact subset
U ⊂ Fn−1. It is not hard to check the sheaf axiom. Moreover, note that:

Fπ,x ' V/ < v; 1Uv = 0 for some U containing x > (0.0.1.2)

Lemma 0.0.1.2. We have: Fπ,x ' VMn,ψ for any character ψ. Moreover,
Fπ,x ' Fπ,µ for two non-trivial characters ψ, µ.

Proof. We take n = 2 for simplicity. Choose U = x+ pk, k big enough. Then

1̂U (y) =

∫

pk
ψ(y(x+ z))dz = ψ(xy)

∫

pk
ψ(yz)dz = ψ(xy)vol(pk)1pm−k(y)

Therefore 1Uv = 0 if and only if

∫

pm−k
π(

1 x
1

)ψ(xt)dt = 0

and the proposition follows from the known characterization of Jacquet mod-
ules (indeed, the proof of that characterization applies also when ψ is not trivial).

3



The last statement follows from the F ∗-equivariance of the sheaf Fπ: the ma-

trix

(
a

1n−1

)
induces an isomorphism Fπ,ψ ' Fπ,ψa by translation, where

ψa(x) = ψ(ax).

As an application, we can prove the following:

Theorem 0.0.1.3. If n = 2, every irreducible, infinite-dimensional representa-
tion is generic.

Proof. If π is not generic, then VM2,ψ = 0 for every ψ 6= 1. This means that the
only stalk which can be nonzero, is VM2,1. By construction V is the space of
compactly supported sections of Fπ, so that V ' VM2 and this means that the
unipotent radical U = M2 acts trivially on V . Then the theorem follows from
the next proposition.

Proposition 0.0.1.4. If n = 2 and π is infinite-dimensional, then V U = 0.

Proof. Let v ∈ V U . Use the following identity:

(
1 0
c 1

)
=

(
1 1/c
0 1

)(
0 −1/c
c 0

)(
1 1/c
0 1

)
(0.0.1.3)

which implies that

(
0 −1/c
c 0

)
fixes v if c is small enough. In particular:

(
a

1/a

)
v =

(
0 −a/c

c/a 0

)
v (0.0.1.4)

if c is small enough. Therefore

(
a

1/a

)
v = v for any a ∈ F ∗. In turn,

this implies:

(
1

−1

)
v =

(
1/a

−a

)
v (0.0.1.5)

for any a 6= 0 and we can choose it small enough. Therefore SL(2, F ) fixes
v, because of the Bruhat decomposition for SL(2, F ):

SL(2, F ) = B
⊔
B

(
1

−1

)
B (0.0.1.6)

where B is the Borel parabolic. By Schur’s lemma, the center of G acts by
scalars. But then Gv spans a finite-dimensional space and this contradicts our
assumptions.

Another application:
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Theorem 0.0.1.5. Take n = 2. Let Λ be a nonzero Whittaker functional. Then

for any v 6= 0 there is a g ∈ F ∗ such that Λ(π

(
g

1

)
v) 6= 0.

Proof. If v 7→ Λ(π

(
g

1

)
v) = 0 for any g, then v goes to zero in VM,ψ for

any ψ 6= 1. Then v− π(u)v has zero image in every Fπ,x, for any u ∈M2. This
implies v = 0, if we use again proposition 0.0.1.4.

This theorem implies that V is isomorphic to the space K of functions on F ∗

of the form x 7→ Wv(
x

1
), v ∈ V . We let G act on K by right translation.

The isomorphism is given by v 7→ fv , fv(g) = Wv(
x

1
). The space K is

called the Kirillov model.
For general n, consider the map which associates to v ∈ V the restriction of

Wv to Pn. One can prove that this map is injective. The image is the Kirillov
model K. It contains with finite codimension the space C∞c (Pn, ψ) of locally
constant, compactly supported functions on Pn with Mn acting as ψ; moreover,
K = C∞c (Pn, ψ) if and only if π is supercuspidal.
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