by author | by node | involving several nodes | written by ESRs 20 GTEM publications written by ESRsM. Aranés, A. Arenas. Nodes: Barcelona, Warwick On the defining polynomials of maximal real cyclotomic extensions.
Rev. R. Acad. Cienc. Exactas Fis. Nat. 102 (2) (2008). B. Baran Node: Rome Fitting ideals and the Gorenstein property,
Accepted to appear in Archiv der Mathematik B. Baran Node: Rome Normalizers of non-split Cartan subgroups, modular curves and the class number one problem
Submitted B. Baran Node: Rome A modular curve of level 9 and the class number 1 problem
Accepted Journal of Number Theory, vol. 129 (2009), 715-728 H. Cohen, A. Morra Node: Bordeaux Counting cubic extensions with given quadratic resolvent
Accepted Journal of Algebra H. Cohen, A. Morra Node: Bordeaux Exact counting of cubic number fields with given quadratic
resolvent
Preprint A. Fehm Node: Tel Aviv Subfields of ample fields. Rational maps and definability.
Accepted Journal of Algebra A. Fehm and E. Paran Node: Tel Aviv Galois theory over rings of arithmetic power series
Submitted A. Fehm and E. Paran Node: Tel Aviv Non ample complete valued fields
Accepted IMRN A. Fehm, W.-D. Geyer Nodes: Essen, Tel Aviv A note on defining transcendentals in function fields
Accepted Journal of Symbolic Logic A. Fehm, M. Jarden, and S. Petersen Node: Tel Aviv Kuykian fields
Accepted Forum Mathematicum A. Fehm, S. Petersen Node: Tel Aviv On the rank of Abelian varieties over ample fields
Accepted International Journal of Number Theory F. Heiderich Node: Barcelona Galois Theory of Module Fields
PhD Thesis, Universitat de Barcelona, 2010. A. Montes, M. Wibmer Node: Heidelberg Gröbner Bases for Polynomial Systems with Parameters
Journal of Symbolic Computation 45, no. 12 (2010), pp. 1391-1425
Rühl, K.-T. Node: Lausanne Annihilating polynomials of excellent quadratic forms
Arch Math. (Basel), 90 (2008), no. 3, 217-222
Rühl, K.-T. Node: Lausanne Annihilating ideals of quadratic forms over local and global fields
Accepted Int. J. Number Theory 6 (2010), no. 3, pp. 603â€“624 J. Tuitman Node: Leuven A refinement of a mixed sparse effective nullstellensatz
Int Math Res Notices (2010) doi: 10.1093/imrn/rnq127 M. Wibmer Node: Heidelberg Gröbner bases for families of affine or projective schemes
Journal of Symbolic Computation 42, Issue 8, 803-834, 2007.
M. Wibmer Node: Heidelberg Geometric difference Galois theory
? PhD thesis, Heidelberg, 2010. M. Wibmer, L. Smith Node: Heidelberg On the dimension of coinvariants of permutation representations
Monatshefte für Mathematik 151, Number 1, 75-81, 2007 |