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1.Introduction

The talk reports the main results of the joint paper

F. Altomare, M. Cappelletti Montano, V. Leonessa and I.
Raşa,
On Markov operators preserving polynomials,
preprint, 2013.

The title refers to a special class of

positive linear operators

acting on the space C(K) of all continuous functions defined on a

convex compact subset K of Rd, d ≥ 1,

having non-empty interior.
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More precisely, denote by 1 the constant function 1 on K and, for
every i ∈ {1, . . . , d}, by pri the i-th coordinate function on K, i.e.

pri(x) = xi for every x = (x1, . . . , xd) ∈ K.

For every m ≥ 1, we denote by Pm(K) the linear subspace of the

(restriction to K of the) polynomials of degree no greater than m.
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We are interested in those Markov linear operator

T : C(K)→ C(K),

i.e., T is positive and T (1) = 1, satisfying

T (h) = h for every h ∈ {1, pr1, . . . , prd}, (1.1)

i.e., T leaves invariant polynomials of degree at most 1

and

T (Pm(K)) ⊂ Pm(K) for every m ≥ 2. (1.2)

i.e., T maps polynomials into polynomials of the same degree.
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Within this class, a special role is played by those Markov operators T
which in addition are positive projections, i.e.,

T 2 := T ◦ T = T

and such that their range

H := T (C(K)) = {f ∈ C(K) | T (f) = f}

are invariant under affine transformations, i.e.,

h ◦ σz,α ∈ H for every h ∈ H, z ∈ K and α ∈ [0, 1]

where
σz,α(x) = αx+ (1− α)z for every x ∈ K.

Such positive projections will be referred to as A-projections.
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The interest for such operators comes from the study of a special
differential operator (WT , C

2(K)) which can be associated with a
Markov operator T and which is defined as

WT (u) :=
1

2

d∑
i,j=1

αij
∂2u

∂xi∂xj

(u ∈ C2(K)), where

αij := T (priprj)− (priprj) (i, j = 1, . . . , d).

The differential operator WT has been carefully investigated in

F. Altomare, M. Cappelletti Montano, V. Leonessa and I.
Raşa,
On differential operators associated with Markov operators,
preprint, 2013,
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Additional results will also appear in the forthcoming monograph

F. Altomare, M. Cappelletti Montano, V. Leonessa and I.
Raşa,
Differential Operators, Markov Semigroups and Positive
Approximation Processes Associated with Markov Operators,
in preparation, 2013.

The differential operator WT is elliptic and it degenerates on a subset
of K which contains the set of the extreme points ∂eK of K.

In the above mentioned paper we showed that, if T maps polynomials
into polynomials of the same degree, then (WT , C

2(K)) is closable in
C(K) and its closure generates a Markov semigroup on C(K)
which can be represented as a limit of suitable iterates of
particular positive linear operators associated with T , namely
the Bernstein-Schnabl operators associated with T . Next we
proceed to discuss such a generation result in more details.
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2. Some preliminaries on Markov operators

A useful tool we shall use in the sequel is the notion of

Choquet boundary.

Given a linear subspace H of C(K), the Choquet boundary of H is the
subset of all points x ∈ K such that,

if µ̃ ∈M+(K) and if

∫
h dµ̃ = h(x) for every h ∈ H,

then ∫
f dµ̃ = f(x) for every f ∈ C(K).

It will be denoted by
∂HK.

If H contains the constants and separates the points of K, then ∂HK is
non-empty and every h ∈ H attains its minimum and maximum on
∂HK. Therefore,

if f, g ∈ H and if f = g on ∂HK, then f = g on K.
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An important example of Choquet boundary is the set

∂eK

of the extreme points of K.

They are defined as those points x0 ∈ K such that K \ {x0} is convex.

Indeed, denote by P1(K) the space of (the restriction to K of) all
polynomials of degree at most 1. Clearly, P1(K) contains the constants
and separates the points of K.

As a matter of fact, it turns out that

∂P1(K)K = ∂eK. (1.3)
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Now let us consider a Markov operator T : C(K)→ C(K) and set

M := {h ∈ C(K) | T (h) = h}. (1.4)

Clearly, M is contained in the range of T which will be denoted by

H := T (C(K)) = {T (f) | f ∈ C(K)}. (1.5)

The subspace M contains the constants and hence, if it separates the
points of K, then its Choquet boundary ∂MK is non-empty. In the
sequel, the following subset

∂TK := {x ∈ K | T (f)(x) = f(x) for every f ∈ C(K)} (1.6)

will play an important role. Its elements are also called the

interpolation points of the operator T .

The next result has been obtained by F. A.(2011).
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Theorem 2.1

Consider a Markov operator T : C(K)→ C(K) such that the subspace
M separates the points of K. Then

∅ 6= ∂MK ⊂ ∂TK ⊂ ∂HK. (1.7)

Moreover, if V is an arbitrary subset of M separating the points of K,

∂TK = {x ∈ K | T (h2)(x) = h2(x) for every h ∈ V }. (1.8)

Finally, if pri ∈M, i.e., T (pri) = pri for every i = 1, ..., d, then

Φ ≤ T (Φ),

∂TK = {x ∈ K | T (Φ)(x) = Φ(x)}, (1.9)

where

Φ =
d∑
i=1

pr2
i =‖ • ‖2
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Proposition 2.2

The following statements are equivalent:

(a) T is a projection, i.e., T 2(f) = T (f) for every f ∈ C(K).

(b) There exists a subset V of M separating the points of K such that
T 2(h2) = T (h2) for every h ∈ V , i.e., T (V 2) ⊂M .

Moreover, if T (pri) = pri for every i = 1, ..., d, then statement (a) and
(b) are equivalent to

(c) T 2(Φ) = T (Φ), where again Φ :=

d∑
i=1

pr2
i =‖ • ‖2.

Moreover, if (a), (b) or (c) holds true, then M = H and hence

∂MK = ∂TK = ∂HK.

If in addition T is an A-projection, then ∂TK ⊂ ∂K. Finally, for every
f, g ∈ C(K),

T (f) = T (g) provided f = g on ∂HK. (1.10)
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We recall that a simplex of Rd is the convex hull of some d+ 1
affinely independent points of Rd.
Therefore, the subset

Kd :=

{
(x1, . . . , xd) ∈ Rd | xi ≥ 0 for every i = 1, . . . , d and

d∑
i=1

xi ≤ 1

}
,

(1.11)
being the convex hull of {v0, . . . , vd}, where

v0 := (0, . . . , 0), v1 := (1, 0, . . . , 0), . . . , vd := (0, . . . , 0, 1), (1.12)

is a simplex in Rd and it is called the canonical simplex of Rd.

Note that,
∂eKd = {v0, . . . , vd}.
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According to the next theorem, when K is a simplex, then on C(K)
there exists a (unique) natural positive projection T on C(K) such
that T (C(K)) = P1(K) (F. A. (1977))

Theorem 2.3

Given a convex compact subset K of Rd, d ≥ 1, the following
statements are equivalent:

(a) K is a simplex.

(b) For every x ∈ K there exists a unique µ̃x ∈M+
1 (K) such that

µ̃x(K \ ∂eK) = 0 and∫
K
h dµ̃x = h(x) for every h ∈ P1(K).

(c) Every continuous function f : ∂eK −→ R can be continuously
extended to a (unique) function f̃ ∈ P1(K).

(d) There exists a (unique) positive projection T : C(K) −→ C(K)
such that T (C(K)) = P1(K).
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Moreover, if one of these statements holds true, then for every
f ∈ C(K) and x ∈ K,

T (f)(x) =

∫
K
f dµ̃x = f̃ |∂eK(x). (1.13)

Given a simplex K of Rd, the positive projection T : C(K) −→ C(K)
as in condition (d) is referred to as the canonical positive
projection associated with K.
Thus, for every f ∈ C(K), T (f) is the unique continuous affine
function on K that coincides with f on ∂eK.
In the case K = Kd, d ≥ 1, the canonical projection is given by

Td(f)(x) :=

(
1−

d∑
i=1

xi

)
f(v0) +

d∑
i=1

xif(vi) (1.14)

(f ∈ C(Kd), x = (x1, . . . , xd) ∈ Kd, v0, . . . , vd as in (1.12).
In particular, for d = 1,

T1(f)(x) := (1− x)f(0) + xf(1) (1.15)

(f ∈ C([0, 1]), 0 ≤ x ≤ 1).
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as in condition (d) is referred to as the canonical positive
projection associated with K.
Thus, for every f ∈ C(K), T (f) is the unique continuous affine
function on K that coincides with f on ∂eK.
In the case K = Kd, d ≥ 1, the canonical projection is given by

Td(f)(x) :=

(
1−

d∑
i=1

xi

)
f(v0) +

d∑
i=1

xif(vi) (1.14)

(f ∈ C(Kd), x = (x1, . . . , xd) ∈ Kd, v0, . . . , vd as in (1.12).
In particular, for d = 1,

T1(f)(x) := (1− x)f(0) + xf(1) (1.15)

(f ∈ C([0, 1]), 0 ≤ x ≤ 1).
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3. An approximation process

Given a Markov operator T : C(K)→ C(K), by the Riesz
representation theorem there exists a unique family (µ̃Tx )x∈K in
M+

1 (K) such that

T (f)(x) =

∫
K
f dµ̃Tx (f ∈ C(K), x ∈ K). (1.16)

Such a family is said to be the continuous selection of probability
Borel measures on K associated with T .
By means of (µ̃Tx )x∈K we can construct the so-called
Bernstein-Schnabl operators associated with T which are
defined by setting, for every n ≥ 1, x ∈ K and f ∈ C(K),

Bn(f)(x) =

∫
K
· · ·
∫
K
f
(x1 + . . .+ xn

n

)
dµ̃Tx (x1) · · · dµ̃Tx (xn). (1.17)

Note that by the continuity property of the product measure it follows
that Bn(f) ∈ C(K). Moreover, B1 = T .
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For K = Kd and T = Td, then the Bn’s become the classical Bernstein
operators on C(Kd):

Bn(f)(x) :=
∑

h1, . . . , hp = 0, . . . , n
h1 + . . .+ hp ≤ n

f

(
h1

n
, . . . ,

hp
n

)
n!

h1! . . . hp!(n− h1 − . . .− hp)!

× xh11 . . . x
hp
p

(
1−

p∑
i=1

xi

)n− p∑
i=1

hi

.

For d = 1, they turn into

Bn(f)(x) :=

n∑
k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k

(f ∈ C([0, 1]), 0 ≤ x ≤ 1).
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For a comprehensive survey on these operators (including noteworthy
examples), we refer to

F. Altomare and M. Campiti,
Korovkin-type Approximation Theory and its Applications, de
Gruyter Studies in Mathematics 17, W. de Gruyter, Berlin, New
York, 1994.

and to the references contained in the relevant notes. Here we only
point out that

Bn(f) = f on ∂TK for every f ∈ C(K) (1.18)

and, if in addition the Markov operator T satisfies

T (h) = h for every h ∈ {1, pr1, . . . , prd}, (1.19)

then the sequence (Bn)n≥1 is a positive approximation process in
C(K), that is

lim
n→∞

Bn(f) = f uniformly on K for every f ∈ C(K). (1.20)
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4.Differential operators associated with Markov
operators

From now on fix a Markov operator T : C(K) −→ C(K) satisfying

T (h) = h for every h ∈ {1, pr1, . . . , prd},

K being a convex compact subset Rd, d ≥ 1, whose interior is assumed
to be non-empty.

Consider the differential operator WT : C2(K) −→ C(K) defined by

WT (u) :=
1

2

d∑
i,j=1

αij
∂2u

∂xi∂xj
(1.21)

(u ∈ C2(K)), where, for each i, j = 1, . . . , d

αij := T (priprj)− (priprj)). (1.22)
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Accordingly, if ξ1, . . . , ξd ∈ R, then

d∑
i,j=1

αij(x)ξiξj = T

( d∑
i=1

ξi(pri − xi)

)2
 (x) ≥ 0,

which implies that WT is elliptic.

Moreover, it degenerates on ∂TK and, in particular, on ∂eK because
αij = 0 on ∂TK for every i, j = 1, . . . , d.

The operator WT will be referred to as the elliptic second order
differential operator associated with the Markov operator T .
Note also that for each i, j = 1, . . . , d

WT (priprj) = αij = T (priprj)− priprj
and hence, if P ∈ P2(K), then WT (P ) = T (P )− P .

Therefore, if T is a Markov projection and T (P2(K)) ⊂ P2(K), then

WT (T (P )) = 0 for every P ∈ P2(K). (1.23)
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Differential operators of the form (1.20) are of concern in the study of
diffusion problems arising from different areas such as biology,
mathematical finance, physics.
In the special case where T is a positive projection, a rather complete
overview on them can be found in Chapter 6 of the monograph by F.
Altomare - M. Campiti (1994).

It turns out that the differential operator WT is generated by an
asymptotic formula for Bernstein-Schnabl operators.

Theorem 2.4

For every u ∈ C2(K),

lim
n→∞

n(Bn(u)− u) = WT (u) uniformly on K. (1.24)
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Before stating the next result, we recall that a core for a linear
operator A : D(A)→ C(K) is a linear subspace D0 of D(A) which is
dense in D(A) with respect to the graph norm

‖u‖A := ‖A(u)‖∞ + ‖u‖∞(u ∈ D(A)).
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Theorem 2.5

Consider a Markov operator T on C(K) which leaves invariant
polynomials of degree at most 1 and which maps polynomials into
polynomials of the same degree, i.e.,

T (Pm(K)) ⊂ Pm(K) for every m ≥ 2. (1.25)

Then, the differential operator (WT , C
2(K)) is closable and its closure

(AT , D(AT )) generates a Markov semigroup (T (t))t≥0 on C(K) such
that for every t ≥ 0 and for every sequence (k(n))n≥1 of positive
integers satisfying lim

n→∞
k(n)/n = t, one gets

T (t)(f) = lim
n→∞

Bk(n)
n (f) uniformly on K (1.26)

for every f ∈ C(K).
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Moreover,

P∞(K) :=

∞⋃
m=1

Pm(K) is a core for (AT , D(AT ));

if u, v ∈ C(K) and if lim
n→∞

n(Bn(u)− u) = v uniformly on K, then

u ∈ D(AT ) and AT (u) = v.

In particular, if lim
n→∞

n(Bn(u)− u) = 0 uniformly on K, then

u ∈ D(AT ) and AT (u) = 0.

Furthermore,

T (t)(f) = f on ∂TK for every t > 0 and f ∈ C(K). (1.27)

and, finally, if T is a projection, then

lim
t→+∞

T (t)f = T (f),

for every f ∈ C(K).
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The representation formula (1.26) can be useful to investigate several
qualitative and quantitative properties of both the semigroups
(T (t))t≥0 (i.e., of the solutions to the initial-boundary value
problems associated with the generator AT ) and the transition
functions of the corresponding Markov processes.

∂u(x, t)

∂t
= AT (u(·, t))(x), (x ∈ K, t > 0)

u(x, 0) = u0(x), u0 ∈ D(AT ),

(1.28)

which, as it is well-known, are given by

u(x, t) = T (t)(u0)(x) (x ∈ K, t > 0). (1.29)

Note also that the boundary conditions for problem (1.26) are
incorporated in the domain D(AT ). They include the so-called
Wentcel’s boundary conditions

ATu = 0 on ∂TK (u ∈ D(AT )) (1.30)

which follow from from (1.27).
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Examples

1. Consider a Markov operator T on C([0, 1]) satisfying (1.1), i.e.,

T (e1) = e1, (1.31)

where e1(x) := x (0 ≤ x ≤ 1).
Then, for every u ∈ C2([0, 1]) and x ∈ [0, 1],

WT (u)(x) =
α(x)

2
u′′(x), (1.32)

with
α(x) := T (e2)(x)− x2 (1.33)

and e2(x) := x2 (0 ≤ x ≤ 1).
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Examples of Markov operators on C([0, 1]) which, in addition, satisfy
(1.25) can be easily achieved.
Consider, for instance, for a given n ≥ 1, the n-th Bernstein operator

Bn(f)(x) :=

n∑
k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k

(f ∈ C([0, 1]), 0 ≤ x ≤ 1).
In this case

α(x) =
x(1− x)

n

(0 ≤ x ≤ 1).
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Examples

2. The differential operator associated with the canonical projection Td
on the d-dimensional simplex Kd is given by

WTd(u)(x) :=
1

2

d∑
i,j=1

xi(δij − xj)
∂2u

∂xi∂xj
(x)

=
1

2

d∑
i=1

xi(1− xi)
∂2u

∂x2
i

(x)−
∑

1≤i<j≤d
xixj

∂2u

∂xi∂xj
(x)

(1.34)

(u ∈ C2(Kd), x = (x1, . . . , xd) ∈ Kd), where δij stands for the
Kronecker symbol.
The operator (1.34) falls into the class of the so called Fleming-Viot
operators.Moreover, the coefficients of WTd vanish on the vertices of
the simplex. In this case

Td(Pm(Kd)) ⊂ P1(Kd) for every m ≥ 2

and hence (1.25) holds true.
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on the d-dimensional simplex Kd is given by

WTd(u)(x) :=
1

2

d∑
i,j=1

xi(δij − xj)
∂2u

∂xi∂xj
(x)

=
1

2

d∑
i=1

xi(1− xi)
∂2u

∂x2
i

(x)−
∑

1≤i<j≤d
xixj

∂2u

∂xi∂xj
(x)

(1.34)

(u ∈ C2(Kd), x = (x1, . . . , xd) ∈ Kd), where δij stands for the
Kronecker symbol.
The operator (1.34) falls into the class of the so called Fleming-Viot
operators.Moreover, the coefficients of WTd vanish on the vertices of
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Consider a symmetric matrix (aij)1≤i,j≤d of Hölder continuous
functions on int(K) with exponent β ∈]0, 1[.
Let L be the differential operator

L(u)(x) :=

d∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
(1.35)

(u ∈ C2(int(K)), x ∈ int(K)) and assume that it is strictly elliptic,
i.e., for every x ∈ int(K) the matrix (ai,j(x))1≤i,j≤d is positive-definite
and, denoted by σ(x) its smallest eigenvalue, we have σ(x) ≥ σ0 > 0,
for some σ0 ∈ R.
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Denote by TL : C(K) −→ C(K) the Poisson operator associated
with L.
Thus, for every f ∈ C(K), TL(f) denotes the unique solution to the
Dirichlet problem{

Lu = 0 on int(K), u ∈ C(K) ∩ C2(int(K));
u = f on ∂K.

(1.36)

TL is a Markov projection satisfying (1.1) and

∂TK = ∂K.
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Consider a convex compact subset K of Rd, d ≥ 2, such that its
boundary ∂K is an ellipsoid, i.e., there exist a real symmetric and
positive-definite matrix R = (rij)1≤i,j≤d and x = (xi)1≤i≤d ∈ Rd such
that

K =

x ∈ Rd | Q(x− x) :=

d∑
i,j=1

rij(xi − xi)(xj − xj) ≤ 1

 . (1.37)

Furthermore, consider a strictly elliptic differential operator

L(u)(x) :=

d∑
i,j=1

cij
∂2u

∂xi∂xj
(x) (1.38)

(u ∈ C2(int(K)), x ∈ int(K)) associated with a real symmetric and
positive-definite matrix C = (cij)1≤i,j≤d and denote by TL the relevant
Poisson operator on C(K).
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Theorem 2.6

Let K and L be as in (1.37) and (1.38). Assume for the sake of
simplicity that

d∑
i,j=1

rijcij = 1.

Then the differential operator WL associated with TL is given by

WL(u)(x) =


1−Q(x)

2
L(u)(x) if x ∈ int(K);

0 if x ∈ ∂K

(u ∈ C2(K), x ∈ K).
Moreover, for every m ≥ 1, TL maps Pm(K) into Pm(K).
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In particular, if K is the closed ball (with respect to the Euclidean
norm ‖ · ‖2) with center x ∈ Rd and radius r > 0 and if L = ∆, then

W∆(u)(x) =

 r2 − ‖x− x‖22
2d

∆(u)(x) if ‖x− x‖2 < r;

0 if ‖x− x‖2 = r
(1.39)

(u ∈ C2(K), x ∈ K) and T∆ maps Pm(K) into Pm(K) for every m ≥ 1.
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5. Markov operators preserving polynomials

The main assumption in Theorem 2.5 involves the invariance under T
of the spaces of polynomials of degree m, m ≥ 1. Such a property, that
seems to have its own independent interest, will be discussed below in
more details.
As a first simple remark, note that, if T satisfies (1.25), then for every
λ ∈ [0, 1] the operator Uλ := λT + (1− λ)I satisfies the same property.
We begin by presenting a counterexample to (1.25).
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Example

Let K = K2 be the canonical simplex of R2 and consider the Poisson
operator T∆ : C(K2) −→ C(K2) associated with the Laplace operator

∆u(x, y) :=
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y)

(u ∈ C2(int(K2)), (x, y) ∈ int(K2)). Then

T∆(P2(K2)) 6⊂ P2(K2).
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Below we shall consider another property similar to (1.25), namely

T (P2(K)) ⊂ P1(K), (1.40)

i.e.,
T (h1h2) ∈ P1(K) for every h1, h2 ∈ P1(K).

Note that assumption (1.40) is satisfied when K is a simplex and T is
the canonical projection on C(K).
In fact this is the only case where (1.40) can occur.

Theorem 3.1

Assume that there exists a Markov operator T on C(K) satisfying
(1.1) and (1.40). Then

K is a simplex and T is the canonical projection associated with it.

In particular, T (Pm(K)) ⊂ P1(K) for every m ≥ 2.
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From Theorem 2.6 it follows that, if K is an ellipsoid, then several
classes of Poisson operators associated with strictly elliptic operators
verify (1.25).
The next result shows that the inclusion

T (P2(K)) ⊂ P2(K)

characterizes the ellipsoids between those convex compact subsets of
Rd that are strictly convex, i.e.,

∂eK = ∂K.

In such a case, necessarily int(K) 6= ∅ unless K is trivial, i.e., K
reduces to a singleton.
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Theorem 3.2

Given a non-trivial strictly convex compact subset K of Rd, d ≥ 2, the
following statements are equivalent:

(i) There exists a non-trivial Markov operator T on C(K), i.e., T 6= I,
satisfying

T (h) = h for every h ∈ {1, pr1, . . . , prd}, (1.41)

and

T (Pm(K)) ⊂ Pm(K) for every m ≥ 2. (1.42)

(ii) There exists a non-trivial Markov operator T on C(K) satisfying
(1.41) such that

T (P2(K)) ⊂ P2(K). (1.43)
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Theorem 3.2

(iii) ∂K is an ellipsoid defined by a quadratic form

Q(x− x) :=

d∑
i,j=1

rij(xi − xi)(xj − xj) (x = (xi)1≤i≤d ∈ Rd) with

center x = (xi)1≤i≤d ∈ Rd.

Moreover, if T is a non-trivial Markov projection on C(K) satisfying
(1.41) and (1.43), then one and only one of the following statements
holds true:

(a) For every x ∈ int(K) the support Supp(µ̃Tx ) is contained in an
affine hyperplane Rx through x and hence, for every f ∈ C(K),

T (f)(x) =

∫
∂K∩Rx

f dµ̃Tx . (1.44)
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Theorem 3.2

(b) T is the Poisson operator associated with a suitable strictly elliptic
differential operator of the form

L(u) :=

d∑
i,j=1

cij
∂2u

∂xi∂xj

whose coefficients (cij)1≤i,j≤d are constant and satisfy

d∑
i,j=1

rijcij = 1.
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In the paper

F. Altomare and I. Raşa,
Towards a characterization of a class of differential operators
associated with positive projections,
Atti Sem. Mat. Fis. Univ. Modena, Supplemento al n. XLVI,
1998, 3 - 38.

the reader can find a complete description of those convex compact
subsets K of R2 such that there exists a Markov projection T on
C(K) satisfying (1.41) and (1.42).

In higher dimension we have no so complete results. However, below
we mention two particular cases where properties (1.41) and (1.42) are
reproduced.
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Tensorial products

Consider a finite family (Ki)1≤i≤d of convex compact subsets having
non-empty interior, each contained in some Rsi , si ≥ 1, i = 1, . . . , d.
For every i = 1, . . . , d, let Ti : C(Ki) −→ C(Ki) be a Markov operator
satisfying (1.41) and (1.42).
Setting

K :=

d∏
i=1

Ki

and denoting by

T :=

d⊗
i=1

Ti

the tensor product of (Ti)1≤i≤d, then T is a Markov operator on
C(K) which satisfies (1.41) and (1.42).
In such a case it is also possible to describe the relevant differential
operator.
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For the sake of simplicity we describe the simple case where

Ki = [0, 1] for every i = 1, . . . , d.

Let Qd := [0, 1]d, d ≥ 1, and for every i = 1, . . . , d consider a Markov
operator Ti on C([0, 1]) satisfying (1.41) and (1.42).

If T :=

d⊗
i=1

Ti : C(Qd)→ C(Qd), then, for every u ∈ C2(Qd) and

x = (xi)1≤i≤d ∈ Qd,

WT (u)(x) =
1

2

d∑
i=1

αi(x)
∂2u

∂x2
i

(x), (1.45)

where αi(x) := Ti(e2)(xi)− x2
i (1 ≤ i ≤ d).

Finally note that, if Ti = T1 for any i = 1, . . . , d , then

WT (u)(x) =
1

2

d∑
i=1

xi(1− xi)
∂2u

∂x2
i

(x) (1.46)

(u ∈ C2(Qd), x = (xi)1≤i≤d ∈ Qd).
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We finally mention that, if S and T are two Markov operators on C(K)
satisfying (1.41) and (1.42), then the same properties are satisfied by
the Markov operator

Z :=
S + T

2

From Theorem (2.5) it turns out that

WZ =
WS +WT

4

and hence the sum
WS +WT = 4WZ ,

defined on C2(K), is closable and its closure generates a Markov
semigroup (T (t))t≥0, which is the rescaled semigroup with parameter 4
of the semigroup generated by the closure of (WZ , C

2(K)).
This result is not trivial because, in general, as it is well-known, the
investigation of the generation property of the sum of two generators is
a delicate problem.
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Thank you for your attention
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