About comonotonicity and the Choquet integral

Richard Becker

Institut de Mathématiques de Jussieu & Université Pierre-et-Marie Curie (Paris-06)

> Positivity 7 Leiden University July 22-26, 2013

通 ト イヨ ト イヨト

Outline

Basic definitions

2 Decision Theory

- Introduction
- decision under risk
- decision under uncertainty

3 Representation of comonotonic additive functionals

4 An abstract Alexandroff Theorem

< 注入 < 注入

Definition

Two real valued functions f and g, defined on a set X, are said to be comonotonic if:

$$(f(x) - f(y))(g(x) - g(y)) \ge 0$$

for all $x, y \in X$.

Definition

Let Ω be an abstract set and $\mathcal F$ be a family of subsets of Ω containing \emptyset and Ω . A Choquet capacity is a map γ , from $\mathcal F$ to R^+ , such that:

$$\gamma(\emptyset)=$$
 0 and $\gamma(A)\leq \gamma(B)$ if $A\subset B$

- 4 同 6 4 日 6 4 日 6

Definition

Two real valued functions f and g, defined on a set X, are said to be comonotonic if:

$$(f(x) - f(y))(g(x) - g(y)) \ge 0$$

for all $x, y \in X$.

Definition

Let Ω be an abstract set and \mathcal{F} be a family of subsets of Ω containing \emptyset and Ω . A Choquet capacity is a map γ , from \mathcal{F} to R^+ , such that:

$$\gamma(\emptyset) = 0$$
 and $\gamma(A) \leq \gamma(B)$ if $A \subset B$

Definition

Let $f \ge 0$ be a function on Ω . The Choquet integral is defined by:

$$\gamma(f) = \int_0^\infty \gamma(f \ge t) dt$$

In the general case:

$$\gamma(f) = \int_0^\infty \gamma(f \ge t) + \int_{-\infty}^0 [\gamma(f \ge t) - \gamma(\Omega)] dt$$

Theorem

The Choquet integral is additive on comonotic pairs.

- 4 週 ト - 4 三 ト - 4 三 ト

S is the set of the states of nature. C is the set of consequences. F is the set of acts, or decisions, i.e. the set of maps from S to C. Example: you have a house in good condition. After one year: s_1 : the house is in good condition.

s_2 : the house is destroyed.

$$P_d = p\varepsilon_{(L-\pi_d)} + (1-p)\varepsilon_{L_d}$$

- 4 同 6 4 日 6 4 日 6

S is the set of the states of nature. C is the set of consequences. F is the set of acts, or decisions, i.e. the set of maps from S to C. Example: you have a house in good condition. After one year: s_1 : the house is in good condition.

 s_2 : the house is destroyed.

You have to choose an insurance d; the premium is π_d :

- s_1 : after one year, you have: $L \pi_d$. (L: price of the house).
- s_2 : after one year, you have: L_d . (you get L_d).

$$P_d = p\varepsilon_{(L-\pi_d)} + (1-p)\varepsilon_{L_d}$$

S is the set of the states of nature. C is the set of consequences. F is the set of acts, or decisions, i.e. the set of maps from S to C. Example: you have a house in good condition. After one year: s_1 : the house is in good condition.

*s*₂: the house is destroyed.

You have to choose an insurance d; the premium is π_d :

- s_1 : after one year, you have: $L \pi_d$. (L: price of the house).
- s_2 : after one year, you have: L_d . (you get L_d).

You have to compare the various possible d.

Two cases are in order:

1) Decision under risk: You knows p the probability of s_1 .

You have to compare the various probabilities on R:

$$P_d = p \varepsilon_{(L-\pi_d)} + (1-p) \varepsilon_{L_d}$$

2) Decision under uncertainty.

Decision under risk.

We deal with lotteries, i.e. discrete probabilities P on an abstract set C. $P = (x_1, p_1; ...; x_i, p_i; ...; x_n, p_n)$, where $x_i \in C$ and $\sum p_i = 1$. We assume:

A total preorder ≥ on the set L₀ of lotteries on C.
Continuity: If P > Q > R, there are a, b ∈]0,1[with:

$$aP + (1-a)R > Q > bP + (1-b)R$$

3) Independence: If $P \ge Q$, for any R and 0 < a < 1, then:

$$aP + (1-a)R \ge aQ + (1-a)R$$

Theorem (von Neumann, Morgenstern)

There is a utility functions u from C to R such that:

$$(P \ge Q)$$
 iff $(P(u) \ge Q(u))$

Decision under risk.

We deal with lotteries, i.e. discrete probabilities P on an abstract set C. $P = (x_1, p_1; ...; x_i, p_i; ...; x_n, p_n)$, where $x_i \in C$ and $\sum p_i = 1$. We assume:

1) A total preorder \geq on the set \mathcal{L}_0 of lotteries on C.

2) Continuity: If P > Q > R, there are $a, b \in]0, 1[$ with:

$$aP+(1-a)R>Q>bP+(1-b)R$$

3) Independence: If $P \ge Q$, for any R and 0 < a < 1, then:

$$aP+(1-a)R\geq aQ+(1-a)R$$

Theorem (von Neumann, Morgenstern)

There is a utility functions u from C to R such that:

$$(P \ge Q)$$
 iff $(P(u) \ge Q(u))$

Decision under risk.

We deal with lotteries, i.e. discrete probabilities P on an abstract set C. $P = (x_1, p_1; ...; x_i, p_i; ...; x_n, p_n)$, where $x_i \in C$ and $\sum p_i = 1$. We assume:

1) A total preorder \geq on the set \mathcal{L}_0 of lotteries on C.

2) Continuity: If P > Q > R, there are $a, b \in]0, 1[$ with:

$$aP+(1-a)R>Q>bP+(1-b)R$$

3) Independence: If $P \ge Q$, for any R and 0 < a < 1, then:

$$aP + (1-a)R \ge aQ + (1-a)R$$

Theorem (von Neumann, Morgenstern)

There is a utility functions u from C to R such that:

$$(P \ge Q)$$
 iff $(P(u) \ge Q(u))$

The Allais paradox (example due to Kahneman and Tversky):

A: You get 3.000 Euros with proba 1.

B: You get 4.000 Euros with proba 0,8 or 0 with proba 0,2. A lot a people prefer A to B.

2)

C: You get 3.000 Euros with proba 0,25 or 0 with proba 0,75. D: You get 4.000 Euros with proba 0,2 or 0 with proba 0,8. A lot of people prefer D to C. However:

$P_{C} = 0,25P_{A} + 0,75\varepsilon_{0} \text{ and } P_{D} = 0,25P_{B} + 0,75\varepsilon_{0}$

This is a violation of the Principle of Independence.

イロト イ理ト イヨト イヨト

The Allais paradox (example due to Kahneman and Tversky): 1)

A: You get 3.000 Euros with proba 1.

B: You get 4.000 Euros with proba 0, 8 or 0 with proba 0, 2. A lot a people prefer A to B.

C: You get 3.000 Euros with proba 0,25 or 0 with proba 0,75. D: You get 4.000 Euros with proba 0,2 or 0 with proba 0,8. A lot of people prefer D to C. However:

$P_C = 0,25P_A + 0,75\varepsilon_0$ and $P_D = 0,25P_B + 0,75\varepsilon_0$

This is a violation of the Principle of Independence.

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

The Allais paradox (example due to Kahneman and Tversky): 1)

A: You get 3.000 Euros with proba 1.

B: You get 4.000 Euros with proba 0, 8 or 0 with proba 0, 2.

A lot a people prefer A to B.

2)

C: You get 3.000 Euros with proba 0, 25 or 0 with proba 0, 75.

D: You get 4.000 Euros with proba 0, 2 or 0 with proba 0, 8.

A lot of people prefer D to C.

However:

 $P_C = 0,25P_A + 0,75\varepsilon_0$ and $P_D = 0,25P_B + 0,75\varepsilon_0$

This is a violation of the Principle of Independence.

イロト 不得下 イヨト イヨト 二日

The Allais paradox (example due to Kahneman and Tversky): 1)

A: You get 3.000 Euros with proba 1.

B: You get 4.000 Euros with proba 0,8 or 0 with proba 0,2.

A lot a people prefer A to B.

2)

C: You get 3.000 Euros with proba 0,25 or 0 with proba 0,75.

D: You get 4.000 Euros with proba 0, 2 or 0 with proba 0, 8.

A lot of people prefer D to C.

However:

 $P_C = 0,25P_A + 0,75\varepsilon_0$ and $P_D = 0,25P_B + 0,75\varepsilon_0$

This is a violation of the Principle of Independence.

・ロト ・聞ト ・ヨト ・ヨト

Alain Chateauneuf (1999) has proposed a weaker axiomatic:

C is a connected, compact, metric space. \mathcal{L}_0 is equipped with a total preorder \geq (note that \geq induced a total preorder on *C*) such that: 1) Continuity.

- 2) Monotonicity: $P \ge_D Q$ then $P \ge Q$.
- 3) Comonotonic sure-thing principle (C.S.T.P.):

Let $P = \sum_{1}^{n} p_i \varepsilon_{x_i}$ and $Q = \sum_{1}^{n} p_i \varepsilon_{y_i}$, written in rank order, with $P \ge Q$. If $x_{i_0} = y_{i_0}$ for some $1 \le i_0 \le n$ and if we replace $x_{i_0} = y_{i_0}$ by the same element $x'_{i_0} = y'_{i_0}$ in C, to get P' and Q', so that x'_{i_0} and y'_{i_0} has the same rank i_0 , then $P' \ge Q'$.

4) Comonotonic mixture independence axiom (C.M.I.A.)

Theorem (A. Chateauneuf)

There exists a continuous function u from C to R, and a strictly increasing continuous function f from [0,1] onto itself, such that: If we set, for $P = \sum_{i=1}^{n} p_i \varepsilon_{x_i}$, $U(P) = \sum_{i=1}^{n} (f(\sum_{i=1}^{n} p_i) - f(\sum_{i+1}^{n} p_i))u(x_i)$, then $P \ge Q$ iff $U(P) \ge U(Q)$.

U(P) is the rank-dependent expected utility of $P_{\bullet}(\mathbb{R}, \mathbb{D}_{\mathbb{E}}\mathbb{E}, \mathbb{U}_{\mathbb{P}})$, $\mathbb{R}_{\mathbb{E}}$

Alain Chateauneuf (1999) has proposed a weaker axiomatic:

C is a connected, compact, metric space. \mathcal{L}_0 is equipped with a total preorder \geq (note that \geq induced a total preorder on *C*) such that: 1) Continuity.

- 2) Monotonicity: $P \ge_D Q$ then $P \ge Q$.
- 3) Comonotonic sure-thing principle (C.S.T.P.):

Let $P = \sum_{1}^{n} p_i \varepsilon_{x_i}$ and $Q = \sum_{1}^{n} p_i \varepsilon_{y_i}$, written in rank order, with $P \ge Q$. If $x_{i_0} = y_{i_0}$ for some $1 \le i_0 \le n$ and if we replace $x_{i_0} = y_{i_0}$ by the same element $x'_{i_0} = y'_{i_0}$ in C, to get P' and Q', so that x'_{i_0} and y'_{i_0} has the same rank i_0 , then $P' \ge Q'$.

4) Comonotonic mixture independence axiom (C.M.I.A.)

Theorem (A. Chateauneuf)

There exists a continuous function u from C to R, and a strictly increasing continuous function f from [0,1] onto itself, such that: If we set, for $P = \sum_{i=1}^{n} p_i \varepsilon_{x_i}$, $U(P) = \sum_{i=1}^{n} (f(\sum_{i=1}^{n} p_i) - f(\sum_{i+1}^{n} p_i))u(x_i)$, then $P \ge Q$ iff $U(P) \ge U(Q)$.

U(P) is the rank-dependent expected utility of $P_{(R,D_{\mathbb{S}}E,U_{\mathbb{S}})}$

We can assume $u \ge 0$. Then $U(P) = \sum_{i=1}^{n} (f(\sum_{i=1}^{n} p_i) - f(\sum_{i+1}^{n} p_i))u(x_i)$, can be written as a Choquet integral: If we set: $\mu_P(E) = f(P(E))$ for $E \subset C$, we have:

$$U(P)=\mu_P(u)$$

3

イロト イポト イヨト イヨト

Decision under uncertainty.

We deal within the framework of L. Savage.

S is equipped with a Boolean algebra \mathcal{B} .

We deal with the set F of acts f (maps from S to C) of the following form: There exists a finite \mathcal{B} -measurable partition of S such that f is constant on each element of the partition.

L. Savage has introduced 7 postulates:

1) *F* is equipped with a total preorder \geq . (inducing a total preorder on *C*). 2) Let $f, g \in F$ be such that $f \geq g$ and f = g on $E \in \mathcal{B}$. Then, for all $f', g' \in F$, with f' = f on E^c , g' = g on E^c , and f' = g' on *E*, one has $f' \geq g'$.

This is called the Sure Thing Principle.

Theorem (L. Savage)

There exist a unique finitely additive probability measure π on \mathcal{B} , and a bounded function u from S to R such that, if $f, g \in F$:

$$(f \ge g) ext{ iff } (\int u(f(s))\pi(ds) \ge \int u(g(s))\pi(ds))$$

Decision under uncertainty.

We deal within the framework of L. Savage.

S is equipped with a Boolean algebra \mathcal{B} .

We deal with the set F of acts f (maps from S to C) of the following form: There exists a finite \mathcal{B} -measurable partition of S such that f is constant on each element of the partition.

L. Savage has introduced 7 postulates:

1) *F* is equipped with a total preorder \geq . (inducing a total preorder on *C*). 2) Let $f, g \in F$ be such that $f \geq g$ and f = g on $E \in \mathcal{B}$. Then, for all $f', g' \in F$, with f' = f on E^c , g' = g on E^c , and f' = g' on *E*, one has $f' \geq g'$.

This is called the Sure Thing Principle.

Theorem (L. Savage)

There exist a unique finitely additive probability measure π on \mathcal{B} , and a bounded function u from S to R such that, if $f, g \in F$:

$$(f \ge g) ext{ iff } (\int u(f(s))\pi(ds) \ge \int u(g(s))\pi(ds))$$

Decision under uncertainty.

We deal within the framework of L. Savage.

S is equipped with a Boolean algebra \mathcal{B} .

We deal with the set F of acts f (maps from S to C) of the following form: There exists a finite \mathcal{B} -measurable partition of S such that f is constant on each element of the partition.

L. Savage has introduced 7 postulates:

1) F is equipped with a total preorder \geq . (inducing a total preorder on C). 2) Let $f, g \in F$ be such that $f \geq g$ and f = g on $E \in \mathcal{B}$. Then, for all $f', g' \in F$, with f' = f on E^c , g' = g on E^c , and f' = g' on E, one has $f' \geq g'$.

This is called the Sure Thing Principle.

Theorem (L. Savage)

There exist a unique finitely additive probability measure π on \mathcal{B} , and a bounded function u from S to R such that, if $f, g \in F$:

$$(f \ge g) ext{ iff } (\int u(f(s))\pi(ds) \ge \int u(g(s))\pi(ds))$$

The Ellsberg paradox.

Suppose an urn contains 90 balls: 30 are Red, the others (60) are Blue or Yellow.

The set S is $\{R, B, Y\}$, with obvious notations. The set C is $\{0, 1\}$.

We consider the followings 4 acts:

 $\begin{array}{l} d_1 = 1(R) \\ d_2 = 1(B) \\ d_3 = 1(R \cup Y) \\ d_4 = 1(B \cup Y) \\ \text{A lot of people prefer } d_1 \text{ to } d_2 \text{ and } d_4 \text{ to } d_3. \\ \text{But: } d_1 = d_3 \text{ on } R \cup B, \ d_2 = d_4 \text{ on } R \cup B, \ d_1 = d_2 \text{ on } Y, \ d_3 = d_4 \text{ on } Y. \\ \text{Whence a contradiction with the Sure Thing Principle.} \end{array}$

ヘロト 人間 とくほ とくほ とう

The Ellsberg paradox.

Suppose an urn contains 90 balls: 30 are Red, the others (60) are Blue or Yellow.

The set S is $\{R, B, Y\}$, with obvious notations. The set C is $\{0, 1\}$. We consider the followings 4 acts:

 $egin{aligned} d_1 &= 1(R) \ d_2 &= 1(B) \ d_3 &= 1(R \cup Y) \end{aligned}$

 $d_4 = 1(B \cup Y)$

A lot of people prefer d_1 to d_2 and d_4 to d_3 .

But: $d_1 = d_3$ on $R \cup B$, $d_2 = d_4$ on $R \cup B$, $d_1 = d_2$ on Y, $d_3 = d_4$ on Y. Whence a contradiction with the Sure Thing Principle.

イロト 不得下 イヨト イヨト 三日

The Ellsberg paradox.

Suppose an urn contains 90 balls: 30 are Red, the others (60) are Blue or Yellow.

The set S is $\{R, B, Y\}$, with obvious notations. The set C is $\{0, 1\}$. We consider the followings 4 acts:

 $\begin{array}{l} d_1 = 1(R) \\ d_2 = 1(B) \\ d_3 = 1(R \cup Y) \\ d_4 = 1(B \cup Y) \\ \text{A lot of people prefer } d_1 \text{ to } d_2 \text{ and } d_4 \text{ to } d_3. \\ \text{But: } d_1 = d_3 \text{ on } R \cup B, \ d_2 = d_4 \text{ on } R \cup B, \ d_1 = d_2 \text{ on } Y, \ d_3 = d_4 \text{ on } Y. \\ \text{Whence a contradiction with the Sure Thing Principle.} \end{array}$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ○ 編

David Schmeidler has proposed a weaker axiomatic; here is a simplified version:

S is equipped with a σ algebra A. The set set C is R. The set F of acts is the set of all bounded measurable functions from S to R.

There are 4 axioms:

1) A total preorder (\geq) on *F*.

2) Stability of \geq under monotone uniform convergence of sequences.

3) Monotonicity: $X \ge Y + \varepsilon 1$ implies X > Y.

4) Comonotonic independance: If $X \ge Y$ and, if Z is comonotic with X and with Y, then $X + Z \ge Y + Z$.

Theorem (D. Schmeidler)

There exists a Choquet capacity γ on A, with $\gamma(1) = 1$, such that, for $X, Y \in F$:

 $(X \ge Y)$ iff $(\gamma(X) \ge \gamma(Y))$

イロト 不得 トイヨト イヨト 二日

David Schmeidler has proposed a weaker axiomatic; here is a simplified version:

S is equipped with a σ algebra A. The set set C is R. The set F of acts is the set of all bounded measurable functions from S to R.

There are 4 axioms:

- 1) A total preorder (\geq) on F.
- 2) Stability of \geq under monotone uniform convergence of sequences.
- 3) Monotonicity: $X \ge Y + \varepsilon 1$ implies X > Y.

4) Comonotonic independance: If $X \ge Y$ and, if Z is comonotic with X and with Y, then $X + Z \ge Y + Z$.

Theorem (D. Schmeidler)

There exists a Choquet capacity γ on \mathcal{A} , with $\gamma(1) = 1$, such that, for $X, Y \in F$:

 $(X \ge Y)$ iff $(\gamma(X) \ge \gamma(Y))$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

David Schmeidler has proposed a weaker axiomatic; here is a simplified version:

S is equipped with a σ algebra A. The set set C is R. The set F of acts is the set of all bounded measurable functions from S to R.

There are 4 axioms:

- 1) A total preorder (\geq) on *F*.
- 2) Stability of \geq under monotone uniform convergence of sequences.
- 3) Monotonicity: $X \ge Y + \varepsilon 1$ implies X > Y.

4) Comonotonic independance: If $X \ge Y$ and, if Z is comonotic with X and with Y, then $X + Z \ge Y + Z$.

Theorem (D. Schmeidler)

There exists a Choquet capacity γ on A, with $\gamma(1) = 1$, such that, for $X, Y \in F$:

 $(X \ge Y)$ iff $(\gamma(X) \ge \gamma(Y))$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Representation of comonotonic additive functionals

Recently, S. Cerreira-Vioglio, F. Maccheroni, M. Marinacci, and L.

Montrucchio have established representations results for some classes of comonotonic additive functionals. They manage to encompass the following 2 settings:

1) When the functions space is the space of bounded measurable functions with respect to an algebra.

2) When the functions space is a Stone vector lattice of bounded functions.

Definition

A Stone lattice *L* is comonotonic if there exists a Stone vector lattice *E* such that $L \subset E$, and given any two comonotonic $f, g \in E$ and $\varepsilon > 0$, there are two comonotonic $f_{\varepsilon}, g_{\varepsilon} \in L$ with $||f - f_{\varepsilon}|| \le \varepsilon$, $||g - g_{\varepsilon}|| \le \varepsilon$, and $f_{\varepsilon} + g_{\varepsilon} \in L$.

Representation of comonotonic additive functionals

Recently, S. Cerreira-Vioglio, F. Maccheroni, M. Marinacci, and L.

Montrucchio have established representations results for some classes of comonotonic additive functionals. They manage to encompass the following 2 settings:

1) When the functions space is the space of bounded measurable functions with respect to an algebra.

2) When the functions space is a Stone vector lattice of bounded functions.

Definition

A Stone lattice *L* is comonotonic if there exists a Stone vector lattice *E* such that $L \subset E$, and given any two comonotonic $f, g \in E$ and $\varepsilon > 0$, there are two comonotonic $f_{\varepsilon}, g_{\varepsilon} \in L$ with $||f - f_{\varepsilon}|| \le \varepsilon$, $||g - g_{\varepsilon}|| \le \varepsilon$, and $f_{\varepsilon} + g_{\varepsilon} \in L$.

イロト 不得下 イヨト イヨト 二日

Variation of a functional

Definition

If *E* is a set of real valued functions and *V* is a real valued functional on *E*, for every $f \le g \in E$ we set:

$$T_V(f,g) = \sup(\sum_{1}^{n} |V(f_i) - V(f_{i-1})|)$$

where the sup is taken over all finite chains in E:

$$f = f_0 \leq f_1 \leq \ldots \leq f_n = g$$

Theorem

Let L be a comonotonic Stone lattice of bounded functions and V be a comonotonic additive functional on L, which is of bounded variation and outer regular.

Then there exist two outer regular capacities ν_1, ν_2 on \sum_L such that:

$$V(f) = \nu_1(f) - \nu_2(f)$$
 for $f \in L$

Moreover, $\nu = \nu_1 - \nu_2$ is unique, as an outer continuous set function.

Theorem

Let L be a Stone vector lattice of bounded functions and V be a comonotonic additive functional on L, which is of bounded variation, pointwise continuous and superadditive.

Then there is a unique continuous and supermodular ν , of bounded variation, defined on the σ -algebra generated by L, such that: $V(f) = \nu(f)$ on L.

Let *E* be a vector lattice of bounded functions on a set Ω , containing 1, and \mathcal{A} be the boolean algebra of subsets of Ω generated by the sets $(f \ge 0)$, where $f \in E$.

If T is a positive linear form on E, is it possible to represent T by an integral with respect to an additive measure on A?

Theorem (abstract Alexandroff Theorem)

The answer is yes whenever the space E is such that: For every $f, g, h \in E^+$ with $g \leq f$, and h(x) = 0 whenever f(x) = 0, the function ϕ defined by:

 $\phi(x) = (g(x)/f(x))h(x)$ when f(x) > 0 and $\phi(x) = 0$ when f(x) = 0

belongs to E.

イロト イポト イヨト イヨト

Let *E* be a vector lattice of bounded functions on a set Ω , containing 1, and \mathcal{A} be the boolean algebra of subsets of Ω generated by the sets $(f \ge 0)$, where $f \in E$.

If T is a positive linear form on E, is it possible to represent T by an integral with respect to an additive measure on A?

Theorem (abstract Alexandroff Theorem)

The answer is yes whenever the space E is such that: For every $f, g, h \in E^+$ with $g \leq f$, and h(x) = 0 whenever f(x) = 0, the function ϕ defined by:

 $\phi(x) = (g(x)/f(x))h(x)$ when f(x) > 0 and $\phi(x) = 0$ when f(x) = 0

belongs to E.

イロト 不得 トイヨト イヨト

Let *E* be a vector lattice of bounded functions on a set Ω , containing 1, and \mathcal{A} be the boolean algebra of subsets of Ω generated by the sets $(f \ge 0)$, where $f \in E$.

If T is a positive linear form on E, is it possible to represent T by an integral with respect to an additive measure on A?

Theorem (abstract Alexandroff Theorem)

The answer is yes whenever the space E is such that: For every $f, g, h \in E^+$ with $g \leq f$, and h(x) = 0 whenever f(x) = 0, the function ϕ defined by:

 $\phi(x) = (g(x)/f(x))h(x)$ when f(x) > 0 and $\phi(x) = 0$ when f(x) = 0

belongs to E.

・ロト ・四ト ・ヨト ・ヨト ・ ヨ

If A = (f > 0) for some $f \in E$ we set: $\mu^*(A) = \sup\{T(g) : 0 \le g \le 1(A)\}$ If $B \subset \Omega$ we set $\mu^*(B) = \inf\{\mu^*(A)\}$ where $B \subset A$ and A is of the form (f > 0).

3

イロト イポト イヨト イヨト