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Basic definitions

Definition

Two real valued functions f and g , defined on a set X , are said to be
comonotonic if:

(f (x)− f (y))(g(x)− g(y)) ≥ 0

for all x , y ∈ X .

Definition

Let Ω be an abstract set and F be a family of subsets of Ω containing ∅
and Ω. A Choquet capacity is a map γ, from F to R+, such that:

γ(∅) = 0 and γ(A) ≤ γ(B) if A ⊂ B
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Basic definitions

Definition

Let f ≥ 0 be a function on Ω. The Choquet integral is defined by:

γ(f ) =

∫ ∞

0
γ(f ≥ t)dt

In the general case:

γ(f ) =

∫ ∞

0
γ(f ≥ t) +

∫ 0

−∞
[γ(f ≥ t)− γ(Ω)]dt

Theorem

The Choquet integral is additive on comonotic pairs.
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Decision Theory Introduction

S is the set of the states of nature. C is the set of consequences.
F is the set of acts, or decisions, i.e. the set of maps from S to C .
Example: you have a house in good condition. After one year:
s1: the house is in good condition.
s2: the house is destroyed.
You have to choose an insurance d ; the premium is πd :
s1: after one year, you have: L− πd . (L: price of the house).
s2: after one year, you have: Ld . (you get Ld).
You have to compare the various possible d .
Two cases are in order:
1) Decision under risk: You knows p the probability of s1.
You have to compare the various probabilites on R:

Pd = pε(L−πd ) + (1− p)εLd

2) Decision under uncertainty.
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Decision Theory decision under risk

Decision under risk.
We deal with lotteries, i.e: discrete probabilities P on an abstract set C .
P = (x1, p1; . . . ; xi , pi ; . . . ; xn, pn), where xi ∈ C and

∑
pi = 1.

We assume:
1) A total preorder ≥ on the set L0 of lotteries on C .
2) Continuity: If P > Q > R, there are a, b ∈]0, 1[ with:

aP + (1− a)R > Q > bP + (1− b)R

3) Independence: If P ≥ Q, for any R and 0 < a < 1, then:

aP + (1− a)R ≥ aQ + (1− a)R

Theorem (von Neumann, Morgenstern)

There is a utility functions u from C to R such that:

(P ≥ Q) iff (P(u) ≥ Q(u))
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Decision Theory decision under risk

The Allais paradox (example due to Kahneman and Tversky):
1)
A: You get 3.000 Euros with proba 1.
B: You get 4.000 Euros with proba 0, 8 or 0 with proba 0, 2.
A lot a people prefer A to B.
2)
C: You get 3.000 Euros with proba 0, 25 or 0 with proba 0, 75.
D: You get 4.000 Euros with proba 0, 2 or 0 with proba 0, 8.
A lot of people prefer D to C.
However:

PC = 0, 25PA + 0, 75ε0 and PD = 0, 25PB + 0, 75ε0

This is a violation of the Principle of Independence.
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Decision Theory decision under risk

Alain Chateauneuf (1999) has proposed a weaker axiomatic:
C is a connected, compact, metric space. L0 is equipped with a total
preorder ≥ (note that ≥ induced a total preorder on C ) such that:
1) Continuity.
2) Monotonicity: P ≥D Q then P ≥ Q.
3) Comonotonic sure-thing principle (C.S.T.P.):
Let P =

∑n
1 piεxi and Q =

∑n
1 piεyi , written in rank order, with P ≥ Q.

If xi0 = yi0 for some 1 ≤ i0 ≤ n and if we replace xi0 = yi0 by the same
element x ′i0 = y ′i0 in C , to get P ′ and Q ′, so that x ′i0 and y ′i0 has the same
rank i0, then P ′ ≥ Q ′.
4) Comonotonic mixture independence axiom (C.M.I.A.)

Theorem (A. Chateauneuf)

There exists a continuous function u from C to R, and a strictly increasing
continuous function f from [0, 1] onto itself, such that:
If we set, for P =

∑n
1 piεxi , U(P) =

∑n
i=1(f (

∑n
i pj)− f (

∑n
i+1 pj))u(xi ),

then P ≥ Q iff U(P) ≥ U(Q).

U(P) is the rank-dependent expected utility of P (R.D.E.U.)
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Decision Theory decision under risk

We can assume u ≥ 0. Then U(P) =
∑n

i=1(f (
∑n

i pj)− f (
∑n

i+1 pj))u(xi ),
can be written as a Choquet integral:
If we set: µP(E ) = f (P(E )) for E ⊂ C , we have:

U(P) = µP(u)
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Decision Theory decision under uncertainty

Decision under uncertainty.
We deal within the framework of L. Savage.
S is equipped with a Boolean algebra B.
We deal with the set F of acts f (maps from S to C ) of the following form:
There exists a finite B-measurable partition of S such that f is constant
on each element of the partition.
L. Savage has introduced 7 postulates:
1) F is equipped with a total preorder ≥. (inducing a total preorder on C ).
2) Let f , g ∈ F be such that f ≥ g and f = g on E ∈ B. Then, for all
f ′, g ′ ∈ F , with f ′ = f on E c , g ′ = g on E c , and f ′ = g ′ on E , one has
f ′ ≥ g ′.
This is called the Sure Thing Principle.

Theorem (L. Savage)

There exist a unique finitely additive probability measure π on B, and a
bounded function u from S to R such that, if f , g ∈ F :

(f ≥ g) iff (

∫
u(f (s))π(ds) ≥

∫
u(g(s))π(ds))
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Decision Theory decision under uncertainty

The Ellsberg paradox.
Suppose an urn contains 90 balls: 30 are Red, the others (60) are Blue or
Yellow.
The set S is {R,B,Y }, with obvious notations. The set C is {0, 1}.
We consider the followings 4 acts:
d1 = 1(R)
d2 = 1(B)
d3 = 1(R ∪ Y )
d4 = 1(B ∪ Y )
A lot of people prefer d1 to d2 and d4 to d3.
But: d1 = d3 on R ∪ B, d2 = d4 on R ∪ B, d1 = d2 on Y , d3 = d4 on Y .
Whence a contradiction with the Sure Thing Principle.
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Decision Theory decision under uncertainty

David Schmeidler has proposed a weaker axiomatic; here is a simplified
version:
S is equipped with a σ algebra A. The set set C is R. The set F of acts is
the set of all bounded measurable functions from S to R.
There are 4 axioms:
1) A total preorder (≥) on F .
2) Stability of ≥ under monotone uniform convergence of sequences.
3) Monotonicity: X ≥ Y + ε1 implies X > Y .
4) Comonotonic independance: If X ≥ Y and, if Z is comonotic with X
and with Y , then X + Z ≥ Y + Z .

Theorem (D. Schmeidler)

There exists a Choquet capacity γ on A, with γ(1) = 1, such that, for
X ,Y ∈ F :

(X ≥ Y ) iff (γ(X ) ≥ γ(Y ))
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Representation of comonotonic additive functionals

Representation of comonotonic additive functionals
Recently, S. Cerreira-Vioglio, F. Maccheroni, M. Marinacci, and L.
Montrucchio have established representations results for some classes of
comonotonic additive functionals. They manage to encompass the
following 2 settings:
1) When the functions space is the space of bounded measurable functions
with respect to an algebra.
2) When the functions space is a Stone vector lattice of bounded functions.

Definition

A Stone lattice L is comonotonic if there exists a Stone vector lattice E
such that L ⊂ E , and given any two comonotonic f , g ∈ E and ε > 0,
there are two comonotonic fε, gε ∈ L with ‖f − fε‖ ≤ ε, ‖g − gε‖ ≤ ε, and
fε + gε ∈ L.

Richard Becker () comonotonicity and Choquet integral 13 / 18



Representation of comonotonic additive functionals

Representation of comonotonic additive functionals
Recently, S. Cerreira-Vioglio, F. Maccheroni, M. Marinacci, and L.
Montrucchio have established representations results for some classes of
comonotonic additive functionals. They manage to encompass the
following 2 settings:
1) When the functions space is the space of bounded measurable functions
with respect to an algebra.
2) When the functions space is a Stone vector lattice of bounded functions.

Definition

A Stone lattice L is comonotonic if there exists a Stone vector lattice E
such that L ⊂ E , and given any two comonotonic f , g ∈ E and ε > 0,
there are two comonotonic fε, gε ∈ L with ‖f − fε‖ ≤ ε, ‖g − gε‖ ≤ ε, and
fε + gε ∈ L.

Richard Becker () comonotonicity and Choquet integral 13 / 18



Representation of comonotonic additive functionals

Variation of a functional

Definition

If E is a set of real valued functions and V is a real valued functional on
E , for every f ≤ g ∈ E we set:

TV (f , g) = sup(
n∑
1

|V (fi )− V (fi−1)|)

where the sup is taken over all finite chains in E :

f = f0 ≤ f1 ≤ . . . ≤ fn = g
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Representation of comonotonic additive functionals

Theorem

Let L be a comonotonic Stone lattice of bounded functions and V be a
comonotonic additive functional on L, which is of bounded variation and
outer regular.
Then there exist two outer regular capacities ν1, ν2 on

∑
L such that:

V (f ) = ν1(f )− ν2(f ) for f ∈ L

Moreover, ν = ν1 − ν2 is unique, as an outer continuous set function.
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Representation of comonotonic additive functionals

Theorem

Let L be a Stone vector lattice of bounded functions and V be a
comonotonic additive functional on L, which is of bounded variation,
pointwise continuous and superadditive.
Then there is a unique continuous and supermodular ν, of bounded
variation, defined on the σ-algebra generated by L, such that:
V (f ) = ν(f ) on L.
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An abstract Alexandroff Theorem

Let E be a vector lattice of bounded functions on a set Ω, containing 1,
and A be the boolean algebra of subsets of Ω generated by the sets
(f ≥ 0), where f ∈ E .
If T is a positive linear form on E , is it possible to represent T by an
integral with respect to an additive measure on A ?

Theorem (abstract Alexandroff Theorem)

The answer is yes whenever the space E is such that:
For every f , g , h ∈ E+ with g ≤ f , and h(x) = 0 whenever f (x) = 0, the
function φ defined by:

φ(x) = (g(x)/f (x))h(x) when f (x) > 0 and φ(x) = 0 when f (x) = 0

belongs to E.
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An abstract Alexandroff Theorem

If A = (f > 0) for some f ∈ E we set: µ∗(A) = sup{T (g) : 0 ≤ g ≤ 1(A)}
If B ⊂ Ω we set µ∗(B) = inf{µ∗(A)} where B ⊂ A and A is of the form
(f > 0).
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