Geometric characterization of algebra homomorphisms on *f*-algebras Mohamed Amine BEN AMOR Leiden, July 25, 2013 # Finite dimensional case Let \mathcal{B} be the set of bistochastic matrices. 2/16 # Finite dimensional case Let \mathcal{B} be the set of bistochastic matrices. $$M = \begin{pmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{4} & \frac{5}{12} & \frac{1}{3} \\ \frac{5}{12} & \frac{1}{12} & \frac{1}{2} \end{pmatrix}$$ # Finite dimensional case Let \mathcal{B} be the set of bistochastic matrices. $$M = \begin{pmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{4} & \frac{5}{12} & \frac{1}{3} \\ \frac{5}{12} & \frac{1}{12} & \frac{1}{2} \end{pmatrix}$$ #### Birkhoff, 1946 Extremal points of the convex set \mathcal{B} are permutation matrices. #### 1961, A. Ionescu Tulcea and C. Ionescu Tulcea Let *X* and *Y* are two compact Hausdorff spaces and the convex set $$\mathfrak{K} = \{ T \in \mathcal{L}(C(X), C(Y)), T \geq 0, \text{ and } T\mathbb{1} = \mathbb{1} \}$$ Then T is an algebra homomorphism in $\mathcal{L}(C(X),C(Y))$ if and only if T is an extreme point in $\mathfrak K$ ∘ A vector lattice A (Riesz spaces) is called an ℓ -algebra whenever $a \le b \in A$ and $c \in A^+$ imply that $ac \le bc$ - A vector lattice A (Riesz spaces) is called an ℓ -algebra whenever $a \le b \in A$ and $c \in A^+$ imply that $ac \le bc$ - o A is an f-algebra if $a,b,c\in A^+$ and $a\wedge b=0$ imply $ac\wedge b=ca\wedge b=0$ 4/16 - A vector lattice A (Riesz spaces) is called an ℓ -algebra whenever $a \le b \in A$ and $c \in A^+$ imply that $ac \le bc$ - o A is an f-algebra if $a, b, c \in A^+$ and $a \wedge b = 0$ imply $ac \wedge b = ca \wedge b = 0$ - ∘ $T \in \mathcal{L}(A, B)$ is said to be positive if $Tf \ge 0$ for all $f \in A$. - A vector lattice A (Riesz spaces) is called an ℓ -algebra whenever $a \le b \in A$ and $c \in A^+$ imply that $ac \le bc$ - o A is an f-algebra if $a, b, c \in A^+$ and $a \wedge b = 0$ imply $ac \wedge b = ca \wedge b = 0$ - ∘ $T \in \mathcal{L}(A, B)$ is said to be positive if $Tf \ge 0$ for all $f \in A$. - o $T \in \mathcal{L}(A,B)$ is said to be lattice-homomorphism (ℓ -homomorphism) if $T(f \wedge g) = Tf \wedge Tg$ for all $f,g \in A$. - A vector lattice A (Riesz spaces) is called an ℓ -algebra whenever $a \le b \in A$ and $c \in A^+$ imply that $ac \le bc$ - o A is an f-algebra if $a, b, c \in A^+$ and $a \wedge b = 0$ imply $ac \wedge b = ca \wedge b = 0$ - ∘ $T \in \mathcal{L}(A, B)$ is said to be positive if $Tf \ge 0$ for all $f \in A$. - o $T \in \mathcal{L}(A,B)$ is said to be lattice-homomorphism (ℓ -homomorphism) if $T(f \wedge g) = Tf \wedge Tg$ for all $f,g \in A$. - o $T \in \mathcal{L}_b(A, B)$ is said to be an orthomorphism if $Tf \land g = 0$ whenever $f \land g = 0$ for all $f, g \in A$. 4/16 - A vector lattice A (Riesz spaces) is called an ℓ -algebra whenever $a \le b \in A$ and $c \in A^+$ imply that $ac \le bc$ - o A is an f-algebra if $a, b, c \in A^+$ and $a \wedge b = 0$ imply $ac \wedge b = ca \wedge b = 0$ - ∘ $T \in \mathcal{L}(A, B)$ is said to be positive if $Tf \ge 0$ for all $f \in A$. - ∘ $T \in \mathcal{L}(A, B)$ is said to be lattice-homomorphism (ℓ -homomorphism) if $T(f \land g) = Tf \land Tg$ for all $f, g \in A$. - $T \in \mathcal{L}_b(A, B)$ is said to be an orthomorphism if $Tf \land g = 0$ whenever $f \land g = 0$ for all $f, g \in A$. - The set of all orthomorphisms will be denoted Orth(A) \circ A and B are unital f-algebras \circ A and B are unital f-algebras $$\circ \mathcal{M}(A,B) = \{T \in \mathcal{L}(A,B), T \geq 0, \text{ and } TI_A = I_B\}$$ - \circ A and B are unital f-algebras - $\circ \mathcal{M}(A,B) = \{T \in \mathcal{L}(A,B), T \geq 0, \text{ and } TI_A = I_B\}$ # Huijsmans and de Pagter, 1984 if $T \in \mathcal{M}(A, B)$, then the following are equivalent. - (i) T is an extreme point in $\mathcal{M}(A, B)$. - (ii) T is an algebra homomorphism. - (iii) T is a Riesz homomorphism. \circ *A* is a unital *f*-algebra with *u* as unit element. - \circ *A* is a unital *f*-algebra with *u* as unit element. - $\circ~B$ is an f-algebra and $w \in B^+$ - A is a unital f-algebra with u as unit element. - B is an f-algebra and $w \in B^+$ - The convex set $$\mathcal{K}_{w}(A,B) = \left\{ T \in \mathcal{L}(A,B)^{+} : T(u) = w \right\}.$$ - A is a unital f-algebra with u as unit element. - ∘ B is an f-algebra and $w ∈ B^+$ - The convex set $$\mathcal{K}_{w}(A,B) = \left\{ T \in \mathcal{L}(A,B)^{+} : T(u) = w \right\}.$$ #### **Theorem** Let $T \in \mathcal{L}(A, B)^+$. Then T is an algebra homomorphism if and only if T is a lattice homomorphism and T(u) is idempotent. - A is a unital f-algebra with u as unit element. - ∘ B is an f-algebra and w ∈ B⁺ - The convex set $$\mathcal{K}_{w}(A,B) = \left\{ T \in \mathcal{L}(A,B)^{+} : T(u) = w \right\}.$$ #### Theorem Let $T \in \mathcal{L}(A, B)^+$. Then T is an algebra homomorphism if and only if T is a lattice homomorphism and T(u) is idempotent. #### **Theorem** Let w be an idempotent element in B and $T \in \mathcal{K}_w(A, B)$. Then T is an algebra homomorphism if and only if T is an extreme point of $\mathcal{K}_w(A, B)$. • For every positive element T in $\mathcal{L}(A, B)$, we put $$\langle T \rangle = \{ S \in \mathcal{L}(A, B) : -nT \leq S \leq nT \text{ for some } n = 1, 2, ... \}.$$ $\langle T \rangle$ is a *po*-subspace of $\mathcal{L}_b(A, B)$. • For every positive element T in $\mathcal{L}(A, B)$, we put $$\langle T \rangle = \{ S \in \mathcal{L}(A, B) : -nT \leq S \leq nT \text{ for some } n = 1, 2, ... \}.$$ - $\langle T \rangle$ is a *po*-subspace of $\mathcal{L}_b(A, B)$. - o A Gelfand Type Transform $\widehat{u}:\langle T\rangle\to B$ can be defined by putting $$\widehat{u}\left(S\right)=S\left(u\right)\quad\text{for all }S\in\left\langle T\right\rangle .$$ • For every positive element T in $\mathcal{L}(A, B)$, we put $$\langle T \rangle = \{ S \in \mathcal{L}(A, B) : -nT \leq S \leq nT \text{ for some } n = 1, 2, ... \}.$$ - $\langle T \rangle$ is a *po*-subspace of $\mathcal{L}_b(A, B)$. - o A Gelfand Type Transform $\widehat{u}:\langle T\rangle\to B$ can be defined by putting $$\widehat{u}\left(S\right)=S\left(u\right)\quad\text{for all }S\in\left\langle T\right\rangle .$$ #### Theorem Let w be an idempotent element in B and $T \in \mathcal{K}_w(A, B)$. Then T is an algebra homomorphism if and only if \widehat{u} is one-to-one. o A is an f-algebra \longrightarrow Orth(A) is a semiprime f-algebra with I_A as unit element. - o A is an f-algebra \longrightarrow Orth(A) is a semiprime f-algebra with I_A as unit element. - \circ *A* is a semiprime *f*-algebra \longrightarrow *A* \hookrightarrow Orth(*A*). - o A is an f-algebra \longrightarrow Orth(A) is a semiprime f-algebra with I_A as unit element. - o *A* is a semiprime f-algebra $\longrightarrow A \hookrightarrow Orth(A)$. - o *A* is an *f*-algebra with unit element $\longrightarrow A \simeq Orth(A)$. # Stone f-algebra An Archimedean semiprime f-algebra is called a Stone f-algebra if $$I_A \wedge f \in A \text{ for all } f \in A.$$ # Stone f -algebra An Archimedean semiprime f-algebra is called a Stone f-algebra if $$I_A \wedge f \in A \text{ for all } f \in A.$$ $$A^{\rhd} = \{f + rI_A : f \in A \text{ and } r \in \mathbf{R}\}$$ # Stone f -algebra An Archimedean semiprime f-algebra is called a Stone f-algebra if $$I_A \wedge f \in A \text{ for all } f \in A.$$ $$A^{\triangleright} = \{ f + rI_A : f \in A \text{ and } r \in \mathbf{R} \}$$ #### **Theorem** Let A be a Stone f-algebra with no unit elements. Then the following assertions hold. - (i) A^{\triangleright} is a sub f-algebra of Orth (A). - (ii) A is a ring and order ideal in A^{\triangleright} . # Contractive operator Let A and B be Stone f-algebra. An operator $T \in \mathcal{L}\left(A,B\right)$ is said to be contractive if $$0 \le Tf \le I_B$$ for all $f \in A$ with $0 \le f \le I_A$. ## Contractive operator Let A and B be Stone f-algebra. An operator $T \in \mathcal{L}(A,B)$ is said to be contractive if $$0 \le Tf \le I_B$$ for all $f \in A$ with $0 \le f \le I_A$. o The set of all contractive **positive** operators is denoted by $\mathcal{K}(A, B)$. ## Contractive operator Let A and B be Stone f-algebra. An operator $T \in \mathcal{L}(A,B)$ is said to be contractive if $$0 \le Tf \le I_B$$ for all $f \in A$ with $0 \le f \le I_A$. • The set of all contractive **positive** operators is denoted by $\mathcal{K}(A, B)$. # Example A be the set of all real-valued continuous functions f on $(0,\infty)$ for which there exist $r_f\in(0,\infty)$ and a real polynomial P_f such that $$f(r) = P_f(r)$$ for all $r \in (r_f, \infty)$. If $B = \mathbf{R}$ and define $T \in \mathcal{L}(A, B)$ by $$Tf = P_f(0)$$ for all $f \in A$. 0 ## Stone extension Let A and B be f-algebra. Assume that A has no unit element. Then, any $T \in \mathcal{L}(A,B)$ has an obvious extension $T^{\triangleright} \in \mathcal{L}(A^{\triangleright},B^{\triangleright})$, where $$T^{\triangleright}(f+rI_A)=Tf+rI_B$$ for all $f\in A$ and $r\in \mathbf{R}$. ## Stone extension Let A and B be f-algebra. Assume that A has no unit element. Then, any $T \in \mathcal{L}(A,B)$ has an obvious extension $T^{\triangleright} \in \mathcal{L}(A^{\triangleright},B^{\triangleright})$, where $$T^{\triangleright}(f+rI_A)=Tf+rI_B$$ for all $f\in A$ and $r\in \mathbf{R}$. #### **Theorem** Let *A* be Stone *f*-algebra with no unit element and *B* be a Stone *f*-algebra. The following equivalences hold for any $T \in \mathcal{L}(A, B)$. - (i) $T \in \mathcal{K}(A,B)$ if and only if $T^{\triangleright} \in \mathcal{K}(A^{\triangleright},B^{\triangleright})$ - (ii) T is an extreme point in $\mathcal{K}(A,B)$ if and only if T^{\triangleright} is an extreme point in $\mathcal{K}(A^{\triangleright},B^{\triangleright})$. - (iii) T is an algebra hmomorphism in $\mathcal{K}(A,B)$ if and only if T^{\triangleright} is an algebra hmomorphism in $\mathcal{K}(A^{\triangleright},B^{\triangleright})$. #### Theorem Let A and B be Stone f-algebras, and let $T \in \mathcal{K}(A, B)$. Then, T is an extreme point in $\mathcal{K}(A, B)$ if and only if T is an algebra homomorphism. 12 / 16 Let A and B be Stone f-algebras. An operator $T \in \mathcal{L}(A,B)$ is called a Stone operator if $$T(I_A \wedge f) = I_B \wedge Tf \text{ for all } f \in A.$$ Let A and B be Stone f-algebras. An operator $T \in \mathcal{L}(A,B)$ is called a Stone operator if $$T(I_A \wedge f) = I_B \wedge Tf$$ for all $f \in A$. ## Stone Operator and Riesz homomorphism Let A and B be Stone f-algebras, and $T \in \mathcal{K}(A, B)$. If T is a Stone operator, then T is a Riesz homomorphism. Let A and B be Stone f-algebras. An operator $T \in \mathcal{L}(A,B)$ is called a Stone operator if $$T(I_A \wedge f) = I_B \wedge Tf$$ for all $f \in A$. ## Stone Operator and Riesz homomorphism Let A and B be Stone f-algebras, and $T \in \mathcal{K}(A, B)$. If T is a Stone operator, then T is a Riesz homomorphism. The converse need not to be true: Let A and B be Stone f-algebras. An operator $T \in \mathcal{L}(A,B)$ is called a Stone operator if $$T(I_A \wedge f) = I_B \wedge Tf \text{ for all } f \in A.$$ ## Stone Operator and Riesz homomorphism Let A and B be Stone f-algebras, and $T \in \mathcal{K}(A,B)$. If T is a Stone operator, then T is a Riesz homomorphism. The converse need not to be true: If $$A = B = \mathbf{R}$$ and $Tf = f/2$ Let A and B be Stone f-algebras. An operator $T \in \mathcal{L}(A,B)$ is called a Stone operator if $$T(I_A \wedge f) = I_B \wedge Tf$$ for all $f \in A$. ### Stone Operator and Riesz homomorphism Let A and B be Stone f-algebras, and $T \in \mathcal{K}(A,B)$. If T is a Stone operator, then T is a Riesz homomorphism. The converse need not to be true: If $A = B = \mathbf{R}$ and Tf = f/2 T is Riesz homomorphism but not Stone homomorphism #### **Theorem** Let *A* and *B* be Stone *f*-algebras with no unit elements, and let $T \in \mathcal{K}(A, B)$. Then the following are equivalent. - (i) T is a Stone operator. - (ii) T^{\triangleright} is a Riesz homomorphism. - (iii) T^{\triangleright} is a Stone operator. #### Theorem Let *A* and *B* be Stone *f*-algebras with no unit elements, and let $T \in \mathcal{K}(A, B)$. Then the following are equivalent. - (i) T is a Stone operator. - (ii) T^{\triangleright} is a Riesz homomorphism. - (iii) T^{\triangleright} is a Stone operator. #### Theorem Let *A* and *B* be Stone *f*-algebras, and let $T \in \mathcal{K}(A, B)$. Then *T* is an extreme point in $\mathcal{K}(A, B)$ if and only if *T* is a Stone operator. Extreme contractive positive operators and Stone operators # This talk is based among these articles: - M.A. Ben Amor, K. Boulabiar, A geometric characterization of ring homomorphisms on f-rings, Journal of Algebra and its applications, to appear. - M.A. Ben Amor, K. Boulabiar, C. El Adeb ,Extreme contractive operators on Stone f-algebras, preprint - C.B. Huijsmans and B. de Pagter, Subalgebras and Riesz subspaces of an *f*-algebra, *Proc. London Math. Soc.*, 48 (1984), 161-174. Спасибо за внимание Thank you for your attention