Geometric characterization of algebra homomorphisms on *f*-algebras

Mohamed Amine BEN AMOR

Leiden, July 25, 2013

Finite dimensional case

Let \mathcal{B} be the set of bistochastic matrices.

2/16

Finite dimensional case

Let \mathcal{B} be the set of bistochastic matrices.

$$M = \begin{pmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{4} & \frac{5}{12} & \frac{1}{3} \\ \frac{5}{12} & \frac{1}{12} & \frac{1}{2} \end{pmatrix}$$

Finite dimensional case

Let \mathcal{B} be the set of bistochastic matrices.

$$M = \begin{pmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{4} & \frac{5}{12} & \frac{1}{3} \\ \frac{5}{12} & \frac{1}{12} & \frac{1}{2} \end{pmatrix}$$

Birkhoff, 1946

Extremal points of the convex set \mathcal{B} are permutation matrices.

1961, A. Ionescu Tulcea and C. Ionescu Tulcea

Let *X* and *Y* are two compact Hausdorff spaces and the convex set

$$\mathfrak{K} = \{ T \in \mathcal{L}(C(X), C(Y)), T \geq 0, \text{ and } T\mathbb{1} = \mathbb{1} \}$$

Then T is an algebra homomorphism in $\mathcal{L}(C(X),C(Y))$ if and only if T is an extreme point in $\mathfrak K$

∘ A vector lattice A (Riesz spaces) is called an ℓ -algebra whenever $a \le b \in A$ and $c \in A^+$ imply that $ac \le bc$

- A vector lattice A (Riesz spaces) is called an ℓ -algebra whenever $a \le b \in A$ and $c \in A^+$ imply that $ac \le bc$
- o A is an f-algebra if $a,b,c\in A^+$ and $a\wedge b=0$ imply $ac\wedge b=ca\wedge b=0$

4/16

- A vector lattice A (Riesz spaces) is called an ℓ -algebra whenever $a \le b \in A$ and $c \in A^+$ imply that $ac \le bc$
- o A is an f-algebra if $a, b, c \in A^+$ and $a \wedge b = 0$ imply $ac \wedge b = ca \wedge b = 0$
- ∘ $T \in \mathcal{L}(A, B)$ is said to be positive if $Tf \ge 0$ for all $f \in A$.

- A vector lattice A (Riesz spaces) is called an ℓ -algebra whenever $a \le b \in A$ and $c \in A^+$ imply that $ac \le bc$
- o A is an f-algebra if $a, b, c \in A^+$ and $a \wedge b = 0$ imply $ac \wedge b = ca \wedge b = 0$
- ∘ $T \in \mathcal{L}(A, B)$ is said to be positive if $Tf \ge 0$ for all $f \in A$.
- o $T \in \mathcal{L}(A,B)$ is said to be lattice-homomorphism (ℓ -homomorphism) if $T(f \wedge g) = Tf \wedge Tg$ for all $f,g \in A$.

- A vector lattice A (Riesz spaces) is called an ℓ -algebra whenever $a \le b \in A$ and $c \in A^+$ imply that $ac \le bc$
- o A is an f-algebra if $a, b, c \in A^+$ and $a \wedge b = 0$ imply $ac \wedge b = ca \wedge b = 0$
- ∘ $T \in \mathcal{L}(A, B)$ is said to be positive if $Tf \ge 0$ for all $f \in A$.
- o $T \in \mathcal{L}(A,B)$ is said to be lattice-homomorphism (ℓ -homomorphism) if $T(f \wedge g) = Tf \wedge Tg$ for all $f,g \in A$.
- o $T \in \mathcal{L}_b(A, B)$ is said to be an orthomorphism if $Tf \land g = 0$ whenever $f \land g = 0$ for all $f, g \in A$.

4/16

- A vector lattice A (Riesz spaces) is called an ℓ -algebra whenever $a \le b \in A$ and $c \in A^+$ imply that $ac \le bc$
- o A is an f-algebra if $a, b, c \in A^+$ and $a \wedge b = 0$ imply $ac \wedge b = ca \wedge b = 0$
- ∘ $T \in \mathcal{L}(A, B)$ is said to be positive if $Tf \ge 0$ for all $f \in A$.
- ∘ $T \in \mathcal{L}(A, B)$ is said to be lattice-homomorphism (ℓ -homomorphism) if $T(f \land g) = Tf \land Tg$ for all $f, g \in A$.
- $T \in \mathcal{L}_b(A, B)$ is said to be an orthomorphism if $Tf \land g = 0$ whenever $f \land g = 0$ for all $f, g \in A$.
- The set of all orthomorphisms will be denoted Orth(A)

 \circ A and B are unital f-algebras

 \circ A and B are unital f-algebras

$$\circ \mathcal{M}(A,B) = \{T \in \mathcal{L}(A,B), T \geq 0, \text{ and } TI_A = I_B\}$$

- \circ A and B are unital f-algebras
- $\circ \mathcal{M}(A,B) = \{T \in \mathcal{L}(A,B), T \geq 0, \text{ and } TI_A = I_B\}$

Huijsmans and de Pagter, 1984

if $T \in \mathcal{M}(A, B)$, then the following are equivalent.

- (i) T is an extreme point in $\mathcal{M}(A, B)$.
- (ii) T is an algebra homomorphism.
- (iii) T is a Riesz homomorphism.

 \circ *A* is a unital *f*-algebra with *u* as unit element.

- \circ *A* is a unital *f*-algebra with *u* as unit element.
- $\circ~B$ is an f-algebra and $w \in B^+$

- A is a unital f-algebra with u as unit element.
- B is an f-algebra and $w \in B^+$
- The convex set

$$\mathcal{K}_{w}(A,B) = \left\{ T \in \mathcal{L}(A,B)^{+} : T(u) = w \right\}.$$

- A is a unital f-algebra with u as unit element.
- ∘ B is an f-algebra and $w ∈ B^+$
- The convex set

$$\mathcal{K}_{w}(A,B) = \left\{ T \in \mathcal{L}(A,B)^{+} : T(u) = w \right\}.$$

Theorem

Let $T \in \mathcal{L}(A, B)^+$. Then T is an algebra homomorphism if and only if T is a lattice homomorphism and T(u) is idempotent.

- A is a unital f-algebra with u as unit element.
- ∘ B is an f-algebra and w ∈ B⁺
- The convex set

$$\mathcal{K}_{w}(A,B) = \left\{ T \in \mathcal{L}(A,B)^{+} : T(u) = w \right\}.$$

Theorem

Let $T \in \mathcal{L}(A, B)^+$. Then T is an algebra homomorphism if and only if T is a lattice homomorphism and T(u) is idempotent.

Theorem

Let w be an idempotent element in B and $T \in \mathcal{K}_w(A, B)$. Then T is an algebra homomorphism if and only if T is an extreme point of $\mathcal{K}_w(A, B)$.

• For every positive element T in $\mathcal{L}(A, B)$, we put

$$\langle T \rangle = \{ S \in \mathcal{L}(A, B) : -nT \leq S \leq nT \text{ for some } n = 1, 2, ... \}.$$

 $\langle T \rangle$ is a *po*-subspace of $\mathcal{L}_b(A, B)$.

• For every positive element T in $\mathcal{L}(A, B)$, we put

$$\langle T \rangle = \{ S \in \mathcal{L}(A, B) : -nT \leq S \leq nT \text{ for some } n = 1, 2, ... \}.$$

- $\langle T \rangle$ is a *po*-subspace of $\mathcal{L}_b(A, B)$.
- o A Gelfand Type Transform $\widehat{u}:\langle T\rangle\to B$ can be defined by putting

$$\widehat{u}\left(S\right)=S\left(u\right)\quad\text{for all }S\in\left\langle T\right\rangle .$$

• For every positive element T in $\mathcal{L}(A, B)$, we put

$$\langle T \rangle = \{ S \in \mathcal{L}(A, B) : -nT \leq S \leq nT \text{ for some } n = 1, 2, ... \}.$$

- $\langle T \rangle$ is a *po*-subspace of $\mathcal{L}_b(A, B)$.
- o A Gelfand Type Transform $\widehat{u}:\langle T\rangle\to B$ can be defined by putting

$$\widehat{u}\left(S\right)=S\left(u\right)\quad\text{for all }S\in\left\langle T\right\rangle .$$

Theorem

Let w be an idempotent element in B and $T \in \mathcal{K}_w(A, B)$. Then T is an algebra homomorphism if and only if \widehat{u} is one-to-one.

o A is an f-algebra \longrightarrow Orth(A) is a semiprime f-algebra with I_A as unit element.

- o A is an f-algebra \longrightarrow Orth(A) is a semiprime f-algebra with I_A as unit element.
- \circ *A* is a semiprime *f*-algebra \longrightarrow *A* \hookrightarrow Orth(*A*).

- o A is an f-algebra \longrightarrow Orth(A) is a semiprime f-algebra with I_A as unit element.
- o *A* is a semiprime f-algebra $\longrightarrow A \hookrightarrow Orth(A)$.
- o *A* is an *f*-algebra with unit element $\longrightarrow A \simeq Orth(A)$.

Stone f-algebra

An Archimedean semiprime f-algebra is called a Stone f-algebra if

$$I_A \wedge f \in A \text{ for all } f \in A.$$

Stone f -algebra

An Archimedean semiprime f-algebra is called a Stone f-algebra if

$$I_A \wedge f \in A \text{ for all } f \in A.$$

$$A^{\rhd} = \{f + rI_A : f \in A \text{ and } r \in \mathbf{R}\}$$

Stone f -algebra

An Archimedean semiprime f-algebra is called a Stone f-algebra if

$$I_A \wedge f \in A \text{ for all } f \in A.$$

$$A^{\triangleright} = \{ f + rI_A : f \in A \text{ and } r \in \mathbf{R} \}$$

Theorem

Let A be a Stone f-algebra with no unit elements. Then the following assertions hold.

- (i) A^{\triangleright} is a sub f-algebra of Orth (A).
- (ii) A is a ring and order ideal in A^{\triangleright} .

Contractive operator

Let A and B be Stone f-algebra. An operator $T \in \mathcal{L}\left(A,B\right)$ is said to be contractive if

$$0 \le Tf \le I_B$$
 for all $f \in A$ with $0 \le f \le I_A$.

Contractive operator

Let A and B be Stone f-algebra. An operator $T \in \mathcal{L}(A,B)$ is said to be contractive if

$$0 \le Tf \le I_B$$
 for all $f \in A$ with $0 \le f \le I_A$.

o The set of all contractive **positive** operators is denoted by $\mathcal{K}(A, B)$.

Contractive operator

Let A and B be Stone f-algebra. An operator $T \in \mathcal{L}(A,B)$ is said to be contractive if

$$0 \le Tf \le I_B$$
 for all $f \in A$ with $0 \le f \le I_A$.

• The set of all contractive **positive** operators is denoted by $\mathcal{K}(A, B)$.

Example

A be the set of all real-valued continuous functions f on $(0,\infty)$ for which there exist $r_f\in(0,\infty)$ and a real polynomial P_f such that

$$f(r) = P_f(r)$$
 for all $r \in (r_f, \infty)$.

If $B = \mathbf{R}$ and define $T \in \mathcal{L}(A, B)$ by

$$Tf = P_f(0)$$
 for all $f \in A$.

0

Stone extension

Let A and B be f-algebra. Assume that A has no unit element. Then, any $T \in \mathcal{L}(A,B)$ has an obvious extension $T^{\triangleright} \in \mathcal{L}(A^{\triangleright},B^{\triangleright})$, where

$$T^{\triangleright}(f+rI_A)=Tf+rI_B$$
 for all $f\in A$ and $r\in \mathbf{R}$.

Stone extension

Let A and B be f-algebra. Assume that A has no unit element. Then, any $T \in \mathcal{L}(A,B)$ has an obvious extension $T^{\triangleright} \in \mathcal{L}(A^{\triangleright},B^{\triangleright})$, where

$$T^{\triangleright}(f+rI_A)=Tf+rI_B$$
 for all $f\in A$ and $r\in \mathbf{R}$.

Theorem

Let *A* be Stone *f*-algebra with no unit element and *B* be a Stone *f*-algebra. The following equivalences hold for any $T \in \mathcal{L}(A, B)$.

- (i) $T \in \mathcal{K}(A,B)$ if and only if $T^{\triangleright} \in \mathcal{K}(A^{\triangleright},B^{\triangleright})$
- (ii) T is an extreme point in $\mathcal{K}(A,B)$ if and only if T^{\triangleright} is an extreme point in $\mathcal{K}(A^{\triangleright},B^{\triangleright})$.
- (iii) T is an algebra hmomorphism in $\mathcal{K}(A,B)$ if and only if T^{\triangleright} is an algebra hmomorphism in $\mathcal{K}(A^{\triangleright},B^{\triangleright})$.

Theorem

Let A and B be Stone f-algebras, and let $T \in \mathcal{K}(A, B)$. Then, T is an extreme point in $\mathcal{K}(A, B)$ if and only if T is an algebra homomorphism.

12 / 16

Let A and B be Stone f-algebras. An operator $T \in \mathcal{L}(A,B)$ is called a Stone operator if

$$T(I_A \wedge f) = I_B \wedge Tf \text{ for all } f \in A.$$

Let A and B be Stone f-algebras. An operator $T \in \mathcal{L}(A,B)$ is called a Stone operator if

$$T(I_A \wedge f) = I_B \wedge Tf$$
 for all $f \in A$.

Stone Operator and Riesz homomorphism

Let A and B be Stone f-algebras, and $T \in \mathcal{K}(A, B)$. If T is a Stone operator, then T is a Riesz homomorphism.

Let A and B be Stone f-algebras. An operator $T \in \mathcal{L}(A,B)$ is called a Stone operator if

$$T(I_A \wedge f) = I_B \wedge Tf$$
 for all $f \in A$.

Stone Operator and Riesz homomorphism

Let A and B be Stone f-algebras, and $T \in \mathcal{K}(A, B)$. If T is a Stone operator, then T is a Riesz homomorphism.

The converse need not to be true:

Let A and B be Stone f-algebras. An operator $T \in \mathcal{L}(A,B)$ is called a Stone operator if

$$T(I_A \wedge f) = I_B \wedge Tf \text{ for all } f \in A.$$

Stone Operator and Riesz homomorphism

Let A and B be Stone f-algebras, and $T \in \mathcal{K}(A,B)$. If T is a Stone operator, then T is a Riesz homomorphism.

The converse need not to be true:

If
$$A = B = \mathbf{R}$$
 and $Tf = f/2$

Let A and B be Stone f-algebras. An operator $T \in \mathcal{L}(A,B)$ is called a Stone operator if

$$T(I_A \wedge f) = I_B \wedge Tf$$
 for all $f \in A$.

Stone Operator and Riesz homomorphism

Let A and B be Stone f-algebras, and $T \in \mathcal{K}(A,B)$. If T is a Stone operator, then T is a Riesz homomorphism.

The converse need not to be true:

If $A = B = \mathbf{R}$ and Tf = f/2

T is Riesz homomorphism but not Stone homomorphism

Theorem

Let *A* and *B* be Stone *f*-algebras with no unit elements, and let $T \in \mathcal{K}(A, B)$. Then the following are equivalent.

- (i) T is a Stone operator.
- (ii) T^{\triangleright} is a Riesz homomorphism.
- (iii) T^{\triangleright} is a Stone operator.

Theorem

Let *A* and *B* be Stone *f*-algebras with no unit elements, and let $T \in \mathcal{K}(A, B)$. Then the following are equivalent.

- (i) T is a Stone operator.
- (ii) T^{\triangleright} is a Riesz homomorphism.
- (iii) T^{\triangleright} is a Stone operator.

Theorem

Let *A* and *B* be Stone *f*-algebras, and let $T \in \mathcal{K}(A, B)$. Then *T* is an extreme point in $\mathcal{K}(A, B)$ if and only if *T* is a Stone operator.

Extreme contractive positive operators and Stone operators

This talk is based among these articles:

- M.A. Ben Amor, K. Boulabiar, A geometric characterization of ring homomorphisms on f-rings, Journal of Algebra and its applications, to appear.
- M.A. Ben Amor, K. Boulabiar, C. El Adeb ,Extreme contractive operators on Stone f-algebras, preprint
- C.B. Huijsmans and B. de Pagter, Subalgebras and Riesz subspaces of an *f*-algebra, *Proc. London Math. Soc.*, 48 (1984), 161-174.

Спасибо за внимание

Thank you for your attention