Bilinear Regular Operators on Quasi-Banach Lattices and Compactness

Eduardo Brandani da Silva
Maringa State University - Brazil

joint work with Dicesar L. Fernandez
Multilinear operators arise naturally in many areas of classical and harmonic analysis, as well as functional analysis, including the theory of Banach operator ideals.
Multilinear operators arise naturally in many areas of classical and harmonic analysis, as well as functional analysis, including the theory of Banach operator ideals.

Fundamental multilinear operators arising in harmonic analysis include convolutions, paraproducts and multilinear Fourier multiplier operators.
In the last years, several singular multilinear operators have been intensively studied and the research on bilinear Hilbert transform, originated by the work of M. Lacey and C. Thiele.
In the last years, several singular multilinear operators have been intensively studied and the research on bilinear Hilbert transform, originated by the work of M. Lacey and C. Thiele.

In the last years, several singular multilinear operators have been intensively studied and the research on bilinear Hilbert transform, originated by the work of M. Lacey and C. Thiele.

has shown the need for the development of a systematic analysis of bilinear operators.
In the following paper we may find more details about this subject.
- Introduction - Overview

- In the following paper we may find more details about this subject.

Another topic is the theory of operator ideals and s-numbers in Banach spaces.
Another topic is the theory of operator ideals and s-numbers in Banach spaces.

For the multilinear case, a systematic theory appears in
Another topic is the theory of operator ideals and s-numbers in Banach spaces.

For the multilinear case, a systematic theory appears in

The study of multilinear operators in interpolation of Banach spaces is an old topic and several researchers worked about. See, for instance:
The study of multilinear operators in interpolation of Banach spaces is an old topic and several researchers worked about. See, for instance:

The study of multilinear operators in interpolation of Banach spaces is an old topic and several researchers worked about. See, for instance:

Also, connections between positive bilinear operators, functionals spaces and interpolation theory were explored in
Also, connections between positive bilinear operators, functionals spaces and interpolation theory were explored in

Also, connections between positive bilinear operators, functionals spaces and interpolation theory were explored in

Some results for interpolation of bilinear operators have been applied in general theory of Banach spaces and in the theory of multilinear p-summing operators. See, respectively
Some results for interpolation of bilinear operators have been applied in general theory of Banach spaces and in the theory of multilinear p-summing operators. See, respectively

G. Pisier, "A remark on $\pi_2(\ell_2, \ell_2)$", Math. Nachrichten 148 (1990) 243–245,
Some results for interpolation of bilinear operators have been applied in general theory of Banach spaces and in the theory of multilinear p-summing operators. See, respectively

G. Pisier, "A remark on $\pi_2(\ell_2, \ell_2)$", Math. Nachrichten 148 (1990) 243–245,

But, not all results for the linear case are generalized to the bilinear case.
But, not all results for the linear case are generalized to the bilinear case.

For instance, the linear Marcinkiewicz multiplier theorem, whose natural bilinear version fails, as shown by L. Grafakos and N. Kalton in
But, not all results for the linear case are generalized to the bilinear case.

For instance, the linear Marcinkiewicz multiplier theorem, whose natural bilinear version fails, as shown by L. Grafakos and N. Kalton in

In the paper
In the paper

In the paper

it is presented several important results about bilinear maps on products of normed vector lattices.
Quasi-Banach spaces and their relations with several branches of mathematics is a subject which has been lately interested to many researchers.
Quasi-Banach spaces and their relations with several branches of mathematics is a subject which has been lately interested to many researchers.

Besides the classical works by Aoki, Rolewicz and Kalton, the studies of analytic and geometric aspects are one of the main issues for these spaces, with many results obtained recently.
For instance, several results for interpolation of bilinear operators in quasi-Banach spaces were obtained in
For instance, several results for interpolation of bilinear operators in quasi-Banach spaces were obtained in

In the current work, positive and regular bilinear operators on quasi-normed functional spaces are defined and some properties and characterizations on lattices and quasi-normed lattices are obtained.
- Introduction

- In the current work, positive and regular bilinear operators on quasi-normed functional spaces are defined and some properties and characterizations on lattices and quasi-normed lattices are obtained.

- We introduce a variant definition of functional quasi-norm and prove some theorems characterizing compactness of bilinear operators.
Using a very interesting and powerful definition of adjoint of a bilinear mapping, introduced in...
Using a very interesting and powerful definition of adjoint of a bilinear mapping, introduced in

Using a very interesting and powerful definition of adjoint of a bilinear mapping, introduced in

relations between positive and regular bilinear operators and their adjoint on normed functional spaces are proved.
We call the attention that Ramanujan-Schock’s definition differs from the more known definition of adjoint of a bilinear map, introduced by Arens in
We call the attention that Ramanujan-Schock’s definition differs from the more known definition of adjoint of a bilinear map, introduced by Arens in

In what follows, the first definitions and results are presented. For a vector lattice X, the positive cone is denoted by X_+.
In what follows, the first definitions and results are presented. For a vector lattice X, the positive cone is denoted by X_+.

Definition 1. Let X, Y and Z be vector lattices. A bilinear operator $T : X \times Y \rightarrow Z$ is positive if given $x \in X_+$ and $y \in Y_+$, one has $T(x, y) \in Z_+$.
Proposition 1. Let X, Y and Z be vector lattices and $T : X \times Y \to Z$ a bilinear positive operator. Then,

$$|T(x, y)| \leq T(|x|, |y|),$$

for all $(x, y) \in X \times Y$.

- Positive Operators
Proposition 1. Let X, Y and Z be vector lattices and $T : X \times Y \rightarrow Z$ a bilinear positive operator. Then,

$$|T(x, y)| \leq T(|x|, |y|),$$

for all $(x, y) \in X \times Y$.

Definition 2. Let X, Y and Z be ordered vector spaces. A bilinear operator $T : X \times Y \rightarrow Z$ is regular if it may be written as

$$T = T_1 - T_2,$$

where T_1 and T_2 are positive bilinear operators.
Theorem 1. Let X, Y and Z be vector lattices. A bilinear operator $T : X \times Y \to Z$ is regular if, and only if, there exists a positive bilinear operator $S : X \times Y \to Z$ such that

$$|T(x, y)| \leq S(|x|, |y|),$$

for all $(x, y) \in X \times Y$. The operator S is called a positive upper bound of the operator T.
Theorem 1. Let X, Y and Z be vector lattices. A bilinear operator $T : X \times Y \to Z$ is regular if, and only if, there exists a positive bilinear operator $S : X \times Y \to Z$ such that

$$|T(x, y)| \leq S(|x|, |y|),$$

for all $(x, y) \in X \times Y$. The operator S is called a positive upper bound of the operator T.

Definition 3. An ordered set X is Dedekind complete if every non-empty subset of X that is bounded above admits a supremum (in X).
Theorem 2. Let X and Y be vector lattices and Z a Dedekind complete vector lattice. A bilinear operator $T : X \times Y \to Z$ is regular if, and only if, for each $(u, v) \in X_+ \times Y_+$, there exists $\omega \in Z_+$ such that

$$T(x, y) \leq \omega,$$

for all $(x, y) \in X_+ \times Y_+$ with $0 \leq x \leq u$ and $0 \leq y \leq v$.
Definition 4. A quasi-norm in a vector space X is an application $\| \cdot \|$ of X in $[0, \infty[$ such that, for $x, y \in X$ and $\lambda \in \mathbb{R}$, verifies the conditions...
Definition 4. A quasi-norm in a vector space X is an application $\| \cdot \|$ of X in $[0, \infty]$ such that, for $x, y \in X$ and $\lambda \in \mathbb{R}$, verifies the conditions

- **QN1)** $\|x\| = 0 \iff x = 0$;
- **QN2)** $\|\lambda x\| = |\lambda| \|x\|$;
- **QN3)** $\|x + y\| \leq C (\|x\| + \|y\|)$,

for some $C \geq 1$.
A vector space X endowed with a quasi-norm is called a **quasi-normed space**.
A vector space X endowed with a quasi-norm is called a **quasi-normed space**.

A **quasi-Banach space** is a quasi-normed space which is complete in the topology generated by

\[d(x, y) = ||x - y||. \]
- Quasi-Normed Lattices

A classic result is the Aoki-Rolewicz’s Theorem:
A classic result is the Aoki-Rolewicz’s Theorem:

Theorem 3. If X is a quasi-normed space endowed with a quasi-norm $||.||$, there exists a constant α, $0 < \alpha \leq 1$, and an equivalent quasi-norm $|||.||||$ such that

$$|||x + y|||^\alpha \leq |||x|||^\alpha + |||y|||^\alpha$$

for all x, y in X.
Definition 5. If a quasi-normed space is also a vector lattice \((X, \leq)\), we say \(X\) is a quasi-normed lattice if

\[|x| \leq |y| \implies \|x\| \leq \|y\|. \]
Definition 5. If a quasi-normed space is also a vector lattice \((X, \leq)\), we say \(X\) is a **quasi-normed lattice** if

\[|x| \leq |y| \implies \|x\| \leq \|y\|. \]

Besides, if a quasi-normed lattice is complete, we say it is a **quasi-Banach lattice**.
Theorem 4. Let X and Y be quasi-Banach lattices and Z a quasi-normed lattice. If a bilinear operator $T : X \times Y \rightarrow Z$ is positive, then it is bounded.
Theorem 4. Let X and Y be quasi-Banach lattices and Z a quasi-normed lattice. If a bilinear operator $T : X \times Y \to Z$ is positive, then it is bounded.

Corollary 1. In the conditions of the Theorem 4, if the operator $T : X \times Y \to Z$ is regular, it is also bounded.
We introduce now the function spaces which we will deal with. We define a variant general concept of functional quasi-norm which allow us to generalize several functional spaces.
We introduce now the function spaces which we will deal with. We define a variant general concept of functional quasi-norm which allow us to generalize several functional spaces.

Let \((\Omega, \mu)\) a measure space. We denote by

\[L^0_+ = L^0_+(\Omega, \mu) \]

the cone of real \(\mu\)-measurable, non negative and \(\mu\)-a.e. finite functions on \(\Omega\).
Definition 6. An application \(\rho : L^0_+ \rightarrow [0, \infty] \) is a functional quasi-norm if, for all \(f, g \in L^0_+ \), for all \(\lambda > 0 \) and for all subset \(D \subset \Omega \), with \(\mu(D) < \infty \), the following conditions are verified:
Definition 6. An application \(\rho : L^0_+ \rightarrow [0, \infty] \) is a functional quasi-norm if, for all \(f, g \in L^0_+ \), for all \(\lambda > 0 \) and for all subset \(D \subset \Omega \), with \(\mu(D) < \infty \), the following conditions are verified:

- C1) \(\rho(f) = 0 \iff f = 0, \mu - \text{a.e.}; \)
Definition 6. An application \(\rho : L^0_+ \rightarrow [0, \infty] \) is a functional quasi-norm if, for all \(f, g \in L^0_+ \), for all \(\lambda > 0 \) and for all subset \(D \subset \Omega \), with \(\mu(D) < \infty \), the following conditions are verified:

- **C1)** \(\rho(f) = 0 \iff f = 0, \mu - \text{a.e.}; \)
- **C2)** \(\rho(\lambda f) = \lambda \rho(f) \) for all \(\lambda > 0 \);
Definition 6. An application $\rho : L^0_+ \to [0, \infty]$ is a functional quasi-norm if, for all $f, g \in L^0_+$, for all $\lambda > 0$ and for all subset $D \subset \Omega$, with $\mu(D) < \infty$, the following conditions are verified:

- **C1)** $\rho(f) = 0 \iff f = 0$, μ – a.e.;

- **C2)** $\rho(\lambda f) = \lambda \rho(f)$ for all $\lambda > 0$;

- **C3)** $\rho(f + g) \leq C (\rho(f) + \rho(g))$, for some $C \geq 1$.
\(0 \leq g \leq f \quad \mu \text{ - a.e. } \implies \rho(g) \leq \rho(f) \)
- Operators and Functionals Spaces

- C4) $0 \leq g \leq f$ μ - a.e. $\implies \rho(g) \leq \rho(f)$;

- C5) $\rho(\chi_D) < \infty$;
- Operators and Functionals Spaces

- **C4)** \(0 \leq g \leq f\) \(\mu\) – a.e. \(\implies \rho(g) \leq \rho(f)\);

- **C5)** \(\rho(\chi_D) < \infty\);

- **C6)** \(\lambda \mu(\{x \in D \;;\; |f(x)| \geq \lambda\})^{1/p} \leq C' \rho(f)\), for some \(p > 0\) and constant \(C' > 0\), dependent of \(D\) and \(\rho\), and independent of \(f\).
The space $L^\infty = L^\infty(\Omega, \mu)$ is defined as the set of all measurable real functions on Ω, which are essentially bounded, i.e. bounded up to a set of measure zero. For $f \in L^\infty$, its norm is given by:

$$||f|| = \inf\{a \in \mathbb{R} : \mu(\{t : f(t) > a\}) = 0\}.$$
We denote by $S = S(\Omega, \mu)$ the subclass of simple functions.
We denote by \(S = S(\Omega, \mu) \) the subclass of simple functions.

Definition 7. Let \(\rho \) be a functional quasi-norm in \(L^0_+(\Omega, \mu) \). The class of the functions \(f \in L^0 \) such that \(\rho(\|f\|) < \infty \) is denoted by \(X = X(\Omega, \mu, \rho) \).
Theorem 5. Let ρ be a functional norm and $X = X(\Omega, \mu, \rho)$. For $f \in X$ let

$$\|f\|_X = \rho(|f|).$$

Then, X is a quasi-normed vector subspace verifying the inclusions

$$S \subset X \hookrightarrow L^0.$$
Definition 8. Let $X = X(\Omega, \mu, \rho)$ a quasi-normed functional space. A function $f \in X$ has **absolutely continuous quasi-norm** if, given $\varepsilon > 0$ there exists $\delta > 0$ such that, $\mu(D) < \delta$ implies

$$\|f \chi_D\| < \varepsilon.$$
Definition 8. Let $X = X(\Omega, \mu, \rho)$ a quasi-normed functional space. A function $f \in X$ has absolutely continuous quasi-norm if, given $\varepsilon > 0$ there exists $\delta > 0$ such that, $\mu(D) < \delta$ implies

$$\|f \chi_D\| < \varepsilon.$$

We denote by X_a the subspace of X of all absolutely continuous quasi-normed functions.
Definition 8. Let $X = X(\Omega, \mu, \rho)$ a quasi-normed functional space. A function $f \in X$ has absolutely continuous quasi-norm if, given $\varepsilon > 0$ there exists $\delta > 0$ such that, $\mu(D) < \delta$ implies

$$||f \chi_D|| < \varepsilon.$$

We denote by X_a the subspace of X of all absolutely continuous quasi-normed functions.

X has absolutely continuous quasi-norms if $X = X_a$.
Definition 9. A family $\mathcal{M} \subset X$ has equi-absolutely continuous quasi-norm if, for all $\varepsilon > 0$ there exists $\delta > 0$ such that $\mu(D) < \delta$ implies

$$\|P_D f\| < \varepsilon,$$

for all $f \in \mathcal{M}$, where $P_D f(s) = f(s)$ if $s \in D$ and $P_D f(s) = 0$ if $s \notin D$.
Definition 9. A family $\mathcal{M} \subset X$ has equi-absolutely continuous quasi-norm if, for all $\varepsilon > 0$ there exists $\delta > 0$ such that $\mu(D) < \delta$ implies

$$\|P_D f\| < \varepsilon,$$

for all $f \in \mathcal{M}$, where $P_D f(s) = f(s)$ if $s \in D$ and $P_D f(s) = 0$ if $s \notin D$.

Theorem 6. Let $X = X(\Omega, \mu, \rho_1)$ and $Y = Y(\Omega, \nu, \rho_2)$ be functional quasi-normed spaces. Each bounded bilinear operator T acting from $X \times Y$ to L^∞ is regular.
- Compactness Theorems

In what follows we give some characterizations of compact bilinear operators on the quasi-normed functional spaces.
In what follows we give some characterizations of compact bilinear operators on the quasi-normed functional spaces.

Let \(X = X(\Omega_1, \mu, \rho_1) \), \(Y = Y(\Omega_2, \nu, \rho_2) \) and \(Z = Z(\Omega_3, \nu, \rho_3) \) be quasi-normed functional spaces.
In what follows we give some characterizations of compact bilinear operators on the quasi-normed functional spaces.

Let $X = X(\Omega_1, \mu, \rho_1)$, $Y = Y(\Omega_2, \nu, \rho_2)$ and $Z = Z(\Omega_3, \upsilon, \rho_3)$ be quasi-normed functional spaces.

We denote by $\mathcal{B}il(X \times Y, Z)$ the family of all bounded bilinear operators from $X \times Y$ to Z.
Definition 10. A bounded bilinear operator $T : X \times Y \rightarrow Z$ is compact in measure if the image \{ $T(u_n, v_n)$ \}, of any bounded sequence \{(u_n, v_n)\} of $X \times Y$, contains a Cauchy subsequence in respect to the measure ν, that is,
Definition 10. A bounded bilinear operator $T : X \times Y \to Z$ is compact in measure if the image \(\{ T(u_n, v_n) \} \), of any bounded sequence \(\{(u_n, v_n)\} \) of \(X \times Y \), contains a Cauchy subsequence in respect to the measure \(\nu \), that is,

if \(\max\{\|u_n\|_X, \|v_n\|_Y\} \leq C \), then there exists a subsequence \(\{(u_{n_k}, v_{n_k})\} \) such that, given \(\varepsilon > 0 \) and \(\delta > 0 \), there exists \(N = N(\varepsilon, \delta) \) with
Definition 10. A bounded bilinear operator $T : X \times Y \to Z$ is compact in measure if the image $\{T(u_n, v_n)\}$, of any bounded sequence $\{(u_n, v_n)\}$ of $X \times Y$, contains a Cauchy subsequence in respect to the measure ν, that is,

if $\max\{\|u_n\|_X, \|v_n\|_Y\} \leq C$, then there exists a subsequence $\{(u_{n_k}, v_{n_k})\}$ such that, given $\varepsilon > 0$ and $\delta > 0$, there exists $N = N(\varepsilon, \delta)$ with

$$\nu(\{s \in \Omega_3 : |T(u_{n_k}, v_{n_k})(s) - T(u_{m_k}, v_{m_k})(s)| > \varepsilon\}) < \delta$$

for all $n_k, m_k > N$.
Theorem 7. Let X and Y quasi-normed functional spaces and suppose that Z has absolutely continuous quasi-norms, i.e $Z = Z_\alpha$. Let $T : X \times Y \to Z$ be a bounded bilinear operator.
Theorem 7. Let X and Y quasi-normed functional spaces and suppose that Z has absolutely continuous quasi-norms, i.e $Z = Z_a$. Let $T : X \times Y \to Z$ be a bounded bilinear operator.

Then, T is compact if, and only if, T is compact in measure and the functions in the set
Theorem 7. Let X and Y quasi-normed functional spaces and suppose that Z has absolutely continuous quasi-norms, i.e $Z = Z_a$. Let $T : X \times Y \rightarrow Z$ be a bounded bilinear operator.

Then, T is compact if, and only if, T is compact in measure and the functions in the set

$$\{ T(f, g) : \|f\|_X \leq 1, \|g\|_Y \leq 1 \}$$

have equi-absolutely continuous quasi-norms.
Theorem 8. Let X, Y and Z be quasi-normed functional spaces. Moreover, suppose that Z has absolutely continuous quasi-norms, i.e $Z = Z_a$, and $\nu(\Omega_3) < \infty$.
Theorem 8. Let X, Y and Z be quasi-normed functional spaces. Moreover, suppose that Z has absolutely continuous quasi-norms, i.e $Z = Z_a$, and $\nu(\Omega_3) < \infty$.

A bilinear bounded operator $T : X \times Y \rightarrow Z$ is compact if, and only if, T is compact in measure and satisfies
Theorem 8. Let X, Y and Z be quasi-normed functional spaces. Moreover, suppose that Z has absolutely continuous quasi-norms, i.e $Z = Z_a$, and $\nu(\Omega_3) < \infty$.

A bilinear bounded operator $T : X \times Y \to Z$ is compact if, and only if, T is compact in measure and satisfies

$$
\lim_{\nu(E) \to 0} \| P_E T \|_{Bil(X \times Y, Z)} = 0,
$$

where $E \subset Z$.
Theorem 9. Let X, Y and Z be quasi-normed functional spaces, where $\mu(\Omega_1) < \infty$, $\nu(\Omega_2) < \infty$, $\upsilon(\Omega_3) < \infty$ and Z has absolutely continuous quasi-norms, i.e $Z = Z_a$.
Compactness Theorems

- **Theorem 9.** Let X, Y and Z be quasi-normed functional spaces, where $\mu(\Omega_1) < \infty$, $\nu(\Omega_2) < \infty$, $\nu(\Omega_3) < \infty$ and Z has absolutely continuous quasi-norms, i.e. $Z = Z_a$.

- A bilinear regular operator $T : X \times Y \to Z$ is compact if, and only if, T is compact in measure and satisfies
Theorem 9. Let X, Y and Z be quasi-normed functional spaces, where $\mu(\Omega_1) < \infty$, $\nu(\Omega_2) < \infty$, $\nu(\Omega_3) < \infty$ and Z has absolutely continuous quasi-norms, i.e $Z = Z_a$.

A bilinear regular operator $T : X \times Y \to Z$ is compact if, and only if, T is compact in measure and satisfies

$$\lim_{\nu(E) + \mu(D_1) + \nu(D_2) \to 0} \| P_E T(P_{D_1}, P_{D_2}) \|_{\mathcal{B}il(X \times Y, Z)} = 0,$$

where $D_1 \subset \Omega_1$, $D_2 \subset \Omega_2$ and $E \subset \Omega_3$.
The present results are devoted to the relationships among the corresponding regular bilinear operators and their adjoints.
The present results are devoted to the relationships among the corresponding regular bilinear operators and their adjoints.

Let us recall that Schauder’s well-known result states that an operator T between Banach spaces is compact if, and only if, its adjoint, T^*, is compact.
- Compactness and adjoint operators

Ramanujan and Schock studied in

- Compactness and adjoint operators

- Ramanujan and Schock studied in

- ideals of bilinear operators between Banach spaces, including the ideal of bilinear compact operators, i.e., $T \in \mathcal{B}ill(X \times Y, Z)$ such that $T(U_X \times U_Y)$ is relatively compact in Z.
Definition 11. Given $T \in \mathcal{B}il(X \times Y, Z)$, the adjoint of T is the linear map $T^\times : Z^* \rightarrow \mathcal{B}il(X \times Y)$ is given by

$$T^\times z^*(x, y) = z^*(T(x, y)), \quad (x, y) \in X \times Y.$$
Definition 11. Given $T \in \mathcal{B}il(X \times Y, Z)$, the
adjoint of T is the linear map
$T^\times : Z^* \rightarrow \mathcal{B}il(X \times Y)$ is given by

$$T^\times z^*(x, y) = z^*(T(x, y)), \quad (x, y) \in X \times Y.$$

T^\times is a bounded operator.
Definition 11. Given $T \in \mathcal{B}il(X \times Y, Z)$, the adjoint of T is the linear map $T^\times: Z^* \to \mathcal{B}il(X \times Y)$ is given by

$$T^\times z^*(x, y) = z^*(T(x, y)), \quad (x, y) \in X \times Y.$$

T^\times is a bounded operator.

$\|T\| = \|T^\times\|.$
For T^\times may be proved the analogue of Schauder’s theorem which states that if \(T \in \text{Bil}(X \times Y, Z) \), then \(T \) is compact if, and only if \(T^\times \) is compact.
For T^\times may be proved the analogue of Schauder’s theorem which states that if $T \in \mathcal{B}il(X \times Y, Z)$, then T is compact if, and only if T^\times is compact.

And more, if $T \in \mathcal{B}il(X \times Y, Z)$ and $S \in L(Z, W)$, then

$$(ST)^\times = T^\times S^*$$

where S^* is the classical linear adjoint.
- Compactness and adjoint operators

- From now, we are assuming that \(Z = L^p(\Omega_3, \nu) \) with \(1 < p < \infty \).
From now, we are assuming that $Z = L^p(\Omega_3, \nu)$ with $1 < p < \infty$.

Theorem 10. Let X and Y be normed functional spaces, where $\mu(\Omega_1) < \infty$ and $\nu(\Omega_2) < \infty$, $\nu(\Omega_3) < \infty$.
From now, we are assuming that $Z = L^p(\Omega_3, \nu)$ with $1 < p < \infty$.

Theorem 10. Let X and Y be normed functional spaces, where $\mu(\Omega_1) < \infty$ and $\nu(\Omega_2) < \infty$, $\nu(\Omega_3) < \infty$.

Then, a bilinear bounded operator $T : X \times Y \to Z$ is compact if, and only if, $(T^\times)^* \text{ is compact in measure and satisfies }$
- Compactness and adjoint operators

From now, we are assuming that $Z = L^p(\Omega_3, \nu)$ with $1 < p < \infty$.

Theorem 10. Let X and Y be normed functional spaces, where $\mu(\Omega_1) < \infty$ and $\nu(\Omega_2) < \infty$, $\nu(\Omega_3) < \infty$.

Then, a bilinear bounded operator $T : X \times Y \to Z$ is compact if, and only if, $(T^\times)^*$ is compact in measure and satisfies

$$\lim_{\mu(E) \to 0} \| T^\times P_E^* \| = 0,$$

where $E \subset \Omega_3$.
In what follows, let $\Omega_1 = \Omega_2 = \Omega$ and $\mu = \nu$.
In what follows, let $\Omega_1 = \Omega_2 = \Omega$ and $\mu = \nu$.

Definition 12. Given $D \subset \Omega$, we define

$$\overline{P}_D : \mathcal{B}il(X \times Y) \rightarrow \mathcal{B}il(X \times Y)$$
In what follows, let $\Omega_1 = \Omega_2 = \Omega$ and $\mu = \nu$.

Definition 12. Given $D \subset \Omega$, we define

$$
\overline{P}_D : \mathcal{B}il(X \times Y) \to \mathcal{B}il(X \times Y)
$$

such that, for $b \in \mathcal{B}il(X \times Y)$ then

$$
\overline{P}_D(b) \in \mathcal{B}il(X \times Y) \quad \text{and}
$$

$$
\overline{P}_D(b)(x, y) = b(P_Dx, P_Dy)
$$

for all $(x, y) \in X \times Y$.
- Compactness and adjoint operators

- Proposition 2. $\overline{P}_D : \text{Bil}(X \times Y) \to \text{Bil}(X \times Y)$ is a bounded linear operator.
Compactness and adjoint operators

Proposition 2. \(\overline{P}_D : \mathcal{B}il(X \times Y) \rightarrow \mathcal{B}il(X \times Y) \) is a bounded linear operator.

Proposition 3. Considering the sequence of operators

\[Z' \xrightarrow{P_E^*} Z' \xrightarrow{T^*} \mathcal{B}il(X \times Y) \xrightarrow{\overline{P}_D} \mathcal{B}il(X \times Y), \]
- Compactness and adjoint operators

- **Proposition 2.** \(\overline{P_D} : \text{Bil}(X \times Y) \rightarrow \text{Bil}(X \times Y) \) is a bounded linear operator.

- **Proposition 3.** Considering the sequence of operators

\[
Z' \xrightarrow{P^*_E} Z' \xrightarrow{T^\times} \text{Bil}(X \times Y) \xrightarrow{\overline{P_D}} \text{Bil}(X \times Y),
\]

one has

\[
\|\overline{P_D} T^\times P^*_E\|_{L(Z', \text{Bil}(X \times Y))} = \|P_E T(P_D, P_D)\|_{\text{Bil}(X \times Y, Z)}.\]
Theorem 11. Let X and Y be normed functional spaces, where $\mu(\Omega) < \infty$ and $\nu(\Omega_3) < \infty$.
- Compactness and adjoint operators

- **Theorem 11.** Let X and Y be normed functional spaces, where $\mu(\Omega) < \infty$ and $\nu(\Omega_3) < \infty$.

- A bounded bilinear regular operator $T : X \times Y \rightarrow Z$ is compact if, and only if, $(T^\times)^*$ is compact in measure and satisfies
Theorem 11. Let X and Y be normed functional spaces, where $\mu(\Omega) < \infty$ and $\nu(\Omega_3) < \infty$.

A bounded bilinear regular operator $T : X \times Y \to Z$ is compact if, and only if, $(T^\times)^*$ is compact in measure and satisfies

$$\lim_{\nu(E) + \mu(D) \to 0} \| \overline{P} DT^\times P_E^* \|_{L(Z', \text{Bil}(X \times Y))} =$$

$$\lim_{\nu(E) + \mu(D) \to 0} \| P_E T(P_D, P_D) \|_{\text{Bil}(X \times Y, Z)} = 0.$$
Thank you for your attention!