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Aim of the talk

Fix N > 1 and / € [0,2]. We denote by [0, 1]V the N-dimensional

hypercube and we consider the elliptic second order differential
operator

V- €2([0,1]V) — ([0, 1]V)
defined by setting

V() = Zx,(l 82<x)+2( %) o

(ue €?([0,1]V), x = (x)1<i<n € [0,1]M).
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Aim of the talk

(V},€2([0,1]V)) is closable and its closure is the generator of a
Markov semigroup (T;(t))s>0 on %([0,1]V).

In some cases, this semigroup may be extended to a Cp-semigroup
(Ti(t))es0 on £P([0,1]V), p > 1.

We also provide for a representation of ( T(t))¢>0 and (T_/(t))tzo
(in the relevant norms) in terms of iterates of positive linear
operators and we study some qualitative properties of those
semigroups by means of the corresponding ones held by the
approximating operators.

Our approach is not based on classical generation results, but on
Approximation Theory.
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Theorem(Schnabl)?

Let (Ly)n>1 be a sequence of linear contractions on a Banach space
X and let (pn)n>1 be a sequence of positive real numbers such that
lim p, = 0. Define the linear operator A : D(A) — X by setting

n—oo

A(f) = lim p(La(f) — )

for every f € D(A) := {g cX | lim p Y (Ly(g)—g) € X}.
Moreover, assume that there exists a family (F;);e; of

finite-dimensional subspaces D(A) such that L,(F;) C F; (n>1,

i €l)and | F; is dense in X.
i€l

'Uber gleichmaBige Approximation durch positive lineare Operatoren, in
Constructive Theory of Functions (Proc. Internat. Conf. Varna, 1970)
287-296; lzdat. Bolgar. Akad. Nauk, Sofia, 1972.
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Theorem(Schnabl)

Then (A, D(A)) is the generator of a Co-semigroup (T(t))¢>0 on
X such that, for every t > 0 and for every sequence (kp)n>1 of

positive integers such that lim k,p, = t, one gets
n—oo
T(t)(f) = lim Lk (f)
n—oo

for every f € X.
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Kantorovich operators in [0,1] (1930)?

Kn : [’1([07 1]) - (g([ov 1])
defined by setting, for every f € £1([0,1]) and x € [0,1],

k+1

Z(n+1 (/L+ F(t)d ) (Z) (1 = x) k.

lim Ki(f)=f (F € %(0.11)

lim Kn(F) =f (f € 27([0,1]), 1< p < +00).

2|.V. Kantorovich, Sur certains développements suivant les polynémes de la
forme de S. Bernstein I, Il, C.R. Acad. URSS (1930), 563-568 and 595-600.
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A generalization by Altomare and Leonessa (2006)3

Let (an)n>1 and (bn)n>1 be two sequences of real numbers such
that 0 < a, < b, <1 (n > 1); then, for every n > 1, define

Cn : ‘C’l([07 1]) - Cg([o7 1])
by setting, for every f € £L([0,1]) and x € [0,1],

Co(F)(x) = kz_% (b"fi /k:: £(t) dt> <”) (1 = x)" k.

3F. Altomare and V. Leonessa, On a sequence of positive linear operators
associated with a continuous selection of Borel measures, Mediterr. J. Math. 3
(2006), 363-382.
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Kantorovich operators on [0, 1]V (1993)*
Let N > 2.

Ky - £1([0,1]V) — %([0, 1Y)

defined by setting, for every f € £1([0,1]V) and
x = (xi)1<i<n € [0, 1]V,

K6 = 2 H() (W= x)ih

hl, ,hN 0i=1
hi+1 hy+1
n+1 n+1
x(n+1)N / f(ty, ..., ty)dty - dty.
i f
n+1 n+1

“D.X. Zhou, Converse theorems for multidimensional Kantorovich
operators, Anal. Math. 19 (1993), 85-100.
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A generalization

Let (an)n>1 and (b,)n>1 be two sequences of real numbers such
that 0 <a, < b, <1 (n>1).

Co: £1([0,1]V) — #([0,1]")

defined by setting, for every f € £1([0,1]V) and
x = (xi)1<i<n € [0, 1]V,

h1,...,hy=0 i=1
hi+b hy+b
n + ]_ N n+1n n+1n
X f(t]_,...,tN)dtl---dtN.
b, — an hi+an hy+an
n+1 n+1
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Example for n =9 and N = 2

9/n+1

4/n+1

3/n+1

2/n+1

1/n+1

0 1/n+l 2/n+l 3/n+l 4/n+1 9/n+1 1

On some differential operators on hypercubes



Approximation properties in ([0, 1]")

For every f € €([0,1]V)

lim C,(f)=f uniformly on [0,1]V.
n—oo
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Proof
N
{l,prl, ce PN YL prl-z} is a Korovkin set in €([0, 1]V);
i=1
moreover, it is easy to check that, for every n > 1 and
i=1,...,N,
Cn(1) =1,
n an + b,
Cu(pri) = ; 1
(pri) Aol Pl 2(n+1)
and

<Zp > (2Zpr +"ZPH(1—PH

bnlont br) S i N mg

i=1 3
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Approximation properties in £P([0, 1]V)

For every n > 1 and p € [1,+o0[, C, is continuous from
LP([0,1]V) into £P([0,1]V) and

1
< ———m———,
[Callp,ce < (by — an)N/p
In particular, if

1
sup —mm—
nZFl) (bn — an)

then, for every f € LP([0,1]V),

< 400,

lim Cy(f)=f in LP([0, 1qM).
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S (1)<

1=0

( l/()f(x—l-/h) if x,x + kh € K;
0

Notation
Let K be a convex subset of RV, f € ¥(K), k > 1 and h € RV,
||hll2 > 0; we set
k
ARf(x)

Fix 6 > 0. Then we set

otherwise.

w(f,6) := sup{|f(x) — f(y)|
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Notation

Fix kK > 1;

wi(f,8) = sup{|AKF(x)| : x,x + kh € K, ||h|]2 < &}

k-th modulus of smoothness of f with step .

If feLP(K),1<p<oo, k>1and >0,

1/p
wip(f,0) == sup (/ |Aﬁf(x)|pdx>
K

0<|[hll2<6

k-th modulus of smoothness of  with step 0 in LP.
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Rate of convergence in %(]0, 1]'\’)5

For every f € €([0,1]V) and n > 1,

6N 6N
_ < i e
“Cn(f) f||OO—C(n+1||f||oo+w2 (f’ n+1>>7

where the constant C depends on N, only.

°H. Berens and R. De Vore, Quantitative Korovkin Theorems for positive
linear operators on Ly-spaces, Trans. Americ. Math. Soc. 245 (1978),
349-361.
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Notation

Fix p €]1,00[ and set « :== 2+ N/p and r := [a] + 1; we consider
the Lipschitz space

Lip(a, r; LP) := {f € LP([0,1]V) : w, ,(f,6) = O(6%) for every § > O}.

If 0 < v < a, we set

IFllp == Ifllp+ sup t™7wrp(F, ).
0<t<l
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Rate of convergence in LP(]0, l]N) 2

For every p € [1,4o0|, if f € Wa ([0, 1]V), then, for every n > 1,

1
_ < _ -
o) = Flo < Cliflloco 7

where the constant C does not depend on f.

Moreover, if f € £L1([0,1]V), then, for every n > 1,

6N 6N O\ /(N+2)
— < " — :
[Ca(f) = flla < C <n+1llf\|1 + wnto1 (f, (n+1)

®H. Berens and R. De Vore, Quantitative Korovkin Theorems for positive
linear operators on Ly-spaces, Trans. Americ. Math. Soc. 245 (1978),
349-361.
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Rate of convergence in LP(]0, 1]N)

Finally, if p €]1,+o0], setting o :==2+ —, ifr =[a] + 1

f e Lip(a,r; LP) and 0 < v < a, then, for every n > 1

6N

v/
=) -

1GalF) — Fllo < CIIFI (
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Shape preserving properties

For every m > 1, let P, be the space of all polynomials on [0, 1]V,
having degree at most m.

Moreover, fix M > 0 and 0 < o < 1; then Lip,lwa is the space of
those f € €([0,1]") such that, for every x,y € [0, 1]",

[£(x) = f(y)| < Mllx — ylIT,

N
where || - || denotes the /i-norm on RV i.e., |x|l1 := 3 |xi| for
i=1

every x = (Xj)i1<i<n € RN,
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Shape preserving properties
For every n,m > 1,
Co(Pp) C Ppy

and, forevery n>1, M>0and 0 < o < 1,

Co(Lippsa) C Lipijar.
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Asymptotic formula
Assume that

3l := lim (a, + bp) € R.
n—oo

Clearly, 0 < | < 2.

Then for the sequence (C,)p>1 and asymptotic formula, involving
the elliptic second order differential operator

V1 €2([0,1]V) — %([0, 1]V) defined, for every u € €>([0, 1]V)
and x = (Xi)lgiSN € [0, l]N, by

Vi(w)(x) = Zx,(l 82(x)+2( %) o)

holds true.
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Asymptotic formula

For every u € €%([0,1]V),

lim n(Cp(u) — u) = Vi(uv)

n—oo

uniformly on [0,1]N and, hence, in LP([0,1]V).
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Markov semigroup associated with the C,'s

There exists a (unique) Markov semigroup (T;(t))¢>0 on
([0, 1)) satisfying:
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Markov semigroup associated with the C,'s

There exists a (unique) Markov semigroup (T;(t))¢>0 on
([0, 1)) satisfying:
(1) Ift > 0 and (kn)n>1 is a sequence of positive integers such
that lim k,/n=t, then lim Ck(f) = T,(t)(f) uniformly on
n—oo

n—oo

[0, 1]V for every f € €([0, 1]V).
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Markov semigroup associated with the C,'s

There exists a (unique) Markov semigroup (T;(t))¢>0 on
([0, 1)) satisfying:
(1) Ift > 0 and (kn)n>1 is a sequence of positive integers such
that lim k,/n=t, then lim Ck(f) = T,(t)(f) uniformly on
n—oo

n—oo

[0, 1]V for every f € €([0, 1]V).

(2) Let (A, D(A))) be the generator od (T/(t))¢>0, then
€2([0,1]N) is a core for (A1, D(A))) and, hence, (A1, D(A))) is
the closure of (V;, €2([0, 1]V)).
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Markov semigroup associated with the C,'s

m>0
everyt > 0 and m > 1.

(3) P= | Pn, is a core for (A, D(A))) and T;(t)(Pp) C Py, for

(4) Ti(t)(Lipiyex) C Lipkjox forevery t >0, M >0e0 < a < 1.
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Remarks
The Abstract Cauchy Problem
ou
=, £) = A(u(-, 1))(0)

u(x,0) = up(x)

x€[0,1]N, t>0,
given by

ug € D(A)), x €0, 1]V
for every x € [0,1]N and t > 0.

u(x, t) = T(t)(uo)(x)

admits a unique (classical) solution v : [0, 1]V x [0, +-00[— R,
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Remarks
The Abstract Cauchy Problem

%(X, £) = Au(, )(x)  xe0,1Y, t>0,

u(x,0) = up(x) ug € D(A)), x €0, 1]V

admits a unique (classical) solution v : [0, 1]V x [0, +oo[— R,
given by

u(x, t) = T(t)(uo)(x)
for every x € [0,1]N and t > 0.

In particular,
u(x, ) = Ti(t)(wo)(x) = lim_C"}(uo)(x),

uniformly w.r.t. x € [0,1]V.

[m] [ =
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Remarks

Moreover,, since A; = Vj on P, m > 1, if ug € Pp,, then u(x,t) is
the (unique) classical solution to

( Ou 1L / ou
) =5 -Gt 3 (3-x) S0t

i=1 ]

x€[0,1]N, ¢t >0,

\ U(X7O) = UO(X) X € [07 1]N
and u(-,t) € Pp, for all t > 0.

Finally, if up € D(A;) N Lipi,cv, then u(-, t) € Lipi,c for every
t > 0.
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Extending the semigroup in £P([0,1]V)

Let V be the elliptic second order differential operator Vi, i.e.,

N 2, N u

VI = 5 355500+ 3 (5 ) g0
i=1 ! i=1 ’

N a X,(]_ — X,) 8”

- Z Ox; ( 2 8X,) (9

(u € (52([0, ].]N) e X = (Xi)lgigN S [0, ].]N).

We denote by (T(t))r>0 and (A, D(A)) the semigroup (T1(t))r>0
and its relevant generator (A1, D(A1)).
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Extending the semigroup in £P([0,1]V)

Let us assume either

(a)an=0eb,=1 foreveryn>1
or

(b) the following properties hold

(i) 0< by, —ap <1 foreveryn>1;
(ii) there exists lim a, =0 and lim b, =1;
n—o0o n—o0o

(i) My = iip; n(1 — (by — an)) < +o00.
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Extending the semigroup in £P([0,1]V)

Then, for every p > 1, (T(t))¢>0 may be extended to a (unique)
positive Co-semigroup (T (t))s>0 on LP([0,1]V) such that

IT(t)||cocr < et >0,

where wp, = 0 if assumption (a) holds true and w, :== NMyM>/p,
if, alternatively, assumption (b) holds; in particular,

M. Cappelletti Montano Universita di Bari

On some differential operators on hypercubes



Extending the semigroup in £P([0,1]V)

Moreover, the generator (A, D(A)) of (?(t))tzo is an extension (in
£P([0,1]V)) of (A, D(A)) and €*([0,1]V) is a core for (A, D(A))
and, hence, (A, D(A)) is the closure of (V,%€?([0,1]V)) in

LP([0, 1]Y).

Finally, if f € £LP([0,1]N), t > 0 and (k,)n>1 is a sequence of
positive integers such that lim k,/n=t, then, for every

f € LP([0,1]"),

lim Ck(f) = T(£)(f) in £P([0,1]V).

n—oo
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Example

Fix @ > 1 and for every n > 1 set

1 1 ne
bpi==(1+-—
2( +2na+na+1)

and

1,1 ne
=g o peg1)

Then 0 < a, < b, <1 for any n > 1 and the sequences (an)n>1
and (bp)n>1 satisfy assumption (b) in the previous result.
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