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The Dedekind completion of a Riesz space

A Riesz space K is called Dedekind complete if any order bounded
from above subset of K has a supremum (equivalently, any order
bounded from below subset of K has an infimum).

Definition
Let L be a Riesz space.
A Dedekind complete Riesz space Lδ is called a Dedekind completion
of the Riesz space L if:

(i) There exists an one-to-one Riesz homomorphism of L into Lδ,
φ : L −→ Lδ.

(ii) If we identify the Riesz subspace φ(L) of Lδ ⊂ L, then, for every
element f̂ ∈ Lδ, we have∨{g : g ∈ L, g ≤ f̂ } = f̂ = ∧{g : g ∈ L, g ≥ f̂ }. (1)
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Condition (ii) says two facts:

(a) f̂ =
∨{g : g ∈ L, g ≤ f̂ } shows that L is order dense in Lδ.

(b) f̂ =
∧{g : g ∈ L, g ≥ f̂ } shows that the ideal generated by L in Lδ

is all Lδ. Symbolically, I (L) = Lδ.

It is well known that:

Theorem

Every Archimedean Riesz space L has a Dedekind completion Lδ.

W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces, vol. I,
North-Holland Math. Library, North-Holland, Amsterdam-London,
1971, pp. 191-194.
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Let L = C (X ), the Archimedean Riesz space of all real-valued continuous
functions on a topological space X .
C (X )δ =?

1950 - R. P. Dilworth - normal upper semicontinuous functions

1953 - A. Horn - normal lower semicontinuous functions
1962 - Kazumi Nakano and T. Shimogaki - quasicontinuous
functions defined by Hidegorô Nakano in the book "Measure Theory",
1948 (Japanese)

1964 - S. Kaplan - construct C (X )δ using the elements of the C (X )∗∗

2002 - S. Samborskii - functions with property S , that is,
quasicontinuous functions
2004 - R. Anguelov - Hausdorff continuos interval-valued
functions
2010 - R. Becker - upper semicontinuous functions
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N. Dăneţ (TUCEB) The Dedekind Completion of C (X ) 25/07/2013 4 / 37



Let L = C (X ), the Archimedean Riesz space of all real-valued continuous
functions on a topological space X .
C (X )δ =?

1950 - R. P. Dilworth - normal upper semicontinuous functions
1953 - A. Horn - normal lower semicontinuous functions
1962 - Kazumi Nakano and T. Shimogaki - quasicontinuous
functions defined by Hidegorô Nakano in the book "Measure Theory",
1948 (Japanese)

1964 - S. Kaplan - construct C (X )δ using the elements of the C (X )∗∗

2002 - S. Samborskii - functions with property S , that is,
quasicontinuous functions
2004 - R. Anguelov - Hausdorff continuos interval-valued
functions

2010 - R. Becker - upper semicontinuous functions
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The aims of this talk are:

1 To describe the Dedekind completion of C (X ) using functions on X .

2 To give proofs using only Riesz space techniques.

3 To show the relations between this construction of C (X )δ and the
other constructions existing in literature.
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Notation and preliminaries

X - a (Hausdorff) compact space (⇒Baire + completely regular).

B(X ) - the Dedekind complete Riesz space of all bounded functions
on X

On B(X ) we consider the uniform norm ‖f ‖ = sup
x∈X
|f (x)| .

C (X ) ⊂ B(X ) and I (C (X )) = B(X ), since |f | ≤ M1X .
Baire’s operators: I , S : B(X ) −→ B(X ), where

I (f )(x) := sup
V ∈Vx

inf
y∈V

f (y), the lower limit function,

S(f )(x) := inf
V ∈Vx

sup
y∈V

f (y), the upper limit function.

Kaplan’s operators: `, u, δ : B(X ) −→ B(X )
`(f ) :=

∨{g ∈ C (X ) : g ≤ f }, u(f ) :=
∧{g ∈ C (X ) : g ≥ f },

δ(f ) = u(f )− `(f ).
X completely regular ⇒ I (f ) = `(f ), S(f ) = u(f ), ∀f ∈ B(X ).
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Some properties of Kaplan’s operators ` and u

`(f ) ≤ f ≤ u(f ), ∀f ∈ B(X ).

`, u, `u and u` are monotone and idempotent.
` is supra-additive, u is sub-additive and for any f , g ∈ B(X )

`(f ) + `(g) ≤ `(f + g) ≤ `(f ) + u(g) ≤ u(f + g) ≤ u(f ) + u(g).

In consequence,

`(f )− u(g) ≤ `(f − g) ≤ u(f )− u(g)
`(f )− `(g) ≤ u(f − g) ≤ u(f )− `(g).

The operators ` and u have the following lattice properties:

`(f ∧ g) = `(f ) ∧ `(g), u(f ∨ g) = u(f ) ∨ u(g)

f ∧ g = 0⇒ `(f ) ∧ u(g) = 0
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N. Dăneţ (TUCEB) The Dedekind Completion of C (X ) 25/07/2013 7 / 37



Some properties of Kaplan’s operators ` and u

`(f ) ≤ f ≤ u(f ), ∀f ∈ B(X ).
`, u, `u and u` are monotone and idempotent.
` is supra-additive, u is sub-additive and for any f , g ∈ B(X )

`(f ) + `(g) ≤ `(f + g) ≤ `(f ) + u(g) ≤ u(f + g) ≤ u(f ) + u(g).

In consequence,

`(f )− u(g) ≤ `(f − g) ≤ u(f )− u(g)
`(f )− `(g) ≤ u(f − g) ≤ u(f )− `(g).

The operators ` and u have the following lattice properties:

`(f ∧ g) = `(f ) ∧ `(g), u(f ∨ g) = u(f ) ∨ u(g)

f ∧ g = 0⇒ `(f ) ∧ u(g) = 0
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Some properties of δ operator

δ (f ) ≥ 0, and δ (f ) = 0⇔ f ∈ C (X ).

For every real λ, δ(λf ) = |λ| δ(f ). In particular, δ(−f ) = δ(f ).
For f , g ∈ B(X ) we have:

δ(f )− δ(g) ≤ δ(f + g)
δ(f − g) ≤ δ(f ) + δ(g)

|δ(f )− δ(g)| ≤ δ(f + g)
δ(f − g)

δ(f ∨ g)
δ(f ∧ g) ≤ δ(f ) ∨ δ(g)

δ(f + g) ≤ δ(f ∨ g) + δ(f ∧ g) ≤ δ(f ) + δ(g) (2)

δ(f ) = δ(f +) + δ(f −)

δ(f ) ≤ 2u(|f |)
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Kaplan’s operators and uniform norm

‖f ‖ = max{‖`(f )‖ , ‖u(f )‖}, for all f ∈ B(X ).
For f , g ∈ B(X ), we have:

‖`(f )− `(g)‖ ≤ ‖f − g‖ - u is norm continuous.

‖u(f )− u(g)‖ ≤ ‖f − g‖ - ` is norm continuous.

‖δ(f )− δ(g)‖ ≤ 2 ‖f − g‖ - δ is norm continuous.

S. Kaplan, The second dual of the space of continuous functions. IV,
Trans. Amer. Math. Soc. 113 (1964), 512-546.

S. Kaplan, The bidual of C(X) I, North-Holland Mathematics Studies
101, Amsterdam, 1985.
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S. Kaplan, The second dual of the space of continuous functions. IV,
Trans. Amer. Math. Soc. 113 (1964), 512-546.

S. Kaplan, The bidual of C(X) I, North-Holland Mathematics Studies
101, Amsterdam, 1985.
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Lattices of semicontinuous functions

Lsc (X ) = {f ∈ B(X ) | `(f ) = f } - lower semicontinuous functions

Usc (X ) = {f ∈ B(X ) | u(f ) = f } - upper semicontinuous functions
The sets Lsc and Usc are Dedekind complete lattices in which the
supremum and the infimum of any nonempty order bounded subset
{fγ}γ∈Γ are given by the formulae:∨

L
fγ =

∨
fγ,

∧
L
fγ = `(

∧
fγ),

∨
U
fγ = u(

∨
fγ),

∧
U
fγ =

∧
fγ.

If the set {fγ}γ∈Γ is finite, then
∧
L
fγ =

∧
fγ and

∨
U
fγ =

∨
fγ.
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Lattices of normal semicontinuous functions

NLsc (X ) = {f ∈ Lsc | `u(f ) = f } - normal lower semicontinuous
functions

NU sc (X ) = {f ∈ Usc | u`(f ) = f } - normal upper semicontinuous
functions

The set NLsc and NU sc are Dedekind complete lattices in which
the supremum and the infimum of any nonempty order bounded
subset {fγ}γ∈Γ are given by the formulae:∨

NL
fγ = `u(

∨
fγ),

∧
NL
fγ = `(

∧
fγ),

∨
NU
fγ = u(

∨
fγ),

∧
NU
fγ = u`(

∧
fγ).

R. P. Dilworth, The normal completion of the lattice of continuous
functions, Trans. Amer. Math. Soc. 68 (1950), 427—438.
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Pointwise discontinuous functions

For f ∈ B(X ), Cf denotes set of points of continuity of f . Cf is a
Gδ set:

Cf = {x ∈ X : δ (f ) (x) = 0} =
⋂∞

n=1
{x ∈ X : δ (f ) (x) < 1/n}.

f ∈ C (X )⇐⇒ Cf = X

A function f ∈ B(X ) is called pointwise discontinuous on X if it is
continuous on a dense subset of X . Cd (X ) denotes the set of all
these functions.

f ∈ Cd (X )⇐⇒ Cf = X

On Cd (X ) we define the equivalence relation

f ∼ g ⇔ f = g on the dense Gδ set Cf ,g .

π : Cd (X ) −→ Cd (X )/ ∼ is the quotient map: π(f ) = f̂ .
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The result C (X )δ = Cd (X )/ ∼ .

Theorem
Let X be a compact space. Then:
(i) The Dedekind completion of the Riesz space C (X ) is
C (X )δ := Cd (X )/ ∼ .
(ii) Endowed with the quotient of the uniform norm, C (X )δ is a Banach
lattice.

C (X ) ↪→ Cd (X )
π−→ C (X )δ = Cd (X )/ ∼ .

Obvious ĝ = π(g) = {g}, so C (X ) can be identified with a Riesz
subspace C (X )δ. It remains to prove:

(A) C (X )δ is a Dedekind complete Riesz space.

(B) For every f̂ ∈ C (X )δ we have∨{g ∈ C (X ) : g ≤ f̂ } = f̂ = ∧{g ∈ C (X ) : g ≥ f̂ }.
(C) C (X )δ is a Banach lattice.
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The characterization of a pointwise discontinuous function with
Kaplan’s operators

f ∈ C (X )⇐⇒ δ(f ) = 0

f ∈ Cd (X )⇐⇒ ` (δ (f )) = 0.

Theorem

Let X be a compact space and f ∈ B(X ). The following statements are
equivalent.
(i) f is pointwise discontinuous on X , that is, Cf = X .
(ii) For every real number λ > 0 the set Aλ(f ) = {x ∈ X : δ (f ) (x) ≥ λ}
is nowhere dense.
(iii) f is continuous on a comeager set X \ Cf = ∪∞

n=1A1/n(f ).
(iv) ` (δ (f )) = 0.

N. Dăneţ (TUCEB) The Dedekind Completion of C (X ) 25/07/2013 14 / 37



Theorem
Cd (X ) is a norm closed Riesz subspace of B(X ), hence a Banach
lattice.

Proof. If f , g ∈ Cd (X ), then ` (δ (f )) = 0, ` (δ (g)) = 0.

0 ≤ ` [δ(f + g)] ≤ ` [δ(f ∨ g) + δ(f ∧ g)] ≤ `` [δ(f ) + δ(g)] ≤
≤ `[` (δ (f ))︸ ︷︷ ︸

=0

+ u(δ(g))] = ` (δ (g)) = 0.

Hence ` [δ(f + g)] = 0, ` [δ(f ∨ g)] = 0, ` [δ(f ∧ g)] = 0⇒

f + g , f ∨ g , f ∧ g ∈ Cd (X ).

` (δ (λf )) = ` (|λ| δ (f )) = |λ| ` (δ (f )) = 0⇒ λf ∈ Cd (X ).
If (fn) ⊂ Cd (X ) such that ‖fn − f ‖⇀ 0 for some f ∈ B(X ), then

‖ ` (δ (fn))︸ ︷︷ ︸
=0

− ` (δ (f )) ‖≤ ‖δ (fn)− δ (f )‖ ≤ 2 ‖fn − f ‖ → 0⇒ f ∈ Cd (X ).

N. Dăneţ (TUCEB) The Dedekind Completion of C (X ) 25/07/2013 15 / 37



The ideal of rare functions

A function f ∈ B(X ) is called rare if `u (|f |) = 0.
Ra(X ) or Ra denotes the set of all rare functions.

Theorem
f ∈ Ra(X )⇔ ` (δ(f )) = 0, ` (|f |) = 0.

f ∈ Ra(X )⇔ f (x) = 0, for all x ∈ Cf
Ra(X ) ⊂ Cd (X )

Theorem
Ra(X ) is a norm closed Riesz ideal of Cd (X ).

f ∼ g ⇔ f − g ∈ Ra

Theorem

C (X )δ = Cd (X )/Ra is a Banach lattice.
N. Dăneţ (TUCEB) The Dedekind Completion of C (X ) 25/07/2013 16 / 37



Theorem
For f ∈ Cd (X ) a pointwise discontinuous function f , the following are
equivalent:
(i) ` (δ (f )) = 0.

(ii) `u (δ (f )) = 0.

(iii) `u [u (f )− f ] = 0⇔ f ∼ u(f ).
(iv) `u [f − ` (f )] = 0⇔ f ∼ `(f ).
(v) `u(f ) = `u`(f ), that is f is Nakano quasicontinuous

(vi) u`(f ) = u`u(f ).

(vii) `u [u(f )− u` (f )] = 0⇔ u(f ) ∼ u` (f )
(vii) `u [`u(f )− ` (f )] = 0⇔ ` (f ) ∼ `u(f ).

Hence, for f ∈ Cd (X )⇒ f ∼ `(f ) ∼ u(f ) ∼ `u(f ) ∼ u` (f ) .
In other words, f̂ contains lsc, usc, nlsc and nusc functions.
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Regular pair

Definition

A pair of functions (f , f ) is called regular if f ∈ Lsc , f ∈ Usc and

f ≤ f , u(f ) = f , `(f ) = f .

If (f , f ) is a regular pair, then:
(i) The lower function f ∈ NLsc and the upper function f ∈ NU sc .
(ii) `(f − f ) = 0, that is, f ∼ f .
(iii) The interval-valued function f : X −→ IR, x −→ [f (x), f (x)] is
Hausdorff continuous (in the sense of Sendov).

Theorem
A regular pair is a Dedekind cut in C (X ).

N. Dăneţ, Dedekind cuts in C(X), Marcinkiewicz Centenary Volume,
Polish Academy of Sciences, Banach Center Publications, Vol. 95,
Warszawa, 2011, 287-297.
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f ∈ Cd (X )⇒ f ∼ `(f ) ∼ u(f ) ∼ `u(f ) ∼ u` (f )

Theorem

(i) Every equivalence class f̂ ∈ C (X )δ = Cd (X )/Ra contains exactly
one regular pair (f , f ), namely

f = `u(f ), f = u` (f ) .

(ii) f is the largest lower semicontinuous function in f̂ , and f is the
smallest upper semicontinuous function in f̂ .

S. Kaplan, The bidual of C(X) I, North-Holland Mathematics Studies
101, Amsterdam, 1985, p. 383.
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The equivalence relation f ∼ g ⇔ f − g ∈ Ra can be define on B(X ).

Theorem

The quotient map π : B(X ) −→ B(X )/Ra has the following partial
order continuity.
(i) If g =

∧
γ
gγ, where {gγ}γ∈Γ is a subset of Usc (hence g is also in Usc ),

then π(g) =
∧
γ

π(gγ).

(ii) If g =
∨
γ
gγ, where {gγ}γ∈Γ is a subset of Lsc (hence g is also in Lsc ),

then π(g) =
∨
γ

π(gγ).

S. Kaplan, The bidual of C(X) I, North-Holland Mathematics Studies
101, Amsterdam, 1985, p. 384.
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Now we can proved (B), that is, for every f̂ ∈ C (X )δ we have∨{g ∈ C (X ) : g ≤ f̂ } = f̂ = ∧{g ∈ C (X ) : g ≥ f̂ }.

Indeed,

f̂ = f̂ = π(f ) = π(`(f )) = π (
∨{g ∈ C (X ) : g ≤ f }) =

=
∨{g ∈ C (X ) : g ≤ π(f )} = ∨{g ∈ C (X ) : g ≤ f̂ }.

and

f̂ = f̂ = π(f ) = π(u(f )) = π
(∧{g ∈ C (X ) : g ≥ f }

)
=

=
∨{g ∈ C (X ) : g ≤ π(f )} = ∨{g ∈ C (X ) : g ≤ f̂ }.

Let us prove (A).
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Theorem

C (X )δ is Dedekind complete.

Proof. Let {f̂γ} be a subset of C (X )δ, which is bounded above by ĥ, that
is,

f̂γ ≤ ĥ, for all γ.

We can assume that fγ, h ∈ NLsc ⇒ fγ = `u(fγ) and h = `u(h). Then

fγ = `u(fγ) ≤ u(h), for all γ.

So there exists
∨
fγ in B(X ) and

∨
fγ ≤ u(h). Define

f := `u
(∨

fγ
)
.

Then
∨
f̂γ = f̂ . Indeed,

(a) fγ = `u(fγ) ≤ `u (
∨
fγ) = f ⇒ f̂γ ≤ f̂ , for all γ.

(b) f = `u (
∨
fγ) ≤ `u(h) = h⇒ f̂ ≤ ĥ.
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We have a proof of the Dedekind completion of C (X ), which used
only the theory of Riesz spaces.

The proof can be used in more general settings, if the operators ` and
u can be defined.

This proof can also be used for an alternative proof (without cuts)
that an Archemedean Riesz space has a Dedekind completion.

C (X )δ = Cd (X )/Ra

C (X )δ = NU sc (X )/Ra = NLsc (X )/Ra =
= Usc (X )/Ra = Lsc (X )/Ra = Q(X )/Ra
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Other existing constructions
History and comments

R. P. Dilworth

1950 - Dilworth introduced the normal semicontinuous functions, as
functional analogous of normal subsets (cuts) of Cb(X ), and proved that
for a completely regular space X there exists an isomorphism
Cb(X )δ ∼= NU sc (X ) only for lattice structures.
The set NU sc (X ) can be organized as a Riesz space with the operations:

f⊕g = u`(f + g), λ�f = u`(λf ) =
{

λf , λ ≥ 0,
λ`(f ) λ < 0.

,

f
∨
NU
g = f ∨ g , f

∧
NU
g = u`(f ∧ g).

R. P. Dilworth, The normal completion of the lattice of continuous
functions, Trans. Amer. Math. Soc. 68 (1950), 427—438.
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Alfred Horn

1953 - Horn proved a similar result as Dilworth, but for unbounded
functions.
First he developed a general theory for the Dedekind completion of a
subset C of a Dedekind complete lattice B.
Then he applied his theory for B = {f : X −→ R} and C = C (X ,R).
Horn proved that for a completely regular space X the following lattice
isomorphism holds.
C (X ,R)δ ∼= NLsc (X ,R)
C (X )δ = NLcbsc (X ), where cb means functions which are C -bounded.
A function f : X −→ R is called C -bounded if there exists g1, g2 ∈ C (X )
such that g1 ≤ f ≤ g2, that is f ∈ I (C (X )).

A. Horn, The normal completion of a subset of a complete lattice and
lattices of continuous functions, Pacific J. Math. 3 (1953), 137—152.
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Kazumi Nakano and Tetsuya Shimogaki

1962 - K. Nakano and T. Shimogaki construct the Dedekind completion of
C (X ) using quasicontinuous functions, as they were defined by Hidegorô
Nakano in his book (1948, in Japanese) by the equality u`(f ) = u`u(f ).
From the above theorems results:

1 A function f ∈ B(X ) is Nakano-quasicontinuous if and only if is
pointwise discontinuous.

2 The Riesz ideal of the rare functions Ra(X ) coincides with the Riesz
ideal N defined in the paper of Nakano and Shimogaki.

3 The space Cd (X )/Ra(X ) is the space Cq(X )/N of Nakano and
Shimogaki.

Nakano, K., Shimogaki, T.; A note on the cut extension of C-spaces,
Proc. Japan Acad., 8 (1962), 473-477.

Nakano, H.: Measure Theory II (in Japanese), Tokyo, 1948.
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N. Dăneţ (TUCEB) The Dedekind Completion of C (X ) 25/07/2013 26 / 37



Samuel Kaplan

1964 - In a series of four papers and a book Kaplan studied intensively
C (X ), his dual and his bidual. In this context he constructed the Dedekind
completion of C (X ). From here I took the techniques for the proof.

S. Kaplan, The second dual of the space of continuous functions. IV,
Trans. Amer. Math. Soc. 113 (1964), 512-546.

S. Kaplan, The bidual of C(X) I, North-Holland Mathematics Studies
101, Amsterdam, 1985.
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S. N. Samborskii

2002 - Samborskii used quasicontinuous functions to construct a space
called S(X ,R), which is nothing else that C (X )δ.
A function f : X −→ R is called quasicontinuous at x ∈ X if for every
ε > 0 and for every open set U containing x there exists a open set
G ⊂ U such that |f (y)− f (x)| < ε, for all y ∈ G .

f quasicontinuous⇒
{
`(f ) = `u(f )
u(f ) = u`(f )

⇒ u`(f ) = u`u(f )⇔ `(δ(f )) = 0

Samborskii, S. N., Expansions of differential operators and nonsmoth
solutions of differential equations, Cybernetics and Systems Analysis,
38 (2002), 453-466.
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Roumen Angelov

2004 - Anguelov constructed the Dedekind completion of C (X ) using
Hausdorff continuous interval-valued functions (in the sens of
Sendov), that is, the functions which associate at every point x ∈ X the
real closed interval [f (x), f (x)],

f : X −→ IR, x −→ [f (x), f (x)],

and whose components forms a regular pair. If we denote by H(X ) the
set of all H-continuous functions on X , then the map

Φ : C (X )δ −→H(X ), Φ(f̂ ) = (f , f )

is a Riesz isomorphism.
If we consider on C (X )δ the quotient norm ‖ f̂ ‖= inf{‖h‖ : h ∈ f̂ } and
on H(X ) the norm

∥∥f ∥∥ = max{‖ f ‖, ‖ f ‖}, Φ is an isometry.

R. Anguelov, Dedekind order completion of C(X) by Hausdorff
continuous functions, Quaest. Math. 27 (2004), 153—169.

Sendov, B.: Hausdorff Approximations. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1990.
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The H-continuous functions do not differ to much from the usual
real-valued continuous functions because they assume interval values
only on a set of first Baire category. More precisely, the set

Wf = {x ∈ X | f (x)− f (x) > 0}

is of the first Baire category. The function f has point values on the
complementary set Df = X rWf = {x ∈ X | f (x) = f (x)}, that is,
f (x) = f (x), x ∈ Df , and f = f is a real valued continuous function on
Df .. Therefore, a H-continuous function has the form

f (x) =

{
f (x), if x ∈ Df ,

[f (x), f (x)], if x ∈ Wf .
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Dedekind completion of C (X ) by cuts

Let X be a compact space and let (A,B) be a cut of C (X ). This means a
pair of nonempty subsets of C (X ) such that

Au = B and B l = A.

Here Au denotes the set of all upper bounds of A and B l the set of all
lower bounds of B.
Since A is bounded above and B is bounded below there exist the functions

f = supA and f = inf B,

where supA and inf B are computed pointwisely. Note that f is lower
semicontinuous, f is upper semicontinuous, f ≤ f , and they form a regular
pair.
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Theorem
Let X be a compact topological space.
Then every cut of C (X ) corresponds to a H-continuous interval-valued
function, and conversely, every H-continuous interval-valued function
corresponds to a cut of C (X ).

(A,B)⇐⇒ [f , f ]

More precisely, if (A,B) is a cut of C (X ) then the interval-valued function
which corresponds is f = [f , f ], where f = supA and f = inf B.
Conversely, if f = [f , f ] is a H-continuous interval-valued function then
the cut of C (X ) which corresponds is (A,B), where

A = {g ∈ C (X ) : g ≤ f } and B = {g ∈ C (X ) : g ≥ f }
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Thank you for choosing this lecture room!
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