# The Dedekind Completion of C(X)

### Nicolae Dăneț

Technical University of Civil Engineering of Bucharest, Romania

Positivity VII, Zaanen Centennial Conference Leiden, 22 - 26 July, 2013

### The Dedekind completion of a Riesz space

A Riesz space K is called **Dedekind complete** if any **order bounded from above** subset of K has a **supremum** (equivalently, any order bounded from below subset of K has an infimum).

#### **Definition**

Let L be a Riesz space.

A **Dedekind complete** Riesz space  $L^{\delta}$  is called a **Dedekind completion** of the Riesz space L if:

- (i) There exists an **one-to-one Riesz homomorphism** of L into  $L^{\delta}$ ,  $\phi: L \longrightarrow L^{\delta}$ .
- (ii) If we identify the Riesz subspace  $\phi(L)$  of  $L^{\delta} \subset L$ , then, for every element  $\widehat{f} \in L^{\delta}$ , we have

$$\bigvee \{g: g \in L, \ g \leq \widehat{f}\} = \widehat{f} = \bigwedge \{g: g \in L, \ g \geq \widehat{f}\}. \tag{1}$$

Condition (ii) says two facts:

- (a)  $\hat{f} = \bigvee \{g : g \in L, g \leq \hat{f}\}$  shows that L is **order dense** in  $L^{\delta}$ .
- (b)  $\widehat{f} = \bigwedge \{g : g \in L, g \geq \widehat{f}\}$  shows that the **ideal generated** by L in  $L^{\delta}$  is all  $L^{\delta}$ . Symbolically,  $I(L) = L^{\delta}$ .

It is well known that:

#### Theorem,

Every Archimedean Riesz space L has a Dedekind completion  $\mathsf{L}^\delta$ .



W. A. J. Luxemburg and A. C. Zaanen, *Riesz Spaces*, vol. I, North-Holland Math. Library, North-Holland, Amsterdam-London, 1971, pp. 191-194.

$$C(X)^{\delta} = ?$$

• 1950 - R. P. Dilworth - normal upper semicontinuous functions

$$C(X)^{\delta} = ?$$

- 1950 R. P. Dilworth normal upper semicontinuous functions
- 1953 A. Horn normal lower semicontinuous functions

$$C(X)^{\delta} = ?$$

- 1950 R. P. Dilworth normal upper semicontinuous functions
- 1953 A. Horn normal lower semicontinuous functions
- 1962 Kazumi Nakano and T. Shimogaki quasicontinuous functions defined by Hidegorô Nakano in the book "Measure Theory", 1948 (Japanese)

$$C(X)^{\delta} = ?$$

- 1950 R. P. Dilworth normal upper semicontinuous functions
- 1953 A. Horn normal lower semicontinuous functions
- 1962 Kazumi Nakano and T. Shimogaki quasicontinuous functions defined by Hidegorô Nakano in the book "Measure Theory", 1948 (Japanese)
- 1964 S. Kaplan construct  $C(X)^{\delta}$  using the elements of the  $C(X)^{**}$

$$C(X)^{\delta} = ?$$

- 1950 R. P. Dilworth normal upper semicontinuous functions
- 1953 A. Horn normal lower semicontinuous functions
- 1962 Kazumi Nakano and T. Shimogaki quasicontinuous functions defined by Hidegorô Nakano in the book "Measure Theory", 1948 (Japanese)
- 1964 S. Kaplan construct  $C(X)^\delta$  using the elements of the  $C(X)^{**}$
- 2002 S. Samborskii functions with property S, that is, quasicontinuous functions

- $C(X)^{\delta} = ?$ 
  - 1950 R. P. Dilworth normal upper semicontinuous functions
  - 1953 A. Horn normal lower semicontinuous functions
  - 1962 Kazumi Nakano and T. Shimogaki quasicontinuous functions defined by Hidegorô Nakano in the book "Measure Theory", 1948 (Japanese)
  - 1964 S. Kaplan construct  $C(X)^\delta$  using the elements of the  $C(X)^{**}$
  - 2002 S. Samborskii functions with property S, that is, quasicontinuous functions
  - 2004 R. Anguelov Hausdorff continuos interval-valued functions

- $C(X)^{\delta} = ?$ 
  - 1950 R. P. Dilworth normal upper semicontinuous functions
  - 1953 A. Horn normal lower semicontinuous functions
  - 1962 Kazumi Nakano and T. Shimogaki quasicontinuous functions defined by Hidegorô Nakano in the book "Measure Theory", 1948 (Japanese)
  - 1964 S. Kaplan construct  $C(X)^\delta$  using the elements of the  $C(X)^{**}$
  - 2002 S. Samborskii functions with property S, that is, quasicontinuous functions
  - 2004 R. Anguelov Hausdorff continuos interval-valued functions
  - 2010 R. Becker upper semicontinuous functions



#### The aims of this talk are:

**1** To describe the Dedekind completion of C(X) using functions on X.

#### The aims of this talk are:

- **1** To describe the Dedekind completion of C(X) using functions on X.
- 2 To give proofs using only Riesz space techniques.

#### The aims of this talk are:

- **①** To describe the Dedekind completion of C(X) using functions on X.
- 2 To give proofs using only Riesz space techniques.
- **3** To show the relations between this construction of  $C(X)^{\delta}$  and the other constructions existing in literature.

• X - a (Hausdorff) **compact** space ( $\Rightarrow$ Baire + completely regular).

- X a (Hausdorff) **compact** space ( $\Rightarrow$ Baire + completely regular).
- $\bullet$   $\mathcal{B}(X)$  the Dedekind complete Riesz space of all  $\mathbf{bounded}$  functions on X

- X a (Hausdorff) **compact** space ( $\Rightarrow$ Baire + completely regular).
- ullet  $\mathcal{B}(X)$  the Dedekind complete Riesz space of all **bounded** functions on X
- On  $\mathcal{B}(X)$  we consider the uniform norm  $\|f\| = \sup_{x \in X} |f(x)|$  .

- X a (Hausdorff) **compact** space ( $\Rightarrow$ Baire + completely regular).
- ullet  $\mathcal{B}(X)$  the Dedekind complete Riesz space of all **bounded** functions on X
- ullet On  $\mathcal{B}(X)$  we consider the uniform norm  $\|f\|=\sup_{x\in X}|f(x)|$  .
- $C(X) \subset \mathcal{B}(X)$  and  $I(C(X)) = \mathcal{B}(X)$ , since  $|f| \leq M1_X$ .

- X a (Hausdorff) **compact** space ( $\Rightarrow$ Baire + completely regular).
- ullet  $\mathcal{B}(X)$  the Dedekind complete Riesz space of all **bounded** functions on X
- On  $\mathcal{B}(X)$  we consider the uniform norm  $||f|| = \sup_{x \in X} |f(x)|$ .
- $C(X) \subset \mathcal{B}(X)$  and  $I(C(X)) = \mathcal{B}(X)$ , since  $|f| \leq M1_X$ .
- Baire's operators:  $I, S : \mathcal{B}(X) \longrightarrow \mathcal{B}(X)$ , where

$$I(f)(x) := \sup_{V \in \mathcal{V}_{\tau}} \inf_{y \in V} f(y)$$
, the lower limit function,

$$S(f)(x) := \inf_{V \in \mathcal{V}_x} \sup_{y \in V} f(y)$$
, the **upper limit function**.

- X a (Hausdorff) **compact** space ( $\Rightarrow$ Baire + completely regular).
- ullet  $\mathcal{B}(X)$  the Dedekind complete Riesz space of all **bounded** functions on X
- On  $\mathcal{B}(X)$  we consider the uniform norm  $||f|| = \sup_{x \in X} |f(x)|$ .
- $C(X) \subset \mathcal{B}(X)$  and  $I(C(X)) = \mathcal{B}(X)$ , since  $|f| \leq M1_X$ .
- Baire's operators:  $I, S : \mathcal{B}(X) \longrightarrow \mathcal{B}(X)$ , where

$$\begin{split} I(f)(x) &:= \sup_{V \in \mathcal{V}_x} \inf_{y \in V} f(y), \quad \text{the lower limit function,} \\ S(f)(x) &:= \inf_{V \in \mathcal{V}_x} \sup_{y \in V} f(y), \quad \text{the upper limit function.} \end{split}$$

• Kaplan's operators:  $\ell$ , u,  $\delta$  :  $\mathcal{B}(X) \longrightarrow \mathcal{B}(X)$ 

$$\ell(f) := \bigvee \{g \in C(X) : g \le f\}, \quad u(f) := \bigwedge \{g \in C(X) : g \ge f\},$$
$$\delta(f) = u(f) - \ell(f).$$

- X a (Hausdorff) **compact** space ( $\Rightarrow$ Baire + completely regular).
- ullet  $\mathcal{B}(X)$  the Dedekind complete Riesz space of all **bounded** functions on X
- On  $\mathcal{B}(X)$  we consider the uniform norm  $||f|| = \sup_{x \in X} |f(x)|$ .
- $C(X) \subset \mathcal{B}(X)$  and  $I(C(X)) = \mathcal{B}(X)$ , since  $|f| \leq M1_X$ .
- $\bullet \ \, \textbf{Baire's operators:} \ \, \textit{I, S} : \mathcal{B}(\textit{X}) \longrightarrow \mathcal{B}(\textit{X}) , \text{ where} \\$

$$\begin{split} I(f)(x) &:= \sup_{V \in \mathcal{V}_x} \inf_{y \in V} f(y), \quad \text{the lower limit function,} \\ S(f)(x) &:= \inf_{V \in \mathcal{V}_x} \sup_{y \in V} f(y), \quad \text{the upper limit function.} \end{split}$$

• Kaplan's operators:  $\ell$ , u,  $\delta$  :  $\mathcal{B}(X) \longrightarrow \mathcal{B}(X)$ 

$$\ell(f) := \bigvee \{g \in C(X) : g \le f\}, \quad u(f) := \bigwedge \{g \in C(X) : g \ge f\},$$
$$\delta(f) = u(f) - \ell(f).$$

• X completely regular  $\Rightarrow I(f) = \ell(f)$ , S(f) = u(f),  $\forall f \in \mathcal{B}(X)$ .

•  $\ell(f) \leq f \leq u(f), \forall f \in \mathcal{B}(X).$ 

- $\ell(f) \leq f \leq u(f)$ ,  $\forall f \in \mathcal{B}(X)$ .
- $\ell$ , u,  $\ell u$  and  $u\ell$  are monotone and idempotent.

- $\ell(f) \leq f \leq u(f), \forall f \in \mathcal{B}(X).$
- $\ell$ , u,  $\ell u$  and  $u\ell$  are monotone and idempotent.
- $\ell$  is supra-additive, u is sub-additive and for any  $f, g \in \mathcal{B}(X)$

$$\ell(f) + \ell(g) \le \ell(f+g) \le \ell(f) + u(g) \le u(f+g) \le u(f) + u(g).$$

- $\ell(f) \leq f \leq u(f), \forall f \in \mathcal{B}(X).$
- $\ell$ , u,  $\ell u$  and  $u\ell$  are monotone and idempotent.
- $\ell$  is **supra-additive**, u is **sub-additive** and for any  $f, g \in \mathcal{B}(X)$

$$\ell(f) + \ell(g) \le \ell(f+g) \le \ell(f) + u(g) \le u(f+g) \le u(f) + u(g).$$

In consequence,

$$\ell(f) - u(g) \le \ell(f - g) \le \frac{u(f) - u(g)}{\ell(f) - \ell(g)} \le u(f - g) \le u(f) - \ell(g).$$

- $\ell(f) \leq f \leq u(f)$ ,  $\forall f \in \mathcal{B}(X)$ .
- $\ell$ , u,  $\ell u$  and  $u\ell$  are **monotone** and **idempotent**.
- $\ell$  is **supra-additive**, u is **sub-additive** and for any f,  $g \in \mathcal{B}(X)$

$$\ell(f) + \ell(g) \le \ell(f+g) \le \ell(f) + u(g) \le u(f+g) \le u(f) + u(g).$$

In consequence,

$$\ell(f) - u(g) \le \ell(f - g) \le \frac{u(f) - u(g)}{\ell(f) - \ell(g)} \le u(f - g) \le u(f) - \ell(g).$$

• The operators  $\ell$  and u have the following lattice properties:

$$\ell(f \wedge g) = \ell(f) \wedge \ell(g), \quad u(f \vee g) = u(f) \vee u(g)$$

$$f \wedge g = 0 \Rightarrow \ell(f) \wedge u(g) = 0$$

# Some properties of $\delta$ operator

•  $\delta(f) \ge 0$ , and  $\delta(f) = 0 \Leftrightarrow f \in C(X)$ .

### Some properties of $\delta$ operator

- $\delta(f) \geq 0$ , and  $\delta(f) = 0 \Leftrightarrow f \in C(X)$ .
- For every real  $\lambda$ ,  $\delta(\lambda f) = |\lambda| \, \delta(f)$ . In particular,  $\delta(-f) = \delta(f)$ .

### Some properties of $\delta$ operator

- $\delta(f) \ge 0$ , and  $\delta(f) = 0 \Leftrightarrow f \in C(X)$ .
- For every real  $\lambda$ ,  $\delta(\lambda f) = |\lambda| \, \delta(f)$ . In particular,  $\delta(-f) = \delta(f)$ .
- For  $f, g \in \mathcal{B}(X)$  we have:

$$\delta(f) - \delta(g) \le \frac{\delta(f+g)}{\delta(f-g)} \le \delta(f) + \delta(g)$$

$$|\delta(f) - \delta(g)| \le \frac{\delta(f+g)}{\delta(f-g)}$$

$$\frac{\delta(f \lor g)}{\delta(f \land g)} \le \delta(f) \lor \delta(g)$$

$$\delta(f+g) \le \delta(f \lor g) + \delta(f \land g) \le \delta(f) + \delta(g)$$

$$\delta(f) = \delta(f^{+}) + \delta(f^{-})$$

$$\delta(f) < 2u(|f|)$$

$$(2)$$

•  $||f|| = \max\{||\ell(f)||, ||u(f)||\}$ , for all  $f \in \mathcal{B}(X)$ .

For  $f, g \in \mathcal{B}(X)$ , we have:



S. Kaplan, *The bidual of C(X)* I, North-Holland Mathematics Studies 101. Amsterdam, 1985.

•  $||f|| = \max\{\|\ell(f)\|, \|u(f)\|\}$ , for all  $f \in \mathcal{B}(X)$ .

For  $f, g \in \mathcal{B}(X)$ , we have:

•  $\|\ell(f) - \ell(g)\| \le \|f - g\|$  - u is norm continuous.

- S. Kaplan, *The second dual of the space of continuous functions*. IV, Trans. Amer. Math. Soc. 113 (1964), 512-546.
- S. Kaplan, *The bidual of C(X)* I, North-Holland Mathematics Studies 101, Amsterdam, 1985.

•  $||f|| = \max\{||\ell(f)||, ||u(f)||\}$ , for all  $f \in \mathcal{B}(X)$ .

For  $f, g \in \mathcal{B}(X)$ , we have:

- $\|\ell(f) \ell(g)\| \le \|f g\|$  u is norm continuous.
- $||u(f) u(g)|| \le ||f g||$   $\ell$  is norm continuous.

- S. Kaplan, *The second dual of the space of continuous functions*. IV, Trans. Amer. Math. Soc. 113 (1964), 512-546.
- S. Kaplan, The bidual of C(X) I, North-Holland Mathematics Studies 101, Amsterdam, 1985.

•  $||f|| = \max\{||\ell(f)||, ||u(f)||\}$ , for all  $f \in \mathcal{B}(X)$ .

For  $f, g \in \mathcal{B}(X)$ , we have:

- $\|\ell(f) \ell(g)\| \le \|f g\|$  u is norm continuous.
- $||u(f) u(g)|| \le ||f g||$   $\ell$  is norm continuous.
- $\|\delta(f) \delta(g)\| \le 2\|f g\|$   $\delta$  is norm continuous.
- S. Kaplan, *The second dual of the space of continuous functions*. IV, Trans. Amer. Math. Soc. 113 (1964), 512-546.
- S. Kaplan, The bidual of C(X) I, North-Holland Mathematics Studies 101, Amsterdam, 1985.

 $m{\bullet}$   $\mathcal{L}_{sc}(X) = \{f \in \mathcal{B}(X) \mid \ell(f) = f\}$  - lower semicontinuous functions

- $\mathcal{L}_{sc}(X) = \{f \in \mathcal{B}(X) \mid \ell(f) = f\}$  lower semicontinuous functions
- ullet  $\mathcal{U}_{sc}(X)=\{f\in\mathcal{B}(X)\mid u(f)=f\}$  upper semicontinuous functions

- ullet  $\mathcal{L}_{sc}(X)=\{f\in\mathcal{B}(X)\mid \ell(f)=f\}$  lower semicontinuous functions
- $\mathcal{U}_{\mathsf{sc}}(\mathsf{X}) = \{ f \in \mathcal{B}(\mathsf{X}) \mid \mathit{u}(f) = f \}$  upper semicontinuous functions
- The sets  $\mathcal{L}_{sc}$  and  $\mathcal{U}_{sc}$  are **Dedekind complete lattices** in which the supremum and the infimum of any nonempty order bounded subset  $\{f_{\gamma}\}_{{\gamma}\in{\Gamma}}$  are given by the formulae:

$$\bigvee_{\mathcal{L}} f_{\gamma} = \bigvee_{\mathcal{L}} f_{\gamma}, \qquad \bigwedge_{\mathcal{L}} f_{\gamma} = \ell(\bigwedge_{\gamma} f_{\gamma}),$$
 $\bigvee_{\mathcal{U}} f_{\gamma} = u(\bigvee_{\mathcal{U}} f_{\gamma}), \qquad \bigwedge_{\mathcal{U}} f_{\gamma} = \bigwedge_{\mathcal{U}} f_{\gamma}.$ 

- $\mathcal{L}_{sc}(X) = \{f \in \mathcal{B}(X) \mid \ell(f) = f\}$  lower semicontinuous functions
- $m{m{\circ}}\ \mathcal{U}_{sc}(X) = \{f \in \mathcal{B}(X) \mid u(f) = f\}$  upper semicontinuous functions
- The sets  $\mathcal{L}_{sc}$  and  $\mathcal{U}_{sc}$  are **Dedekind complete lattices** in which the supremum and the infimum of any nonempty order bounded subset  $\{f_{\gamma}\}_{{\gamma}\in{\Gamma}}$  are given by the formulae:

$$\bigvee_{\mathcal{L}} f_{\gamma} = \bigvee_{\mathcal{L}} f_{\gamma}, \qquad \bigwedge_{\mathcal{L}} f_{\gamma} = \ell(\bigwedge_{\gamma} f_{\gamma}),$$
 $\bigvee_{\mathcal{U}} f_{\gamma} = u(\bigvee_{\mathcal{U}} f_{\gamma}), \qquad \bigwedge_{\mathcal{U}} f_{\gamma} = \bigwedge_{\mathcal{U}} f_{\gamma}.$ 

• If the set  $\{f_\gamma\}_{\gamma\in\Gamma}$  is **finite**, then  $\bigwedge_{\mathcal{L}} f_\gamma = \bigwedge f_\gamma$  and  $\bigvee_{\mathcal{U}} f_\gamma = \bigvee f_\gamma$ .

#### Lattices of normal semicontinuous functions

•  $\mathcal{NL}_{sc}(X)=\{f\in\mathcal{L}_{sc}\mid \ell u(f)=f\}$  - normal lower semicontinuous functions



#### Lattices of normal semicontinuous functions

- $\mathcal{NL}_{sc}(X) = \{f \in \mathcal{L}_{sc} \mid \ell u(f) = f\}$  normal lower semicontinuous functions
- $\mathcal{NU}_{sc}(X) = \{f \in \mathcal{U}_{sc} \mid u\ell(f) = f\}$  normal upper semicontinuous functions



#### Lattices of normal semicontinuous functions

- $\mathcal{NL}_{sc}(X) = \{f \in \mathcal{L}_{sc} \mid \ell u(f) = f\}$  normal lower semicontinuous functions
- $\mathcal{NU}_{sc}(X) = \{f \in \mathcal{U}_{sc} \mid u\ell(f) = f\}$  normal upper semicontinuous functions
- The set  $\mathcal{NL}_{sc}$  and  $\mathcal{NU}_{sc}$  are **Dedekind complete lattices** in which the supremum and the infimum of any nonempty order bounded subset  $\{f_{\gamma}\}_{{\gamma}\in{\Gamma}}$  are given by the formulae:

$$\bigvee_{\mathcal{NL}} f_{\gamma} = \ell u(\bigvee f_{\gamma}), \qquad \bigwedge_{\mathcal{NL}} f_{\gamma} = \ell(\bigwedge f_{\gamma}),$$
 $\bigvee_{\mathcal{NU}} f_{\gamma} = u(\bigvee f_{\gamma}), \qquad \bigwedge_{\mathcal{NU}} f_{\gamma} = u\ell(\bigwedge f_{\gamma}).$ 



• For  $f \in \mathcal{B}(X)$ ,  $C_f$  denotes set of **points of continuity** of f.  $C_f$  is a  $G_\delta$  set:

$$C_{f} = \{x \in X : \delta(f)(x) = 0\} = \bigcap_{n=1}^{\infty} \{x \in X : \delta(f)(x) < 1/n\}.$$

$$f \in C(X) \iff C_{f} = X$$

• For  $f \in \mathcal{B}(X)$ ,  $C_f$  denotes set of **points of continuity** of f.  $C_f$  is a  $G_\delta$  set:

$$C_{f} = \{x \in X : \delta(f)(x) = 0\} = \bigcap_{n=1}^{\infty} \{x \in X : \delta(f)(x) < 1/n\}.$$
$$f \in C(X) \iff C_{f} = X$$

• A function  $f \in \mathcal{B}(X)$  is called **pointwise discontinuous** on X if it is continuous on a **dense** subset of X.  $C_d(X)$  denotes the set of all these functions.

$$f \in C_d(X) \Longleftrightarrow \overline{C_f} = X$$

• For  $f \in \mathcal{B}(X)$ ,  $C_f$  denotes set of **points of continuity** of f.  $C_f$  is a  $G_\delta$  set:

$$C_{f} = \{x \in X : \delta(f)(x) = 0\} = \bigcap_{n=1}^{\infty} \{x \in X : \delta(f)(x) < 1/n\}.$$
$$f \in C(X) \iff C_{f} = X$$

• A function  $f \in \mathcal{B}(X)$  is called **pointwise discontinuous** on X if it is continuous on a **dense** subset of X.  $C_d(X)$  denotes the set of all these functions.

$$f \in C_d(X) \Longleftrightarrow \overline{C_f} = X$$

• On  $C_d(X)$  we define the **equivalence relation** 

 $f \sim g \Leftrightarrow f = g$  on the dense  $G_{\delta}$  set  $C_{f,g}$ .



• For  $f \in \mathcal{B}(X)$ ,  $C_f$  denotes set of **points of continuity** of f.  $C_f$  is a  $G_\delta$  set:

$$C_{f} = \{x \in X : \delta(f)(x) = 0\} = \bigcap_{n=1}^{\infty} \{x \in X : \delta(f)(x) < 1/n\}.$$
$$f \in C(X) \iff C_{f} = X$$

• A function  $f \in \mathcal{B}(X)$  is called **pointwise discontinuous** on X if it is continuous on a **dense** subset of X.  $C_d(X)$  denotes the set of all these functions.

$$f \in C_d(X) \Longleftrightarrow \overline{C_f} = X$$

• On  $C_d(X)$  we define the **equivalence relation** 

$$f \sim g \Leftrightarrow f = g$$
 on the dense  $G_{\delta}$  set  $C_{f,g}$ .

•  $\pi: C_d(X) \longrightarrow C_d(X) / \sim$  is the quotient map:  $\pi(f) = \widehat{f}$ .

The result 
$$C(X)^{\delta} = C_d(X) / \sim$$
 .

#### Theorem

Let X be a **compact** space. Then:

- (i) The **Dedekind completion** of the Riesz space C(X) is  $C(X)^{\delta} := C_d(X) / \sim$ .
- (ii) Endowed with the quotient of the uniform norm,  $C(X)^{\delta}$  is a **Banach** lattice.

$$C(X) \hookrightarrow C_d(X) \stackrel{\pi}{\longrightarrow} C(X)^{\delta} = C_d(X)/\sim$$
.

Obvious  $\widehat{g} = \pi(g) = \{g\}$ , so C(X) can be identified with a Riesz subspace  $C(X)^{\delta}$ . It remains to prove:

- (A)  $C(X)^{\delta}$  is a Dedekind complete Riesz space.
- (B) For every  $\widehat{f} \in C(X)^{\delta}$  we have

$$\bigvee \{g \in C(X) : g \leq \widehat{f}\} = \widehat{f} = \bigwedge \{g \in C(X) : g \geq \widehat{f}\}.$$

(C)  $C(X)^{\delta}$  is a Banach lattice.

# The characterization of a pointwise discontinuous function with Kaplan's operators

$$f \in C(X) \iff \delta(f) = 0$$
  
 $f \in C_d(X) \iff \ell(\delta(f)) = 0.$ 

## Theorem

Let X be a compact space and  $f \in \mathcal{B}(X)$ . The following statements are equivalent.

- (i) f is pointwise discontinuous on X, that is,  $\overline{C_f} = X$ .
- (ii) For every real number  $\lambda > 0$  the set  $A_{\lambda}(f) = \{x \in X : \delta(f)(x) \ge \lambda\}$  is nowhere dense.
- (iii) f is continuous on a comeager set  $X \setminus C_f = \bigcup_{n=1}^{\infty} A_{1/n}(f)$ .
- (iv)  $\ell(\delta(f)) = 0$ .

## Theorem

 $C_d(X)$  is a norm closed Riesz subspace of  $\mathcal{B}(X)$ , hence a Banach lattice.

**Proof.** If 
$$f, g \in C_d(X)$$
, then  $\ell(\delta(f)) = 0$ ,  $\ell(\delta(g)) = 0$ .

$$0 \leq \ell \left[ \delta(f+g) \right] \leq \ell \left[ \delta(f \vee g) + \delta(f \wedge g) \right] \leq \ell \ell \left[ \delta(f) + \delta(g) \right] \leq \ell \ell \left[ \ell \left( \delta(f) \right) + \ell \left( \delta(g) \right) \right] = \ell \left( \delta(g) \right) = 0.$$

Hence 
$$\ell\left[\delta(f+g)\right]=0$$
,  $\ell\left[\delta(f\vee g)\right]=0$ ,  $\ell\left[\delta(f\wedge g)\right]=0$   $\Rightarrow$ 

$$f+g, f\vee g, f\wedge g\in C_d(X).$$

$$\ell\left(\delta\left(\lambda f\right)\right) = \ell\left(\left|\lambda\right|\delta\left(f\right)\right) = \left|\lambda\right|\ell\left(\delta\left(f\right)\right) = 0 \Rightarrow \lambda f \in C_d(X).$$

If 
$$(f_n) \subset C_d(X)$$
 such that  $||f_n - f|| \rightharpoonup 0$  for some  $f \in \mathcal{B}(X)$ , then

$$\|\underbrace{\ell\left(\delta\left(f_{n}\right)\right)}_{=0}-\ell\left(\delta\left(f\right)\right)\|\leq\|\delta\left(f_{n}\right)-\delta\left(f\right)\|\leq2\left\|f_{n}-f\right\|\rightarrow0\Rightarrow f\in\mathcal{C}_{d}(X).$$

#### The ideal of rare functions

A function  $f \in \mathcal{B}(X)$  is called **rare** if  $\ell u(|f|) = 0$ .  $\mathcal{R}a(X)$  or  $\mathcal{R}a$  denotes the set of all rare functions.

### Theorem

$$f \in \mathcal{R}$$
a $(X) \Leftrightarrow \ell(\delta(f)) = 0, \quad \ell(|f|) = 0.$ 

$$f \in \mathcal{R}$$
a $(X) \Leftrightarrow f(x) = 0$ , for all  $x \in C_f$   
 $\mathcal{R}$ a $(X) \subset C_d(X)$ 

## **Theorem**

 $\mathcal{R}a(X)$  is a norm closed Riesz ideal of  $\mathcal{C}_d(X)$ .

$$f \sim g \Leftrightarrow f - g \in \mathcal{R}$$
a

## Theorem

 $C(X)^{\delta} = C_d(X)/\mathcal{R}a$  is a Banach lattice.

### Theorem

For  $f \in C_d(X)$  a pointwise discontinuous function f, the following are equivalent:

(i) 
$$\ell(\delta(f)) = 0$$
.

(ii) 
$$\ell u \left( \delta \left( f \right) \right) = 0$$
.

(iii) 
$$\ell u [u(f) - f] = 0 \Leftrightarrow f \sim u(f)$$
.

(iv) 
$$\ell u[f - \ell(f)] = 0 \Leftrightarrow f \sim \ell(f)$$
.

(v) 
$$\ell u(f) = \ell u \ell(f)$$
, that is f is Nakano quasicontinuous

(vi) 
$$u\ell(f) = u\ell u(f)$$
.

(vii) 
$$\ell u [u(f) - u\ell (f)] = 0 \Leftrightarrow u(f) \sim u\ell (f)$$

(vii) 
$$\ell u \left[\ell u(f) - \ell(f)\right] = 0 \Leftrightarrow \ell(f) \sim \ell u(f)$$
.

Hence, for  $f \in C_d(X) \Rightarrow f \sim \ell(f) \sim u(f) \sim \ell u(f) \sim u\ell(f)$ .

In other words,  $\hat{f}$  contains lsc, usc, nlsc and nusc functions.



## Regular pair

## **Definition**

A pair of functions  $(\underline{f}, \overline{f})$  is called **regular** if  $\underline{f} \in \mathcal{L}_{sc}$ ,  $\overline{f} \in \mathcal{U}_{sc}$  and

$$\underline{f} \leq \overline{f}, \qquad u(\underline{f}) = \overline{f}, \qquad \ell(\overline{f}) = \underline{f}.$$

If  $(\underline{f}, \overline{f})$  is a regular pair, then:

- (i) The lower function  $\underline{f} \in \mathcal{NL}_{sc}$  and the upper function  $\overline{f} \in \mathcal{NU}_{sc}$ .
- (ii)  $\ell(\overline{f} \underline{f}) = 0$ , that is,  $\overline{f} \sim \underline{f}$ .
- (iii) The interval-valued function  $\overline{\underline{f}}: X \longrightarrow \mathbb{IR}, x \longrightarrow [\underline{f}(x), \overline{f}(x)]$  is Hausdorff continuous (in the sense of Sendov).

## **Theorem**

A regular pair is a Dedekind cut in C(X).



N. Dăneţ, *Dedekind cuts in C(X)*, Marcinkiewicz Centenary Volume, Polish Academy of Sciences, Banach Center Publications, Vol. 95, Warszawa, 2011, 287-297.

$$f \in C_d(X) \Rightarrow f \sim \ell(f) \sim u(f) \sim \ell u(f) \sim u\ell(f)$$

## Theorem

(i) Every equivalence class  $\hat{f} \in C(X)^{\delta} = C_d(X)/\mathcal{R}$ a contains **exactly** one regular pair  $(f, \overline{f})$ , namely

$$\underline{f} = \ell u(f), \quad \overline{f} = u\ell(f).$$

(ii)  $\underline{f}$  is the largest lower semicontinuous function in  $\hat{f}$ , and  $\overline{f}$  is the **smallest** upper semicontinuous function in  $\hat{f}$ .



S. Kaplan, The bidual of C(X) I, North-Holland Mathematics Studies 101, Amsterdam, 1985, p. 383.

The equivalence relation  $f \sim g \Leftrightarrow f - g \in \mathcal{R}a$  can be define on  $\mathcal{B}(X)$ .

### **Theorem**

The quotient map  $\pi:\mathcal{B}(X)\longrightarrow\mathcal{B}(X)/\mathcal{R}$ a has the following partial order continuity.

- (i) If  $g = \bigwedge_{\gamma} g_{\gamma}$ , where  $\{g_{\gamma}\}_{\gamma \in \Gamma}$  is a subset of  $\mathcal{U}_{sc}$  (hence g is also in  $\mathcal{U}_{sc}$ ), then  $\pi(g) = \bigwedge_{\gamma} \pi(g_{\gamma})$ .
- (ii) If  $g = \bigvee_{\gamma} g_{\gamma}$ , where  $\{g_{\gamma}\}_{\gamma \in \Gamma}$  is a subset of  $\mathcal{L}_{sc}$  (hence g is also in  $\mathcal{L}_{sc}$ ),
- then  $\pi(g) = \bigvee_{\gamma} \pi(g_{\gamma}).$



S. Kaplan, *The bidual of C(X)* I, North-Holland Mathematics Studies 101, Amsterdam, 1985, p. 384.

Now we can proved (B), that is, for every  $\widehat{f} \in C(X)^{\delta}$  we have

$$\bigvee \{g \in C(X) : g \leq \widehat{f}\} = \widehat{f} = \bigwedge \{g \in C(X) : g \geq \widehat{f}\}.$$

Indeed,

$$\widehat{f} = \widehat{\underline{f}} = \pi(\underline{f}) = \pi(\ell(\underline{f})) = \pi(\bigvee \{g \in C(X) : g \leq \underline{f}\}) =$$

$$= \bigvee \{g \in C(X) : g \leq \pi(\underline{f})\} = \bigvee \{g \in C(X) : g \leq \widehat{f}\}.$$

and

$$\widehat{f} = \widehat{\overline{f}} = \pi(\overline{f}) = \pi(u(\overline{f})) = \pi\left(\bigwedge\{g \in C(X) : g \ge \overline{f}\}\right) =$$

$$= \bigvee\{g \in C(X) : g \le \pi(\overline{f})\} = \bigvee\{g \in C(X) : g \le \widehat{f}\}.$$

Let us prove (A).

### Theorem

# $C(X)^{\delta}$ is **Dedekind complete**.

**Proof.** Let  $\{\widehat{f}_{\gamma}\}$  be a subset of  $C(X)^{\delta}$ , which is bounded above by  $\widehat{h}$ , that is,

$$\widehat{f_{\gamma}} \leq \widehat{h}$$
, for all  $\gamma$ .

We can assume that  $f_\gamma$ ,  $h\in \mathcal{NL}_{sc}\Rightarrow f_\gamma=\ell u(f_\gamma)$  and  $h=\ell u(h)$ . Then

$$f_{\gamma} = \ell u(f_{\gamma}) \le u(h)$$
, for all  $\gamma$ .

So there exists  $\bigvee f_{\gamma}$  in  $\mathcal{B}(X)$  and  $\bigvee f_{\gamma} \leq u(h)$ . Define

$$f:=\ell u\left(\bigvee f_{\gamma}\right)$$
 .

Then  $\bigvee \widehat{f_{\gamma}} = \widehat{f}$ . Indeed,

(a) 
$$f_{\gamma} = \ell u(f_{\gamma}) \le \ell u(\bigvee f_{\gamma}) = f \Rightarrow \widehat{f_{\gamma}} \le \widehat{f}$$
, for all  $\gamma$ .

(b) 
$$f = \ell u (\bigvee f_{\gamma}) \le \ell u(h) = h \Rightarrow \widehat{f} \le \widehat{h}$$
.

• We have a proof of the Dedekind completion of C(X), which used only the theory of Riesz spaces.

$$C(X)^{\delta} = \mathcal{C}_d(X)/\mathcal{R}$$
a $C(X)^{\delta} = \mathcal{N}\mathcal{U}_{sc}(X)/\mathcal{R}$ a $= \mathcal{N}\mathcal{L}_{sc}(X)/\mathcal{R}$ a $= \mathcal{U}_{sc}(X)/\mathcal{R}$ a $= \mathcal{L}_{sc}(X)/\mathcal{R}$ a $= \mathcal{Q}(X)/\mathcal{R}$ a

- We have a proof of the Dedekind completion of C(X), which used only the theory of Riesz spaces.
- The proof can be used in more general settings, if the operators  $\ell$  and u can be defined.

$$\mathcal{C}(X)^\delta = \mathcal{C}_d(X)/\mathcal{R}$$
a

$$C(X)^{\delta} = \mathcal{N}\mathcal{U}_{sc}(X)/\mathcal{R}$$
a =  $\mathcal{N}\mathcal{L}_{sc}(X)/\mathcal{R}$ a =   
=  $\mathcal{U}_{sc}(X)/\mathcal{R}$ a =  $\mathcal{L}_{sc}(X)/\mathcal{R}$ a =  $\mathcal{Q}(X)/\mathcal{R}$ a

- We have a proof of the Dedekind completion of C(X), which used only the theory of Riesz spaces.
- The proof can be used in more general settings, if the operators  $\ell$  and u can be defined.
- This proof can also be used for an alternative proof (without cuts) that an Archemedean Riesz space has a Dedekind completion.

$$C(X)^\delta = \mathcal{C}_d(X)/\mathcal{R}$$
a

$$C(X)^{\delta} = \mathcal{N}\mathcal{U}_{sc}(X)/\mathcal{R}$$
a =  $\mathcal{N}\mathcal{L}_{sc}(X)/\mathcal{R}$ a =   
=  $\mathcal{U}_{sc}(X)/\mathcal{R}$ a =  $\mathcal{L}_{sc}(X)/\mathcal{R}$ a =  $\mathcal{Q}(X)/\mathcal{R}$ a

# Other existing constructions History and comments

#### R. P. Dilworth

**1950** - Dilworth introduced the **normal semicontinuous functions**, as functional analogous of normal subsets (cuts) of  $C_b(X)$ , and proved that for a **completely regular** space X there exists an isomorphism  $C_b(X)^\delta \cong \mathcal{NU}_{sc}(X)$  only for lattice structures.

The set  $\mathcal{NU}_{sc}(X)$  can be organized as a Riesz space with the operations:

$$f \overline{\oplus} g = u\ell(f+g), \quad \lambda \overline{\odot} f = u\ell(\lambda f) = \begin{cases} \lambda f, & \lambda \geq 0, \\ \lambda \ell(f) & \lambda < 0. \end{cases},$$
 $f \bigvee_{\mathcal{N}\mathcal{U}} g = f \vee g, \quad f \bigwedge_{\mathcal{N}\mathcal{U}} g = u\ell(f \wedge g).$ 



#### Alfred Horn

**1953** - Horn proved a similar result as Dilworth, but for **unbounded** functions.

First he developed a general theory for the Dedekind completion of a subset C of a Dedekind complete lattice B.

Then he applied his theory for  $B = \{f : X \longrightarrow \overline{\mathbb{R}}\}$  and  $C = C(X, \overline{\mathbb{R}})$ .

Horn proved that for a **completely regular** space X the following lattice isomorphism holds.

$$C(X,\overline{\mathbb{R}})^{\delta} \cong \mathcal{NL}_{sc}(X,\overline{\mathbb{R}})$$

 $C(X)^{\delta} = \mathcal{NL}^{cb}_{sc}(X)$ , where cb means functions which are C-bounded.

A function  $f: X \longrightarrow \mathbb{R}$  is called *C*-bounded if there exists  $g_1, g_2 \in C(X)$  such that  $g_1 \leq f \leq g_2$ , that is  $f \in I(C(X))$ .



A. Horn, The normal completion of a subset of a complete lattice and lattices of continuous functions, Pacific J. Math. 3 (1953), 137–152.

## Kazumi Nakano and Tetsuya Shimogaki

**1962** - K. Nakano and T. Shimogaki construct the Dedekind completion of C(X) using **quasicontinuous functions**, as they were defined by Hidegorô Nakano in his book (1948, in Japanese) by the equality  $u\ell(f) = u\ell u(f)$ . From the above theorems results:

**1** A function  $f \in \mathcal{B}(X)$  is **Nakano-quasicontinuous** if and only if is pointwise discontinuous.

- Nakano, K., Shimogaki, T.; A note on the cut extension of C-spaces, Proc. Japan Acad., 8 (1962), 473-477.
- Nakano, H.: *Measure Theory* II (in Japanese), Tokyo, 1948.

## Kazumi Nakano and Tetsuya Shimogaki

**1962** - K. Nakano and T. Shimogaki construct the Dedekind completion of C(X) using **quasicontinuous functions**, as they were defined by Hidegorô Nakano in his book (1948, in Japanese) by the equality  $u\ell(f) = u\ell u(f)$ . From the above theorems results:

- **1** A function  $f \in \mathcal{B}(X)$  is **Nakano-quasicontinuous** if and only if is pointwise discontinuous.
- ② The Riesz ideal of the **rare** functions  $\mathcal{R}a(X)$  coincides with the Riesz ideal N defined in the paper of Nakano and Shimogaki.

- Nakano, K., Shimogaki, T.; A note on the cut extension of C-spaces, Proc. Japan Acad., 8 (1962), 473-477.
- Nakano, H.: *Measure Theory* II (in Japanese), Tokyo, 1948.

## Kazumi Nakano and Tetsuya Shimogaki

**1962** - K. Nakano and T. Shimogaki construct the Dedekind completion of C(X) using **quasicontinuous functions**, as they were defined by Hidegorô Nakano in his book (1948, in Japanese) by the equality  $u\ell(f) = u\ell u(f)$ . From the above theorems results:

- **1** A function  $f \in \mathcal{B}(X)$  is **Nakano-quasicontinuous** if and only if is pointwise discontinuous.
- ② The Riesz ideal of the **rare** functions  $\mathcal{R}a(X)$  coincides with the Riesz ideal N defined in the paper of Nakano and Shimogaki.
- **1** The space  $C_d(X)/\mathcal{R}a(X)$  is the space  $C_q(X)/\mathcal{N}$  of Nakano and Shimogaki.
- Nakano, K., Shimogaki, T.; A note on the cut extension of C-spaces, Proc. Japan Acad., **8** (1962), 473-477.
- Nakano, H.: *Measure Theory* II (in Japanese), Tokyo, 1948.

## Samuel Kaplan

**1964** - In a series of four papers and a book Kaplan studied intensively C(X), his dual and his bidual. In this context he constructed the Dedekind completion of C(X). From here I took the techniques for the proof.



S. Kaplan, *The second dual of the space of continuous functions*. IV, Trans. Amer. Math. Soc. 113 (1964), 512-546.



S. Kaplan, *The bidual of C(X)* I, North-Holland Mathematics Studies 101, Amsterdam, 1985.

#### S. N. Samborskii

**2002** - Samborskii used **quasicontinuous** functions to construct a space called  $S(X, \mathbb{R})$ , which is nothing else that  $C(X)^{\delta}$ .

A function  $f: X \longrightarrow \mathbb{R}$  is called **quasicontinuous** at  $x \in X$  if for every  $\varepsilon > 0$  and for every open set U containing x there exists a open set  $G \subset U$  such that  $|f(y) - f(x)| < \varepsilon$ , for all  $y \in G$ .

$$f$$
 quasicontinuous  $\Rightarrow \left\{ \begin{array}{l} \ell(f) = \ell u(f) \\ u(f) = u\ell(f) \end{array} \right. \Rightarrow u\ell(f) = u\ell u(f) \Leftrightarrow \ell(\delta(f)) = 0$ 

Samborskii, S. N., Expansions of differential operators and nonsmoth solutions of differential equations, Cybernetics and Systems Analysis, **38** (2002), 453-466.

## Roumen Angelov

**2004** - Anguelov constructed the Dedekind completion of C(X) using **Hausdorff continuous interval-valued functions** (in the sens of Sendov), that is, the functions which associate at every point  $x \in X$  the real closed interval  $[\underline{f}(x), \overline{f}(x)]$ ,

$$\overline{\underline{f}}: X \longrightarrow \mathbb{IR}, \quad x \longrightarrow [\underline{f}(x), \overline{f}(x)],$$

and whose components forms a **regular pair**. If we denote by  $\mathbb{H}(X)$  the set of all H-continuous functions on X, then the map

$$\Phi: C(X)^{\delta} \longrightarrow \mathbb{H}(X), \quad \Phi(\widehat{f}) = (\underline{f}, \overline{f})$$

is a Riesz isomorphism.

If we consider on  $C(X)^{\delta}$  the **quotient norm**  $\| \widehat{f} \| = \inf\{ \| h \| : h \in \widehat{f} \}$  and on  $\mathbb{H}(X)$  the **norm**  $\| \overline{\underline{f}} \| = \max\{ \| \underline{f} \|, \| \overline{f} \| \}$ ,  $\Phi$  is an isometry.

- - R. Anguelov, Dedekind order completion of C(X) by Hausdorff continuous functions, Quaest. Math. 27 (2004), 153–169.
- Sendov, B.: *Hausdorff Approximations*. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.

The *H*-continuous functions do not differ to much from the usual real-valued continuous functions because they assume interval values only on a set of first Baire category. More precisely, the set

$$W_{\overline{\underline{f}}} = \{ x \in X \mid \overline{f}(x) - \underline{f}(x) > 0 \}$$

is of the first Baire category. The function  $\overline{\underline{f}}$  has point values on the complementary set  $D_{\overline{\underline{f}}} = X \smallsetminus W_{\underline{f}} = \{x \in X \mid \overline{f}(x) = \underline{f}(x)\}$ , that is,  $\overline{\underline{f}}(x) = f(x)$ ,  $x \in D_{\overline{\underline{f}}}$ , and  $\overline{\underline{f}} = f$  is a real valued continuous function on  $D_{\overline{\underline{f}}}$ . Therefore, a H-continuous function has the form

$$\overline{\underline{f}}(x) = \begin{cases} f(x), & \text{if } x \in D_{\overline{\underline{f}}}, \\ [\underline{f}(x), \overline{f}(x)], & \text{if } x \in W_{\underline{f}}. \end{cases}$$

# Dedekind completion of C(X) by cuts

Let X be a compact space and let (A, B) be a **cut** of C(X). This means a pair of nonempty subsets of C(X) such that

$$A^u = B$$
 and  $B^l = A$ .

Here  $A^u$  denotes the set of all **upper bounds** of A and  $B^l$  the set of all **lower bounds** of B.

Since A is bounded above and B is bounded below there exist the functions

$$\underline{f} = \sup A$$
 and  $\overline{f} = \inf B$ ,

where  $\sup A$  and  $\inf B$  are computed pointwisely. Note that  $\underline{f}$  is lower semicontinuous,  $\overline{f}$  is upper semicontinuous,  $\underline{f} \leq \overline{f}$ , and they form a regular pair.

#### Theorem

Let X be a compact topological space.

Then every cut of C(X) corresponds to a H-continuous interval-valued function, and conversely, every H-continuous interval-valued function corresponds to a cut of C(X).

$$(A, B) \iff [\underline{f}, \overline{f}]$$

More precisely, if (A, B) is a cut of C(X) then the interval-valued function which corresponds is  $\overline{\underline{f}} = [\underline{f}, \overline{f}]$ , where  $\underline{f} = \sup A$  and  $\overline{f} = \inf B$ . Conversely, if  $\overline{\underline{f}} = [\underline{f}, \overline{f}]$  is a H-continuous interval-valued function then the cut of C(X) which corresponds is (A, B), where

$$A = \{g \in C(X) : g \leq \overline{f}\} \quad \text{and} \quad B = \{g \in C(X) : g \geq \underline{f}\}$$

- R. P. Dilworth, *The normal completion of the lattice of continuous functions*, Trans. Amer. Math. Soc. 68 (1950), 427–438.
- A. Horn, The normal completion of a subset of a complete lattice and lattices of continuous functions, Pacific J. Math. 3 (1953), 137–152.
- S. Kaplan, *The second dual of the space of continuous functions*. IV, Trans. Amer. Math. Soc. 113 (1964), 512-546.
- S. Kaplan, The bidual of C(X) I, North-Holland Mathematics Studies 101, Amsterdam, 1985.
- W. A. J. Luxemburg and A. C. Zaanen, *Riesz Spaces*, vol. I, North-Holland Math. Library, North-Holland, Amsterdam-London, 1971.
- H. M. MacNeille, *Partially Ordered Sets*, Trans. Amer. Math. Soc. 42 (1937), 416–460.
- Nakano, K., Shimogaki, T.; A note on the cut extension of C-spaces, Proc. Japan Acad., **8** (1962), 473-477.

- R. Anguelov, *Dedekind order completion of C(X) by Hausdorff continuous functions*, Quaest. Math. 27 (2004), 153–169.
- R. Anguelov, S. Markov and B. Sendov, *On the normed linear space of Hausdorff continuous functions*, in: Large Scale Scientific Computing, Lecture Notes in Comput. Sci. 3743, Springer, Berlin, 2006, 281–288.
- R. Anguelov, S. Markov and B. Sendov, *The set of Hausdorff continuous functions The largest linear space of interval functions*, Reliab. Comput. 12 (2006), 337–363.
- R. Anguelov and E. E. Rosinger, *Hausdorff continuous solutions of nonlinear PDEs through the order completion method*, Quaest. Math. 28 (2005), 271–285.
- R. Anguelov and E. E. Rosinger, *Solving large classes of nonlinear systems of PDEs*, Comput. Math. Appl. 53 (2007), 491–507.
- R. Anguelov, B. Sendov and S. Markov, *Algebraic operations on the space of Hausdorff continuous interval functions*, in: Constructive Theory of Functions, Varna 2005, R. Bojanov (ed.), Prof. Marin

The Dedekind Completion of C(X)

N. Dănet (TUCEB)

OV Acadomic Publishing House Sofia Rulgaria 2006 35-14

- N. Dăneţ, Hausdorff continuous interval-valued functions and quasicontinuous functions, Positivity 14 (2010), 655–663.
- N. Dăneţ, The Dedekind completion of C(X): An interval-valued functions approach, Quaest. Math. 34 (2011), 213-223.
  - N. Dăneț, *Dedekind cuts in C(X)*, Marcinkiewicz Centenary Volume, Polish Academy of Sciences, Banach Center Publications, Vol. 95, Warszawa, 2011, 287-297.

- R. Anguelov, J. H. van der Walt: Order convergence structure on C(X). Quaest. Math. **28**, 425-457 (2005)
- J. H. van der Walt, Order convergence on Archimedean vector lattices and applications, MSc Thesis, University of Pretoria, 2006.
- J. H. van der Walt, *The order completion method for systems of nonlinear PDEs: Pseudo-topological perspectives*, Acta Appl. Math. 103 (2008), 1–17.
- J. H. van der Walt, Generalized solutions of systems of nonlinear partial differential equations, PhD Thesis, University of Pretoria, 2009.

Thank you for choosing this lecture room!