On semigroups of nonnegative functions and positive operators

Roman Drnovšek
University of Ljubljana, Slovenia

Positivity VII, Leiden, July 2013

Joint work with Heydar Radjavi (Univ. of Waterloo, Canada).

Entry-wise boundedness

Given a set $K \subseteq \mathbb{R}$, we write $M_n(K)$ for the set of all $n \times n$ matrices with entries in K.

Theorem (Gessesse, Popov, Radjavi, Spinu, Tcaciuc, Troitsky

Let r > 1 and \mathscr{S} be a (multiplicative) semigroup in $M_n([0,r])$ Then there exists a diagonal matrix $D = \operatorname{diag}(d_1,\ldots,d_n)$ with $d_i \in [\frac{1}{r},r]$ such that $D^{-1}\mathscr{S}D \subseteq M_n([0,1])$.

Entry-wise boundedness

Given a set $K \subseteq \mathbb{R}$, we write $M_n(K)$ for the set of all $n \times n$ matrices with entries in K.

Theorem (Gessesse, Popov, Radjavi, Spinu, Tcaciuc, Troitsky)

Let r > 1 and $\mathscr S$ be a (multiplicative) semigroup in $M_n([0,r])$. Then there exists a diagonal matrix $D = \operatorname{diag}(d_1,\ldots,d_n)$ with $d_i \in [\frac{1}{r},r]$ such that $D^{-1}\mathscr SD \subseteq M_n([0,1])$. A set $\mathscr S$ of nonnegative functions on $X\times X$, closed under a given associative operation *, is called a *matrix-like semigroup* if

$$(f*g)(x,z) \geq f(x,y)g(y,z)$$

for all $f, g \in \mathcal{S}$ and $x, y, z \in X$.

Theorem

Let $M \ge 1$ be a real number and let $\mathscr S$ be a matrix-like semigroup of functions from $X \times X$ to [0,M]. Then there exists a function $d: X \mapsto [\frac{1}{M},M]$ such that

$$f(x,y) \le \frac{d(x)}{d(y)}$$

for all $f \in \mathcal{S}$ and $x, y \in X$.

3/15

A set $\mathscr S$ of nonnegative functions on $X\times X$, closed under a given associative operation *, is called a *matrix-like semigroup* if

$$(f*g)(x,z) \geq f(x,y)g(y,z)$$

for all $f, g \in \mathcal{S}$ and $x, y, z \in X$.

Theorem

Let $M \ge 1$ be a real number and let $\mathscr S$ be a matrix-like semigroup of functions from $X \times X$ to [0,M]. Then there exists a function $d: X \mapsto [\frac{1}{M},M]$ such that

$$f(x,y) \leq \frac{d(x)}{d(y)}$$

Let X be an arbitrary set, and let $f: X \times X \mapsto [0, \infty)$ be a function such that

$$C_f(x,y) = \sup\{f(x,x_1)f(x_1,x_2)f(x_2,x_3)\cdots f(x_k,y):$$

$$k \in \mathbb{N} \cup \{0\}, \ x_1, \dots, x_k \in X\} < \infty$$

for all x and y in X.

(a) If there is a point $y_0 \in X$ such that $C_f(x, y_0) > 0$ for all $x \in X$, then there exists a function $d : X \mapsto (0, \infty)$ such that

$$f(x,y) \le C_f(x,y) \le \frac{d(x)}{d(y)} \tag{1}$$

for all x and y in X.

and y in X, then there exists a function $d: X \mapsto [\frac{1}{M}, M]$ such that

Let X be an arbitrary set, and let $f: X \times X \mapsto [0, \infty)$ be a function such that

$$C_f(x,y) = \sup\{f(x,x_1)f(x_1,x_2)f(x_2,x_3)\cdots f(x_k,y):$$

$$k \in \mathbb{N} \cup \{0\}, \ x_1, \dots, x_k \in X\} < \infty$$

for all x and y in X.

(a) If there is a point $y_0 \in X$ such that $C_f(x, y_0) > 0$ for all $x \in X$, then there exists a function $d : X \mapsto (0, \infty)$ such that

$$f(x,y) \le C_f(x,y) \le \frac{d(x)}{d(y)} \tag{1}$$

for all x and y in X.

(b) If there is a constant $M \ge 1$ such that $C_f(x,y) \le M$ for all x and y in X, then there exists a function $d: X \mapsto [\frac{1}{M}, M]$ such that

4 / 15

Let *X* be an arbitrary set, and let $f: X \times X \mapsto [0, \infty)$ be a function such that

$$C_f(x,y) = \sup\{f(x,x_1)f(x_1,x_2)f(x_2,x_3)\cdots f(x_k,y):$$

$$k \in \mathbb{N} \cup \{0\}, \ x_1, \dots, x_k \in X\} < \infty$$

for all x and y in X.

(a) If there is a point $y_0 \in X$ such that $C_f(x, y_0) > 0$ for all $x \in X$, then there exists a function $d : X \mapsto (0, \infty)$ such that

$$f(x,y) \le C_f(x,y) \le \frac{d(x)}{d(y)} \tag{1}$$

for all x and y in X.

(b) If there is a constant $M \ge 1$ such that $C_f(x,y) \le M$ for all x and y in X, then there exists a function $d: X \mapsto \left[\frac{1}{M}, M\right]$ such that (1) holds.

A semigroup $\mathscr{S} \subset M_n([0,\infty))$ is said to be *indecomposable* (or *irreducible*) if, for every i,j in $\{1,\ldots,n\}$, there exists $S \in \mathscr{S}$ with $S_{ij} > 0$. Equivalently: No permutation of the standard basis reduces the semigroup \mathscr{S} to the block form

$$\left[egin{array}{ccc} * & * \ 0 & * \end{array}
ight].$$

Or equivalently: $\mathscr S$ has no common non-trivial proper invariant ideals (i.e., subspaces spanned by a subset of the standard basis).

A semigroup $\mathscr{S} \subset M_n([0,\infty))$ is said to be *indecomposable (or irreducible)* if, for every i,j in $\{1,\ldots,n\}$, there exists $S \in \mathscr{S}$ with $S_{ij} > 0$. Equivalently: No permutation of the standard basis reduces the semigroup \mathscr{S} to the block form

$$\left[\begin{array}{cc} * & * \\ \mathbf{0} & * \end{array}\right].$$

Or equivalently: \mathscr{S} has no common non-trivial proper invariant ideals (i.e., subspaces spanned by a subset of the standard basis).

A semigroup $\mathscr{S} \subset M_n([0,\infty))$ is said to be *indecomposable (or irreducible)* if, for every i,j in $\{1,\ldots,n\}$, there exists $S \in \mathscr{S}$ with $S_{ij} > 0$. Equivalently: No permutation of the standard basis reduces the semigroup \mathscr{S} to the block form

$$\left[\begin{array}{cc} * & * \\ \mathbf{0} & * \end{array}\right].$$

Or equivalently: $\mathscr S$ has no common non-trivial proper invariant ideals (i.e., subspaces spanned by a subset of the standard basis).

Theorem (Gessesse, Popov, Radjavi, Spinu, Tcaciuc, Troitsky)

Let $\mathscr S$ be an indecomposable semigroup in $M_n([0,\infty))$ such that the set $\{S_{ij}:S\in\mathscr S\}$ is bounded for some pair (i,j). Then there exists a diagonal matrix D with positive diagonal entries such that $D^{-1}\mathscr S D\subseteq M_n([0,1])$.

The indecomposability assumption cannot be omitted:

$$\mathscr{S} = \left\{ \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix} : r \in [0, \infty) \right\}$$

Theorem (Gessesse, Popov, Radjavi, Spinu, Tcaciuc, Troitsky)

Let $\mathscr S$ be an indecomposable semigroup in $M_n([0,\infty))$ such that the set $\{S_{ij}:S\in\mathscr S\}$ is bounded for some pair (i,j). Then there exists a diagonal matrix D with positive diagonal entries such that $D^{-1}\mathscr S D\subseteq M_n([0,1])$.

The indecomposability assumption cannot be omitted:

$$\mathscr{S} = \left\{ \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix} : r \in [0, \infty) \right\}.$$

A set $\mathscr S$ of nonnegative functions on $X \times X$ is *indecomposable* if, for every $x, y \in X$, there exists $f \in \mathscr S$ such that f(x,y) > 0.

Theorem

Let $\mathscr S$ be an indecomposable matrix-like semigroup of nonnegative functions on $X\times X$. If there exist $u,v\in X$ such that

$$\sup\{f(u,v):f\in\mathscr{S}\}<\infty,$$

then there exists a function $d: X \mapsto (0, \infty)$ such that

$$f(x,y) \le \frac{d(x)}{d(y)}$$

A set $\mathscr S$ of nonnegative functions on $X\times X$ is *indecomposable* if, for every $x,\,y\in X$, there exists $f\in \mathscr S$ such that f(x,y)>0.

Theorem

Let $\mathscr S$ be an indecomposable matrix-like semigroup of nonnegative functions on $X\times X$. If there exist $u,v\in X$ such that

$$\sup\{f(u,v):f\in\mathscr{S}\}<\infty,$$

then there exists a function $d: X \mapsto (0, \infty)$ such that

$$f(x,y) \leq \frac{d(x)}{d(y)}$$

for all $f \in \mathcal{S}$ and $x, y \in X$.

7 / 15

Binary diagonals

A matrix is said to have a *binary diagonal* if its diagonal entries all come from the set $\{0,1\}$. Furthermore, a matrix is *binary* if its entries come from the set $\{0,1\}$.

Theorem (Livshits, MacDonald, Radjavi)

Every indecomposable semigroup of nonnegative matrices with binary diagonals is up to a similarity a semigroup of binary matrices. Moreover, the similarity can be implemented by an invertible, positive, diagonal matrix.

Binary diagonals

A matrix is said to have a *binary diagonal* if its diagonal entries all come from the set $\{0,1\}$. Furthermore, a matrix is *binary* if its entries come from the set $\{0,1\}$.

Theorem (Livshits, MacDonald, Radjavi)

Every indecomposable semigroup of nonnegative matrices with binary diagonals is up to a similarity a semigroup of binary matrices. Moreover, the similarity can be implemented by an invertible, positive, diagonal matrix. A nonnegative function f on $X \times X$ is said to have a *binary diagonal* if $f(x,x) \in \{0,1\}$ for all $x \in X$.

Theorem

Let $\mathscr S$ be an indecomposable semigroup of functions from $X\times X$ to $[0,\infty)$, where the multiplication of f and g in $\mathscr S$ is defined by

$$(f*g)(x,y) = \sum_{z \in X} f(x,z)g(z,y).$$

(Here the finiteness of the sum of nonnegative numbers is part of the hypothesis.) If every function $f \in \mathcal{S}$ has a binary diagonal, then there exists a function $d: X \mapsto (0, \infty)$ such that

$$\frac{f(x,y)d(y)}{d(x)} \in \{0,1\}$$

A nonnegative function f on $X \times X$ is said to have a *binary diagonal* if $f(x,x) \in \{0,1\}$ for all $x \in X$.

Theorem

Let $\mathscr S$ be an indecomposable semigroup of functions from $X\times X$ to $[0,\infty)$, where the multiplication of f and g in $\mathscr S$ is defined by

$$(f*g)(x,y) = \sum_{z \in X} f(x,z)g(z,y).$$

(Here the finiteness of the sum of nonnegative numbers is part of the hypothesis.) If every function $f \in \mathcal{S}$ has a binary diagonal, then there exists a function $d: X \mapsto (0, \infty)$ such that

$$\frac{f(x,y)d(y)}{d(x)} \in \{0,1\}$$

A nonnegative function f on $X \times X$ is said to have a *binary diagonal* if $f(x,x) \in \{0,1\}$ for all $x \in X$.

Theorem

Let $\mathscr S$ be an indecomposable semigroup of functions from $X\times X$ to $[0,\infty)$, where the multiplication of f and g in $\mathscr S$ is defined by

$$(f*g)(x,y) = \sum_{z \in X} f(x,z)g(z,y).$$

(Here the finiteness of the sum of nonnegative numbers is part of the hypothesis.) If every function $f \in \mathcal{S}$ has a binary diagonal, then there exists a function $d: X \mapsto (0, \infty)$ such that

$$\frac{f(x,y)d(y)}{d(x)} \in \{0,1\}$$

Clearly, we may assume that $\mathscr S$ is maximal with respect to the inclusion. Then $\mathscr S$ contains the characteristic function of the diagonal of $X\times X$, which of course acts as an identity with respect to *.

Step 1: \mathscr{S} contains the characteristic function of $\{(u,u)\}$ for each $u \in X$.

By Theorem above, there exists a function $d: X \mapsto (0, \infty)$ such that

$$f(x,y) \le \frac{d(x)}{d(y)}$$

Step 2:
$$f(x,y) = \frac{d(x)}{d(y)}$$
 provided $f(x,y) > 0$.

Clearly, we may assume that $\mathscr S$ is maximal with respect to the inclusion. Then $\mathscr S$ contains the characteristic function of the diagonal of $X\times X$, which of course acts as an identity with respect to *.

Step 1: $\mathscr S$ contains the characteristic function of $\{(u,u)\}$ for each $u \in X$.

By Theorem above, there exists a function $d: X \mapsto (0, \infty)$ such that

$$f(x,y) \le \frac{d(x)}{d(y)}$$

Step 2:
$$f(x,y) = \frac{d(x)}{d(y)}$$
 provided $f(x,y) > 0$.

Clearly, we may assume that $\mathscr S$ is maximal with respect to the inclusion. Then $\mathscr S$ contains the characteristic function of the diagonal of $X \times X$, which of course acts as an identity with respect to *.

Step 1: $\mathscr S$ contains the characteristic function of $\{(u,u)\}$ for each $u \in X$.

By Theorem above, there exists a function $d: X \mapsto (0, \infty)$ such that

$$f(x,y) \leq \frac{d(x)}{d(y)}$$

Step 2:
$$f(x,y) = \frac{d(x)}{d(y)}$$
 provided $f(x,y) > 0$

Clearly, we may assume that $\mathscr S$ is maximal with respect to the inclusion. Then $\mathscr S$ contains the characteristic function of the diagonal of $X \times X$, which of course acts as an identity with respect to *.

Step 1: $\mathscr S$ contains the characteristic function of $\{(u,u)\}$ for each $u \in X$.

By Theorem above, there exists a function $d: X \mapsto (0, \infty)$ such that

$$f(x,y) \leq \frac{d(x)}{d(y)}$$

Step 2:
$$f(x,y) = \frac{d(x)}{d(y)}$$
 provided $f(x,y) > 0$.

Finite diagonals and finite traces

A set $\mathscr S$ of complex matrices is said to have *finite diagonals* if all the diagonal entries of all the matrices in $\mathscr S$ come from a finite set, and it is called *self-adjoint* if for each $T \in \mathscr S$ we have $T^* \in \mathscr S$. Here T^* is just the conjugate transpose of T.

Theorem (Popov, Radjavi, Williamson

Suppose that a semigroup $\mathscr S$ of nonnegative matrices has finite diagonals. If $\mathscr S$ is self-adjoint, then it is finite. Moreover, nonzero entries of matrices in $\mathscr S$ are of the form $\sqrt{\xi\eta}$, where ξ and η are diagonal values of some matrices in $\mathscr S$.

Finite diagonals and finite traces

A set $\mathscr S$ of complex matrices is said to have *finite diagonals* if all the diagonal entries of all the matrices in $\mathscr S$ come from a finite set, and it is called *self-adjoint* if for each $T \in \mathscr S$ we have $T^* \in \mathscr S$. Here T^* is just the conjugate transpose of T.

Theorem (Popov, Radjavi, Williamson)

Suppose that a semigroup $\mathscr S$ of nonnegative matrices has finite diagonals. If $\mathscr S$ is self-adjoint, then it is finite. Moreover, nonzero entries of matrices in $\mathscr S$ are of the form $\sqrt{\xi\eta}$, where ξ and η are diagonal values of some matrices in $\mathscr S$.

Theorem

Let \mathscr{S} be a self-adjoint semigroup of positive operators on the Banach lattice l^2 . Suppose that either:

(i) ${\mathscr S}$ consists of trace-class operators and the set

 $\{\operatorname{tr} S: S \in \mathscr{S}_+\}$ is finite, or

(ii) for each $i \in \mathbb{N}$ the set $\{S_{ii} : S \in \mathcal{S}_+\}$ is finite.

Then the nonzero entries of $S \in \mathscr{S}$ are of the form $\sqrt{\xi \eta}$, where ξ and η are the diagonal entries of the projections SS^* and S^*S , respectively.

Theorem

Let \mathscr{S} be a self-adjoint semigroup of positive operators on the Banach lattice l^2 . Suppose that either:

```
(i) \mathscr S consists of trace-class operators and the set \{\operatorname{tr} S: S\in\mathscr S_+\} is finite, or
```

(ii) for each $i \in \mathbb{N}$ the set $\{S_{ii} : S \in \mathcal{S}_+\}$ is finite

Then the nonzero entries of $S \in \mathscr{S}$ are of the form $\sqrt{\xi \eta}$, where ξ and η are the diagonal entries of the projections SS^* and S^*S , respectively.

Theorem

Let \mathscr{S} be a self-adjoint semigroup of positive operators on the Banach lattice l^2 . Suppose that either:

(i) ${\mathscr S}$ consists of trace-class operators and the set

 $\{\operatorname{tr} S: S \in \mathscr{S}_+\}$ is finite, or

(ii) for each $i \in \mathbb{N}$ the set $\{S_{ii} : S \in \mathscr{S}_+\}$ is finite.

Then the nonzero entries of $S \in \mathcal{S}$ are of the form $\sqrt{\xi \eta}$, where ξ and η are the diagonal entries of the projections SS^* and S^*S , respectively.

Theorem

Let \mathscr{S} be a self-adjoint semigroup of positive operators on the Banach lattice l^2 . Suppose that either:

(i) $\mathscr S$ consists of trace-class operators and the set $\{\operatorname{tr} S: S \in \mathscr S_{\ell}\}$ is finite or

 $\{\operatorname{tr} S: S \in \mathscr{S}_+\}$ is finite, or

(ii) for each $i \in \mathbb{N}$ the set $\{S_{ii} : S \in \mathscr{S}_+\}$ is finite.

Then the nonzero entries of $S \in \mathscr{S}$ are of the form $\sqrt{\xi \eta}$, where ξ and η are the diagonal entries of the projections SS^* and S^*S , respectively.

Let $\mathscr S$ be a self-adjoint semigroup of nonnegative matrices such that the set $\{\operatorname{tr} S: S\in \mathscr S_+\}$ is finite. Then nonzero entries of matrices in $\mathscr S$ are of the form $\sqrt{\xi\,\eta}$, where ξ and η are diagonal values of some projections in $\mathscr S$. Furthermore, $\mathscr S$ is finite.

Let $\mathscr S$ be a self-adjoint semigroup of nonnegative matrices such that the set $\{\operatorname{tr} S: S\in \mathscr S_+\}$ is finite. Then nonzero entries of matrices in $\mathscr S$ are of the form $\sqrt{\xi\eta}$, where ξ and η are diagonal values of some projections in $\mathscr S$. Furthermore, $\mathscr S$ is finite.

Condition (i) of Theorem above does not imply condition (ii).

Let $c = \frac{1}{\sqrt{2}}$ and $f = (c, c^2, c^3, ...) \in l^2$. Then ||f|| = 1. For a positive integer m, let g_m denote the vector obtained from f by annihilating alternate segments of length 2^m , i.e.,

$$g_m = (\underbrace{c, c^2, \dots, c^{2^m}}_{2^m}, \underbrace{0, \dots, 0}_{2^m}, \underbrace{c^{2^{m+1}+1}, c^{2^{m+1}+2}, \dots, c^{3 \cdot 2^m}}_{2^m}, \underbrace{0, \dots, 0}_{2^m}, \dots),$$

and let $h_m = f - g_m$. Then the operator

$$Q_m = \frac{g_m g_m^*}{\|g_m\|^2} + \frac{h_m h_m^*}{\|h_m\|^2}$$

is a projection on I^2 of rank two. Define also the rank-one projection $P = f f^*$. Then the set

$$\mathscr{S} = \{P, Q_1, Q_2, Q_3, \ldots\}$$

s a semigroup, and, for each i, the set of all (i,i) slots of members in $\mathcal{S}_+ = \mathcal{S}$ is infinite.

Condition (i) of Theorem above does not imply condition (ii). Let $c = \frac{1}{\sqrt{2}}$ and $f = (c, c^2, c^3, ...) \in l^2$. Then ||f|| = 1. For a positive integer m, let g_m denote the vector obtained from f by annihilating alternate segments of length 2^m , i.e.,

$$g_m = (\underbrace{c, c^2, \dots, c^{2^m}}_{2^m}, \underbrace{0, \dots, 0}_{2^m}, \underbrace{c^{2^{m+1}+1}, c^{2^{m+1}+2}, \dots, c^{3 \cdot 2^m}}_{2^m}, \underbrace{0, \dots, 0}_{2^m}, \dots),$$

and let $h_m = f - g_m$. Then the operator

$$Q_m = \frac{g_m g_m^*}{\|g_m\|^2} + \frac{h_m h_m^*}{\|h_m\|^2}$$

is a projection on I^2 of rank two. Define also the rank-one projection $P=f\,f^*$. Then the set

$$\mathscr{S} = \{P, Q_1, Q_2, Q_3, \ldots\}$$

is a semigroup, and, for each i, the set of all (i,i) slots of members in $\mathcal{S}_+ = \mathcal{S}$ is infinite.

Condition (i) of Theorem above does not imply condition (ii). Let $c = \frac{1}{\sqrt{2}}$ and $f = (c, c^2, c^3, ...) \in l^2$. Then ||f|| = 1. For a positive integer m, let g_m denote the vector obtained from f by annihilating alternate segments of length 2^m , i.e.,

$$g_m = (\underbrace{c, c^2, \dots, c^{2^m}}_{2^m}, \underbrace{0, \dots, 0}_{2^m}, \underbrace{c^{2^{m+1}+1}, c^{2^{m+1}+2}, \dots, c^{3 \cdot 2^m}}_{2^m}, \underbrace{0, \dots, 0}_{2^m}, \dots),$$

and let $h_m = f - g_m$. Then the operator

$$Q_m = \frac{g_m g_m^*}{\|g_m\|^2} + \frac{h_m h_m^*}{\|h_m\|^2}$$

is a projection on I^2 of rank two. Define also the rank-one projection $P = f f^*$. Then the set

$$\mathscr{S} = \{P, Q_1, Q_2, Q_3, \ldots\}$$

is a semigroup, and, for each i, the set of all (i,i) slots of members in $\mathcal{S}_+ = \mathcal{S}$ is infinite.

Condition (i) of Theorem above does not imply condition (ii). Let $c = \frac{1}{\sqrt{2}}$ and $f = (c, c^2, c^3, ...) \in l^2$. Then ||f|| = 1. For a positive integer m, let g_m denote the vector obtained from f by annihilating alternate segments of length 2^m , i.e.,

$$g_m = (\underbrace{c, c^2, \dots, c^{2^m}}_{2^m}, \underbrace{0, \dots, 0}_{2^m}, \underbrace{c^{2^{m+1}+1}, c^{2^{m+1}+2}, \dots, c^{3 \cdot 2^m}}_{2^m}, \underbrace{0, \dots, 0}_{2^m}, \dots),$$

and let $h_m = f - g_m$. Then the operator

$$Q_m = \frac{g_m g_m^*}{\|g_m\|^2} + \frac{h_m h_m^*}{\|h_m\|^2}$$

is a projection on I^2 of rank two. Define also the rank-one projection $P = f f^*$. Then the set

$$\mathscr{S} = \{P, Q_1, Q_2, Q_3, \ldots\}$$

is a semigroup, and, for each i, the set of all (i,i) slots of members in $\mathcal{S}_+ = \mathcal{S}$ is infinite.

Bibliography

- R. Drnovšek, H. Radjavi, On semigroups of nonnegative functions and positive operators, J. Math. Anal. Appl. 404 (2013), no. 1, 29–35.
- A.I. Popov, H. Radjavi, E. Spinu, A. Tcaciuc, V. G. Troitsky, Bounded indecomposable semigroups of non-negative matrices, Positivity 14 (2010), no. 3, 383–394.
- L. Livshits, G. MacDonald, H. Radjavi, Positive matrix semigroups with binary diagonals, Positivity 15 (2011), no. 3, 411–440.
- A. I. Popov, H. Radjavi, P. Williamson, Nonnegative matrix semigroups with finite diagonals, Linear Algebra and its Applications 434 (2011), no. 6, 1409–1424.