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Entry-wise boundedness

Given a set K ⊆ IR, we write Mn(K ) for the set of all n×n
matrices with entries in K .

Theorem (Gessesse, Popov, Radjavi, Spinu, Tcaciuc, Troitsky)

Let r > 1 and S be a (multiplicative) semigroup in Mn([0, r ]).
Then there exists a diagonal matrix D = diag(d1, . . . ,dn) with
di ∈ [1

r , r ] such that D−1S D ⊆Mn([0,1]).

2 / 15



Entry-wise boundedness
Binary diagonals

Finite diagonals and finite traces

Entry-wise boundedness

Given a set K ⊆ IR, we write Mn(K ) for the set of all n×n
matrices with entries in K .

Theorem (Gessesse, Popov, Radjavi, Spinu, Tcaciuc, Troitsky)

Let r > 1 and S be a (multiplicative) semigroup in Mn([0, r ]).
Then there exists a diagonal matrix D = diag(d1, . . . ,dn) with
di ∈ [1

r , r ] such that D−1S D ⊆Mn([0,1]).

2 / 15



Entry-wise boundedness
Binary diagonals

Finite diagonals and finite traces

A set S of nonnegative functions on X ×X , closed under a
given associative operation ∗, is called a matrix-like semigroup
if

(f ∗g)(x ,z)≥ f (x ,y)g(y ,z)

for all f , g ∈S and x , y , z ∈ X .

Theorem
Let M ≥ 1 be a real number and let S be a matrix-like
semigroup of functions from X ×X to [0,M]. Then there exists a
function d : X 7→ [ 1

M ,M] such that

f (x ,y)≤ d(x)

d(y)

for all f ∈S and x, y ∈ X.
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Theorem
Let X be an arbitrary set, and let f : X ×X 7→ [0,∞) be a function
such that

Cf (x ,y) = sup{f (x ,x1)f (x1,x2)f (x2,x3) · · · f (xk ,y) :

k ∈ IN∪{0}, x1, . . . ,xk ∈ X}< ∞

for all x and y in X.
(a) If there is a point y0 ∈ X such that Cf (x ,y0) > 0 for all x ∈ X,
then there exists a function d : X 7→ (0,∞) such that

f (x ,y)≤ Cf (x ,y)≤ d(x)

d(y)
(1)

for all x and y in X.
(b) If there is a constant M ≥ 1 such that Cf (x ,y)≤M for all x
and y in X, then there exists a function d : X 7→ [ 1

M ,M] such that
(1) holds. 4 / 15
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A semigroup S ⊂Mn([0,∞)) is said to be indecomposable (or
irreducible) if, for every i , j in {1, . . . ,n}, there exists S ∈S with
Sij > 0. Equivalently: No permutation of the standard basis
reduces the semigroup S to the block form[

∗ ∗
0 ∗

]
.

Or equivalently: S has no common non-trivial proper invariant
ideals (i.e., subspaces spanned by a subset of the standard
basis).
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Theorem (Gessesse, Popov, Radjavi, Spinu, Tcaciuc, Troitsky)

Let S be an indecomposable semigroup in Mn([0,∞)) such that
the set {Sij : S ∈S } is bounded for some pair (i , j). Then there
exists a diagonal matrix D with positive diagonal entries such
that D−1S D ⊆Mn([0,1]).

The indecomposability assumption cannot be omitted:

S =

{[
1 r
0 1

]
: r ∈ [0,∞)

}
.
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A set S of nonnegative functions on X ×X is indecomposable
if, for every x , y ∈ X , there exists f ∈S such that f (x ,y) > 0.

Theorem

Let S be an indecomposable matrix-like semigroup of
nonnegative functions on X ×X. If there exist u, v ∈ X such that

sup{f (u,v) : f ∈S }< ∞,

then there exists a function d : X 7→ (0,∞) such that

f (x ,y)≤ d(x)

d(y)

for all f ∈S and x, y ∈ X.
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Binary diagonals

A matrix is said to have a binary diagonal if its diagonal entries
all come from the set {0,1}. Furthermore, a matrix is binary if
its entries come from the set {0,1}.

Theorem (Livshits, MacDonald, Radjavi)
Every indecomposable semigroup of nonnegative matrices with
binary diagonals is up to a similarity a semigroup of binary
matrices. Moreover, the similarity can be implemented by an
invertible, positive, diagonal matrix.
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A nonnegative function f on X ×X is said to have a binary
diagonal if f (x ,x) ∈ {0,1} for all x ∈ X .

Theorem
Let S be an indecomposable semigroup of functions from
X ×X to [0,∞), where the multiplication of f and g in S is
defined by

(f ∗g)(x ,y) = ∑
z∈X

f (x ,z)g(z,y).

(Here the finiteness of the sum of nonnegative numbers is part
of the hypothesis.) If every function f ∈S has a binary
diagonal, then there exists a function d : X 7→ (0,∞) such that

f (x ,y)d(y)

d(x)
∈ {0,1}

for all f ∈S and all x ,y ∈ X.
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Sketch of the proof:

Clearly, we may assume that S is maximal with respect to the
inclusion. Then S contains the characteristic function of the
diagonal of X ×X , which of course acts as an identity with
respect to ∗.

Step 1: S contains the characteristic function of {(u,u)} for
each u ∈ X .

By Theorem above, there exists a function d : X 7→ (0,∞) such
that

f (x ,y)≤ d(x)

d(y)

for all f ∈S and x , y ∈ X .

Step 2: f (x ,y) = d(x)
d(y) provided f (x ,y) > 0.
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Finite diagonals and finite traces

A set S of complex matrices is said to have finite diagonals if
all the diagonal entries of all the matrices in S come from a
finite set, and it is called self-adjoint if for each T ∈S we have
T ∗ ∈S . Here T ∗ is just the conjugate transpose of T .

Theorem (Popov, Radjavi, Williamson)

Suppose that a semigroup S of nonnegative matrices has finite
diagonals. If S is self-adjoint, then it is finite. Moreover,
nonzero entries of matrices in S are of the form

√
ξ η , where ξ

and η are diagonal values of some matrices in S .
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For a set S of operators on the Hilbert space l2, we denote by
S+ the set of all positive semidefinite operators in S .

Theorem

Let S be a self-adjoint semigroup of positive operators on the
Banach lattice l2. Suppose that either:
(i) S consists of trace-class operators and the set
{trS : S ∈S+} is finite, or
(ii) for each i ∈ IN the set {Sii : S ∈S+} is finite.
Then the nonzero entries of S ∈S are of the form

√
ξ η , where

ξ and η are the diagonal entries of the projections SS∗ and
S∗S, respectively.
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Theorem
Let S be a self-adjoint semigroup of nonnegative matrices
such that the set {trS : S ∈S+} is finite. Then nonzero entries
of matrices in S are of the form

√
ξ η , where ξ and η are

diagonal values of some projections in S . Furthermore, S is
finite.
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Condition (i) of Theorem above does not imply condition (ii).
Let c = 1√

2
and f = (c,c2,c3, . . .) ∈ l2. Then ‖f‖= 1. For a

positive integer m, let gm denote the vector obtained from f by
annihilating alternate segments of length 2m, i.e.,

gm =(c,c2, . . . ,c2m︸ ︷︷ ︸
2m

,0, . . . ,0︸ ︷︷ ︸
2m

,c2m+1+1,c2m+1+2, . . . ,c3·2m︸ ︷︷ ︸
2m

,0, . . . ,0︸ ︷︷ ︸
2m

, . . .),

and let hm = f −gm. Then the operator

Qm =
gmg∗m
‖gm‖2 +

hmh∗m
‖hm‖2

is a projection on l2 of rank two. Define also the rank-one
projection P = f f ∗. Then the set

S = {P,Q1,Q2,Q3, . . .}

is a semigroup, and, for each i , the set of all (i , i) slots of
members in S+ = S is infinite.
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