Factorization Theorems of Arendt Type for Additive Monotone Mappings

Włodzimierz Fechner

University of Silesia, Katowice, Poland

Positivity, Leiden 2013
Assume that $X = (X, \mathcal{A})$ is a measurable space and ν, μ are measures defined on X. The Radon-Nikodym theorem says that ν is absolutely continuous with respect to μ (we write $\nu \ll \mu$) if and only if there exists a measurable function $g : X \to [0, +\infty)$ such that

$$
\int f \, d\nu = \int (f \cdot g) \, d\mu
$$

for all $f \in L^1(\nu)$.
Assume that $X = (X, \mathcal{A})$ is a measurable space and ν, μ are measures defined on X. The Radon-Nikodym theorem says that ν is absolutely continuous with respect to μ (we write $\nu \ll \mu$) if and only if there exists a measurable function $g: X \to [0, +\infty)$ such that

$$\int f \, d\nu = \int (f \cdot g) \, d\mu$$

for all $f \in L^1(\nu)$.

Assume that $X = (X, \mathcal{A})$ is a measurable space and ν, μ are measures defined on X. The Radon-Nikodym theorem says that ν is absolutely continuous with respect to μ (we write $\nu \ll \mu$) if and only if there exists a measurable function $g : X \to [0, +\infty)$ such that

$$\int f \, d\nu = \int (f \cdot g) \, d\mu$$

for all $f \in L^1(\nu)$.
Let Y be a Banach space.

Assume that (X, \mathcal{A}) is a measurable space, μ is a finite vector measure having values in Y and ν is a countably additive vector measure of bounded variation such that $|\nu| \ll \mu$.

We say that a Banach space Y has the Radon-Nikodym property if there exist a μ-integrable function $g: X \rightarrow Y$ such that:

$$\nu(E) = \int_E g \, d\mu, \quad E \in \mathcal{A}$$

Every reflexive Banach space has the Radon-Nikodym property. There are spaces which do not have the Radon-Nikodym property, e.g. c_0, $L^1(\Omega)$, $C(\Omega)$, $L^\infty(\Omega)$.
Let Y be a Banach space.
Assume that (X, \mathcal{A}) is a measurable space, μ is a finite vector measure having values in Y and ν is a countably additive vector measure of bounded variation such that $|\nu| \ll \mu$.
We say that a Banach space Y has the Radon-Nikodym property if there exist a μ-integrable function $g : X \to Y$ such that:

$$\nu(E) = \int_E g \, d\mu, \quad E \in \mathcal{A}$$

Every reflexive Banach space has the Radon-Nikodym property. There are spaces which do not have the Radon-Nikodym property, e.g. c_0, $L^1(\Omega)$, $C(\Omega)$, $L^\infty(\Omega)$.
Let Y be a Banach space. Assume that (X, A) is a measurable space, μ is a finite vector measure having values in Y and ν is a countably additive vector measure of bounded variation such that $|\nu| \ll \mu$. We say that a Banach space Y has the Radon-Nikodym property if there exist a μ-integrable function $g : X \to Y$ such that:

$$\nu(E) = \int_E g \, d\mu, \quad E \in A$$

Every reflexive Banach space has the Radon-Nikodym property. There are spaces which do not have the Radon-Nikodym property, e.g. c_0, $L^1(\Omega)$, $C(\Omega)$, $L^\infty(\Omega)$.
Let Y be a Banach space. Assume that (X, \mathcal{A}) is a measurable space, μ is a finite vector measure having values in Y and ν is a countably additive vector measure of bounded variation such that $|\nu| \ll \mu$. We say that a Banach space Y has the Radon-Nikodym property if there exist a μ-integrable function $g : X \rightarrow Y$ such that:

$$\nu(E) = \int_{E} g \, d\mu, \quad E \in \mathcal{A}$$

Every reflexive Banach space has the Radon-Nikodym property. There are spaces which do not have the Radon-Nikodym property, e.g. c_0, $L^1(\Omega)$, $C(\Omega)$, $L^\infty(\Omega)$.
Let Y be a Banach space.
Assume that (X, \mathcal{A}) is a measurable space, μ is a finite vector measure having values in Y and ν is a countably additive vector measure of bounded variation such that $|\nu| \ll \mu$.
We say that a Banach space Y has the Radon-Nikodym property if there exist a μ-integrable function $g : X \to Y$ such that:

$$\nu(E) = \int_E g \, d\mu, \quad E \in \mathcal{A}$$

Every reflexive Banach space has the Radon-Nikodym property. There are spaces which do not have the Radon-Nikodym property, e.g. $c_0, L^1(\Omega), C(\Omega), L^\infty(\Omega)$.
Put:

\[S(f) := \int f \, d\nu, \quad T(h) := \int h \, d\mu, \quad \pi(f)(x) := f(x) \cdot g(x). \]

Note that \(S \) and \(T \) are positive operators and \(\pi \) is an orthomorphism, i.e. \(\pi \) is an order bounded linear mapping such that \(f \perp g \) implies \(\pi f \perp g \).

The assertion of the Radon-Nikodym theorem:

\[\int f \, d\nu = \int (f \cdot g) \, d\mu \]

can be rewritten as follows: \(S = T \circ \pi \).
Put:

\[S(f) := \int f \, d\nu, \quad T(h) := \int h \, d\mu, \quad \pi(f)(x) := f(x) \cdot g(x). \]

Note that \(S \) and \(T \) are positive operators and \(\pi \) is an orthomorphism, i.e. \(\pi \) is an order bounded linear mapping such that \(f \perp g \) implies \(\pi f \perp g \).

The assertion of the Radon-Nikodym theorem:

\[\int f \, d\nu = \int (f \cdot g) \, d\mu \]

can be rewritten as follows: \(S = T \circ \pi \).
Put:

\[S(f) := \int f \, d\nu, \quad T(h) := \int h \, d\mu, \quad \pi(f)(x) := f(x) \cdot g(x). \]

Note that \(S \) and \(T \) are positive operators and \(\pi \) is an orthomorphism, i.e. \(\pi \) is an order bounded linear mapping such that \(f \perp g \) implies \(\pi f \perp g \).

The assertion of the Radon-Nikodym theorem:

\[\int f \, d\nu = \int (f \cdot g) \, d\mu \]

can be rewritten as follows: \(S = T \circ \pi \).
Put:

\[S(f) := \int f \, d\nu, \quad T(h) := \int h \, d\mu, \quad \pi(f)(x) := f(x) \cdot g(x). \]

Note that \(S \) and \(T \) are positive operators and \(\pi \) is an orthomorphism, i.e. \(\pi \) is an order bounded linear mapping such that \(f \perp g \) implies \(\pi f \perp g \).

The assertion of the Radon-Nikodym theorem:

\[\int f \, d\nu = \int (f \cdot g) \, d\mu \]

can be rewritten as follows: \(S = T \circ \pi \).
Put:

\[S(f) := \int f \, d\nu, \quad T(h) := \int h \, d\mu, \quad \pi(f)(x) := f(x) \cdot g(x). \]

Note that \(S \) and \(T \) are positive operators and \(\pi \) is an orthomorphism, i.e. \(\pi \) is an order bounded linear mapping such that \(f \perp g \) implies \(\pi f \perp g \).

The assertion of the Radon-Nikodym theorem:

\[\int f \, d\nu = \int (f \cdot g) \, d\mu \]

can be rewritten as follows: \(S = T \circ \pi \).
Put:

\[S(f) := \int f \, d\nu, \quad T(h) := \int h \, d\mu, \quad \pi(f)(x) := f(x) \cdot g(x). \]

Note that \(S \) and \(T \) are positive operators and \(\pi \) is an orthomorphism, i.e. \(\pi \) is an order bounded linear mapping such that \(f \perp g \) implies \(\pi f \perp g \).

The assertion of the Radon-Nikodym theorem:

\[\int f \, d\nu = \int (f \cdot g) \, d\mu \]

can be rewritten as follows: \(S = T \circ \pi \).
Put:

\[S(f) := \int f \, d\nu, \quad T(h) := \int h \, d\mu, \quad \pi(f)(x) := f(x) \cdot g(x). \]

Note that \(S \) and \(T \) are positive operators and \(\pi \) is an orthomorphism, i.e. \(\pi \) is an order bounded linear mapping such that \(f \perp g \) implies \(\pi f \perp g \).

The assertion of the Radon-Nikodym theorem:

\[\int f \, d\nu = \int (f \cdot g) \, d\mu \]

can be rewritten as follows: \(S = T \circ \pi \).

Results of Maharam and the Luxemburg-Schep theorem

Results of Maharam and the Luxemburg-Schep theorem

Let F and G be two Riesz spaces and let $T : F \to G$ be a positive linear operator.

Then T is said to have Maharam property if for all $f \in F$ and for all $g \in G$ such that $f \geq 0$ and $0 \leq g \leq Tf$ there exists some $f_1 \in F$ such that $0 \leq f_1 \leq f$ and $Tf_1 = g$.
Let F and G be two Riesz spaces and let $T : F \to G$ be a positive linear operator.

Then T is said to have **Maharam property** if for all $f \in F$ and for all $g \in G$ such that $f \geq 0$ and $0 \leq g \leq Tf$ there exists some $f_1 \in F$ such that $0 \leq f_1 \leq f$ and $Tf_1 = g$.
Luxemburg-Schep theorem says that if Riesz spaces F and G are Dedekind complete and operator $T : F \to G$ is order continuous then the Maharam property of T is equivalent to the following fact:

For every operator $S : F \to G$ such that $0 \leq S \leq T$ there exists an orthomorphism π of F such that $0 \leq \pi \leq I$ and $S = T \circ \pi$.

This is an operator version of the assertion of the Radon-Nikodym theorem.

The dual theorem: conditions for factorization $S = \pi \circ T$.
Luxemburg-Schep theorem says that if Riesz spaces F and G are Dedekind complete and operator $T : F \to G$ is order continuous then the Maharam property of T is equivalent to the following fact:

For every operator $S : F \to G$ such that $0 \leq S \leq T$ there exists an orthomorphism π of F such that $0 \leq \pi \leq I$ and $S = T \circ \pi$.

This is an operator version of the assertion of the Radon-Nikodym theorem.

The dual theorem: conditions for factorization $S = \pi \circ T$.
Luxemburg-Schep theorem says that if Riesz spaces F and G are Dedekind complete and operator $T : F \to G$ is order continuous then the Maharam property of T is equivalent to the following fact:

For every operator $S : F \to G$ such that $0 \leq S \leq T$ there exists an orthomorphism π of F such that $0 \leq \pi \leq I$ and $S = T \circ \pi$.

This is an operator version of the assertion of the Radon-Nikodym theorem.

The dual theorem: conditions for factorization $S = \pi \circ T$.

Włodzimierz Fechner

Factorization Theorems
Luxemburg-Schep theorem says that if Riesz spaces F and G are Dedekind complete and operator $T : F \to G$ is order continuous then the Maharam property of T is equivalent to the following fact:

For every operator $S : F \to G$ such that $0 \leq S \leq T$ there exists an orthomorphism π of F such that $0 \leq \pi \leq I$ and $S = T \circ \pi$.

This is an operator version of the assertion of the Radon-Nikodym theorem.

The dual theorem: conditions for factorization $S = \pi \circ T$.
Theorem (Arendt)

Let E be a Dedekind complete Riesz space, F, G be Riesz spaces and $V : F \to G$ be a Riesz homomorphism. Then, given a positive linear mapping $S : G \to E$, every positive linear mapping $T : F \to E$ which satisfies $T \leq S \circ V$ admits a factorization

$$T = S_1 \circ V,$$

where $S_1 : G \to E$ is a linear mapping such that $0 \leq S_1 \leq S$.

\[\begin{array}{ccc}
F & \overset{T}{\longrightarrow} & E \\
\downarrow V & & \downarrow S_1 \\
G & \overset{S}{\longrightarrow} & E \\
\end{array} \]
Theorem (Arendt)

Let E be a Dedekind complete Riesz space, F, G be Riesz spaces and $V : F \to G$ be a Riesz homomorphism. Then, given a positive linear mapping $S : G \to E$, every positive linear mapping $T : F \to E$ which satisfies $T \leq S \circ V$ admits a factorization

$$T = S_1 \circ V,$$

where $S_1 : G \to E$ is a linear mapping such that $0 \leq S_1 \leq S$.

\[\begin{array}{ccc}
F & \xrightarrow{T} & E \\
\downarrow{V} & & \uparrow{S} \\
G & \xrightarrow{S_1} & \\
\end{array}\]
Theorem (Arendt)

Let E, F and G be Banach lattices with G having an order-continuous norm and let $U : G \rightarrow F$ be an interval preserving positive linear mapping. Then, given a positive linear mapping $S : E \rightarrow G$, every positive linear mapping $T : E \rightarrow F$ which satisfies $T \leq U \circ S$ admits a factorization $T = U \circ S_1$, where $S_1 : E \rightarrow G$ is a linear mapping such that $0 \leq S_1 \leq S$.
Some definitions

Let $\Phi : X \rightarrow \text{End}(G)$ be a representation of a semigroup X in the semigroup $\text{End}(G)$ of endomorphisms of a group G. We will write Φ_s instead of $\Phi(s)$ for $s \in X$. Therefore:

$$\Phi_{st} = \Phi_s \circ \Phi_t, \quad s, t \in X.$$

If X is a group, then we also have

$$\Phi_{s^{-1}} = (\Phi_s)^{-1}, \quad s \in X;$$

in particular every Φ_s is an invertible map.

A group with a lattice order compatible with its algebraic structure is called ℓ-group.

A map $f : G \rightarrow F$ between ℓ-groups is called monotone if

$$x \leq y \implies f(x) \leq f(y)$$

for all $x, y \in G$ and f is called Φ-invariant if $f \circ \Phi_s = f$ for all $s \in X$.
Some definitions

Let $\Phi: X \to \text{End}(G)$ be a representation of a semigroup X in the semigroup $\text{End}(G)$ of endomorphisms of a group G. We will write Φ_s instead of $\Phi(s)$ for $s \in X$. Therefore:

$$\Phi_{st} = \Phi_s \circ \Phi_t, \quad s, t \in X.$$

If X is a group, then we also have

$$\Phi^{-1} = (\Phi_s)^{-1}, \quad s \in X;$$

in particular every Φ_s is an invertible map.

A group with a lattice order compatible with its algebraic structure is called ℓ-group.

A map $f: G \to F$ between ℓ-groups is called monotone if

$$x \leq y \implies f(x) \leq f(y)$$

for all $x, y \in G$ and f is called Φ-invariant if $f \circ \Phi_s = f$ for all $s \in X$.

Włodzimierz Fechner

Factorization Theorems
Let $\Phi: X \rightarrow \text{End}(G)$ be a representation of a semigroup X in the semigroup $\text{End}(G)$ of endomorphisms of a group G. We will write Φ_s instead of $\Phi(s)$ for $s \in X$. Therefore:

$$\Phi_{st} = \Phi_s \circ \Phi_t, \quad s, t \in X.$$

If X is a group, then we also have

$$\Phi_{s^{-1}} = (\Phi_s)^{-1}, \quad s \in X;$$

in particular every Φ_s is an invertible map.

A group with a lattice order compatible with its algebraic structure is called ℓ-group.

A map $f: G \rightarrow F$ between ℓ-groups is called monotone if

$$x \leq y \implies f(x) \leq f(y)$$

for all $x, y \in G$ and f is called Φ-invariant if $f \circ \Phi_s = f$ for all $s \in X$.

Włodzimierz Fechner
Some definitions

Let $\Phi : X \to \text{End}(G)$ be a representation of a semigroup X in the semigroup $\text{End}(G)$ of endomorphisms of a group G. We will write Φ_s instead of $\Phi(s)$ for $s \in X$. Therefore:

$$\Phi_{st} = \Phi_s \circ \Phi_t, \quad s, t \in X.$$

If X is a group, then we also have

$$\Phi_{s^{-1}} = (\Phi_s)^{-1}, \quad s \in X;$$

in particular every Φ_s is an invertible map.

A group with a lattice order compatible with its algebraic structure is called ℓ-group.

A map $f : G \to F$ between ℓ-groups is called monotone if

$$x \leq y \implies f(x) \leq f(y)$$

for all $x, y \in G$ and f is called Φ-invariant if $f \circ \Phi_s = f$ for all $s \in X$.

Włodzimierz Fechner
Factorization Theorems
Some definitions

Let $\Phi : X \to \text{End}(G)$ be a representation of a semigroup X in the semigroup $\text{End}(G)$ of endomorphisms of a group G. We will write Φ_s instead of $\Phi(s)$ for $s \in X$. Therefore:

$$\Phi_{st} = \Phi_s \circ \Phi_t, \quad s, t \in X.$$

If X is a group, then we also have

$$\Phi_{s^{-1}} = (\Phi_s)^{-1}, \quad s \in X;$$

in particular every Φ_s is an invertible map.

A group with a lattice order compatible with its algebraic structure is called ℓ-group.

A map $f : G \to F$ between ℓ-groups is called monotone if

$$x \leq y \implies f(x) \leq f(y)$$

for all $x, y \in G$ and f is called Φ-invariant if $f \circ \Phi_s = f$ for all $s \in X$.

Włodzimierz Fechner

Factorization Theorems
Some definitions

Let $\Phi : X \to \text{End}(G)$ be a representation of a semigroup X in the semigroup $\text{End}(G)$ of endomorphisms of a group G. We will write Φ_s instead of $\Phi(s)$ for $s \in X$. Therefore:

$$\Phi_{st} = \Phi_s \circ \Phi_t, \quad s, t \in X.$$

If X is a group, then we also have

$$\Phi_{s^{-1}} = (\Phi_s)^{-1}, \quad s \in X;$$

in particular every Φ_s is an invertible map.

A group with a lattice order compatible with its algebraic structure is called ℓ-group.

A map $f : G \to F$ between ℓ-groups is called monotone if

$$x \leq y \implies f(x) \leq f(y)$$

for all $x, y \in G$ and f is called Φ-invariant if $f \circ \Phi_s = f$ for all $s \in X$.

Włodzimierz Fechner

Factorization Theorems
Let $\Phi: X \rightarrow \text{End}(G)$ be a representation of a semigroup X in the semigroup $\text{End}(G)$ of endomorphisms of a group G. We will write Φ_s instead of $\Phi(s)$ for $s \in X$. Therefore:

$$\Phi_{st} = \Phi_s \circ \Phi_t, \quad s, t \in X.$$

If X is a group, then we also have

$$\Phi_{s^{-1}} = (\Phi_s)^{-1}, \quad s \in X;$$

in particular every Φ_s is an invertible map.

A group with a lattice order compatible with its algebraic structure is called ℓ-group.

A map $f: G \rightarrow F$ between ℓ-groups is called monotone if

$$x \leq y \implies f(x) \leq f(y)$$

for all $x, y \in G$ and f is called Φ-invariant if $f \circ \Phi_s = f$ for all $s \in X$.
Assume that E is a Dedekind complete Riesz space and F and G are Abelian ℓ-groups. Further, denote by $\text{End}^+(G)$ the semigroup of all monotone endomorphisms of G. Moreover let X be a right-amenable semigroup and let $\Phi: X \to \text{End}^+(G)$ be a representation of X.

Włodzimierz Fechner

Factorization Theorems
Let $V : F \to G$ be an ℓ-group homomorphism such that $\Phi_s \circ V = V$ for all $s \in X$. Given an additive monotone and Φ-invariant mapping $S : G \to E$, every additive monotone mapping $T : F \to E$ such that $T \leq S \circ V$ admits a factorization $T = S_1 \circ V,$

where $S_1 : G \to E$ is an additive and Φ-invariant mapping such that $0 \leq S_1 \leq S.$
Result 2

Assume that G is a Dedekind complete Riesz space and E and F are Abelian ℓ-groups. Further, assume that X is a right-amenable group and $\Phi: X \rightarrow \text{End}^+(E)$ is a representation of X in the set of all monotone endomorphisms of E.
Theorem

Let $U: G \to F$ be an injective ℓ-group homomorphism. Given an additive monotone and Φ-invariant mapping $S: E \to G$, every additive monotone and Φ-invariant mapping $T: E \to F$ such that $T \leq U \circ S$ admits a factorization $T = U \circ S_1$,

where $S_1: E \to G$ is an additive and Φ-invariant map such that $0 \leq S_1 \leq S$.
Assume that E, F and G are Riesz spaces with G having an order-continuous norm. Further, assume that X is a right-amenable semigroup and $\Phi: X \to \mathcal{L}_p(G)$ is a representation of X in the set $\mathcal{L}_p(G)$ of all positive linear self-mappings of G.
Result 3

Theorem

Let $U: G \to F$ be an interval preserving and Φ-invariant positive linear mapping. Given a positive linear mapping $S: E \to G$ such that $\Phi_s \circ S = S$ for all $s \in X$, every positive linear mapping $T: E \to F$ such that $T \leq U \circ S$ admits a factorization $T = U \circ S_1$,

where $S_1: E \to G$ is a linear map such that $0 \leq S_1 \leq S$ and $\Phi_s \circ S_1 = S_1$ for all $s \in X$.
Assume that E, F, and G are Riesz spaces with E having an order-continuous norm. Further, assume that X is a right-amenable semigroup and $\Phi : X \to \mathcal{L}_p(E)$ is a representation of X in the set of all positive linear self-mappings of E.
Theorem

Let \(V : F \to G \) be an interval preserving positive and injective linear mapping. Given a positive linear mapping \(S : G \to E \) such that \(\Phi_s \circ S = S \) for all \(s \in X \), every positive linear mapping \(T : F \to E \) such that \(T \leq S \circ V \) and \(\Phi_s \circ T = T \) for all \(s \in X \) admits a factorization \(T = S_1 \circ V \),

\[
\begin{array}{c}
F \xrightarrow{T} E \\
\downarrow V \quad \downarrow S \\
G \xrightarrow{S_1} E
\end{array}
\]

where \(S_1 : G \to E \) is a linear mapping such that \(0 \leq S_1 \leq S \) and \(\Phi_s \circ S_1 = S_1 \) for all \(s \in X \).
Thank you for your attention!!!