On diagonals of commutators of positive compact operators and ideal-triangularizability

Joint work with Roman Drnovšek

Marko Kandić

Faculty of Mathematics and Physics, Ljubljana, Slovenia

Leiden, Netherlands, 22. 7. 2013
Definition

A matrix A is said to be **decomposable** if there exists a permutation matrix P such that P^TAP has the block matrix form

$$
\begin{bmatrix}
* & * \\
0 & *
\end{bmatrix}.
$$

It should be noted that the diagonal entries of the matrix P^TAP are just the permuted diagonal entries of the matrix A.

Definition

A matrix A is said to be *decomposable* if there exists a permutation matrix P such that $P^T AP$ has the block matrix form

$$
\begin{bmatrix}
* & * \\
0 & *
\end{bmatrix}.
$$

It should be noted that the diagonal entries of the matrix $P^T AP$ are just the permuted diagonal entries of the matrix A.
Definition
A matrix A is said to be completely decomposable if there exists a permutation matrix P such that P^TAP is upper-triangular.

- This means that A is upper-triangular upon a permutation similarity.
- By the well known Schur’s theorem from Linear algebra, every complex matrix is similar to an upper-triangular matrix.
Definition

A matrix A is said to be completely decomposable if there exists a permutation matrix P such that $P^T A P$ is upper-triangular.

- This means that A is upper-triangular upon a permutation similarity.
- By the well known Schur’s theorem from Linear algebra every complex matrix is similar to an upper-triangular matrix.
Definition

A matrix A is said to be completely decomposable if there exists a permutation matrix P such that $P^T A P$ is upper-triangular.

- This means that A is upper-triangular upon a permutation similarity.
- By the well known Schur’s theorem from Linear algebra every complex matrix is similar to an upper-triangular matrix.
Eigenvalues of an upper-triangular matrix appear on its diagonal repeated according to their multiplicities.

We conclude that the eigenvalues of a completely decomposable matrix appear on its diagonal repeated according to their multiplicities.

Is the converse statement true?

Theorem

Let A be a positive matrix. If the eigenvalues of A appear on the diagonal of A according to their multiplicities, then A is completely decomposable.
Eigenvalues of an upper-triangular matrix appear on its diagonal repeated according to their multiplicities.

We conclude that the eigenvalues of a completely decomposable matrix appear on its diagonal repeated according to their multiplicities.

Is the converse statement true?

Theorem

Let A be a positive matrix. If the eigenvalues of A appear on the diagonal of A according to their multiplicities, then A is completely decomposable.
Eigenvalues of an upper-triangular matrix appear on its diagonal repeated according to their multiplicities.

We conclude that the eigenvalues of a completely decomposable matrix appear on its diagonal repeated according to their multiplicities.

Is the converse statement true?

Theorem

Let A be a positive matrix. If the eigenvalues of A appear on the diagonal of A according to their multiplicities, then A is completely decomposable.
Eigenvalues of an upper-triangular matrix appear on its diagonal repeated according to their multiplicities.

We conclude that the eigenvalues of a completely decomposable matrix appear on its diagonal repeated according to their multiplicities.

Is the converse statement true?

Theorem

Let A be a positive matrix. If the eigenvalues of A appear on the diagonal of A according to their multiplicities, then A is completely decomposable.
Let A and B be simultaneously completely decomposable matrices.

- With respect to some permutation of the standard basis of the underlying space, the matrix $AB - BA$ is strictly upper-triangular.
- The diagonal of the matrix $AB - BA$ is zero.

We will see later that the converse statement holds in some cases.
Let A and B be simultaneously completely decomposable matrices.

- With respect to some permutation of the standard basis of the underlying space, the matrix $AB - BA$ is strictly upper-triangular.

- The diagonal of the matrix $AB - BA$ is zero.

We will see later that the converse statement holds in some cases.
Let A and B be simultaneously completely decomposable matrices.

- With respect to some permutation of the standard basis of the underlying space, the matrix $AB - BA$ is strictly upper-triangular.
- The diagonal of the matrix $AB - BA$ is zero.

We will see later that the converse statement holds in some cases.
Let A and B be simultaneously completely decomposable matrices.

- With respect to some permutation of the standard basis of the underlying space, the matrix $AB - BA$ is strictly upper-triangular.
- The diagonal of the matrix $AB - BA$ is zero.

We will see later that the converse statement holds in some cases.
Let E be a normed Riesz space and \mathcal{F} a family of bounded operators on E.

- \mathcal{F} is ideal-reducible if there exists a closed ideal in E that is invariant under every operator from \mathcal{F}.
- \mathcal{F} is ideal-triangularizable if there exists a maximal chain \mathcal{C} of closed ideals in E such that every ideal from \mathcal{C} is invariant under every operator from \mathcal{F}.

Theorem (Drnovšek 2000)

Every maximal chain of closed ideals in E is also a maximal chain of closed subspaces in E.
Let E be a normed Riesz space and \mathcal{F} a family of bounded operators on E.

- \mathcal{F} is ideal-reducible if there exists a closed ideal in E that is invariant under every operator from \mathcal{F}.

- \mathcal{F} is ideal-triangularizable if there exists a maximal chain \mathcal{C} of closed ideals in E such that every ideal from \mathcal{C} is invariant under every operator from \mathcal{F}.

Theorem (Drnovšek 2000)

Every maximal chain of closed ideals in E is also a maximal chain of closed subspaces in E.
Let E be a normed Riesz space and \mathcal{F} a family of bounded operators on E.

- \mathcal{F} is ideal-reducible if there exists a closed ideal in E that is invariant under every operator from \mathcal{F}.
- \mathcal{F} is ideal-triangularizable if there exists a maximal chain \mathcal{C} of closed ideals in E such that every ideal from \mathcal{C} is invariant under every operator from \mathcal{F}.

Theorem (Drnovšek 2000)

Every maximal chain of closed ideals in E is also a maximal chain of closed subspaces in E.
Let E be a normed Riesz space and \mathcal{F} a family of bounded operators on E.

- \mathcal{F} is ideal-reducible if there exists a closed ideal in E that is invariant under every operator from \mathcal{F}.
- \mathcal{F} is ideal-triangularizable if there exists a maximal chain \mathcal{C} of closed ideals in E such that every ideal from \mathcal{C} is invariant under every operator from \mathcal{F}.

Theorem (Drnovšek 2000)

Every maximal chain of closed ideals in E is also a maximal chain of closed subspaces in E.
Example

Let $n \in \mathbb{N}$ be arbitrary. Consider the Banach space $(\mathbb{R}^n, \| \cdot \|_\infty)$.

- If we define ordering on \mathbb{R}^n componentwise, then $(\mathbb{R}^n, \| \cdot \|_\infty)$ is a Banach lattice.
- Closed ideals in \mathbb{R}^n are precisely those of the form
 \[\text{lin}\{ e_j : j \in J \subseteq \{1, \ldots, n\} \} \]

- Ideal-triangularizability is in this case the same as complete decomposability.
Example

Let $n \in \mathbb{N}$ be arbitrary. Consider the Banach space $(\mathbb{R}^n, \| \cdot \|_\infty)$. If we define ordering on \mathbb{R}^n componentwise, then $(\mathbb{R}^n, \| \cdot \|_\infty)$ is a Banach lattice.

- Closed ideals in \mathbb{R}^n are precisely those of the form

$$\text{lin}\{ e_j : j \in J \subseteq \{1, \ldots, n\} \}.$$

- Ideal-triangularizability is in this case the same as complete decomposability.
Example

Let $n \in \mathbb{N}$ be arbitrary. Consider the Banach space $(\mathbb{R}^n, \| \cdot \|_\infty)$.

- If we define ordering on \mathbb{R}^n componentwise, then $(\mathbb{R}^n, \| \cdot \|_\infty)$ is a Banach lattice.
- Closed ideals in \mathbb{R}^n are precisely those of the form $\operatorname{lin}\{ e_j : j \in J \subseteq \{1, \ldots, n\} \}$.

- Ideal-triangularizability is in this case the same as complete decomposability.
Example

Let $n \in \mathbb{N}$ be arbitrary. Consider the Banach space $(\mathbb{R}^n, \| \cdot \|_\infty)$.

- If we define ordering on \mathbb{R}^n componentwise, then $(\mathbb{R}^n, \| \cdot \|_\infty)$ is a Banach lattice.
- Closed ideals in \mathbb{R}^n are precisely those of the form

$$\text{lin}\{e_j : j \in J \subseteq \{1, \ldots, n\}\}.$$

- Ideal-triangularizability is in this case the same as complete decomposability.
A subset \(I \) of a semigroup \(S \) is said to be a **semigroup ideal** if \(ST \) and \(TS \) belong to \(I \) for all \(S \in S \) and \(T \in I \).

Proposition (Drnovšek, Kandić 2009)

Let \(E \) be a normed Riesz space, and let \(S \) be a nonzero semigroup of positive operators on \(E \). The following statements are equivalent:

1. \(S \) is ideal-reducible;
2. there exist a nonzero positive functional \(\varphi \in E^* \) and a nonzero positive vector \(f \in E \) such that \(\varphi(Sf) = \{0\} \);
3. there exist nonzero positive operators \(A \) and \(B \) on \(E \) such that \(A S B = \{0\} \);
4. some nonzero semigroup ideal of \(S \) is ideal-reducible.
A subset \mathcal{I} of a semigroup \mathcal{S} is said to be a semigroup ideal if ST and TS belong to \mathcal{I} for all $S \in \mathcal{S}$ and $T \in \mathcal{I}$.

Proposition (Drnovšek, Kandič 2009)

Let E be a normed Riesz space, and let \mathcal{S} be a nonzero semigroup of positive operators on E. The following statements are equivalent:

1. \mathcal{S} is ideal-reducible;
2. there exist a nonzero positive functional $\varphi \in E^*$ and a nonzero positive vector $f \in E$ such that $\varphi(\mathcal{S}f) = \{0\}$;
3. there exist nonzero positive operators A and B on E such that $A\mathcal{S}B = \{0\}$;
4. some nonzero semigroup ideal of \mathcal{S} is ideal-reducible.
A subset \mathcal{I} of a semigroup \mathcal{I} is said to be a *semigroup ideal* if ST and TS belong to \mathcal{I} for all $S \in \mathcal{I}$ and $T \in \mathcal{I}$.

Proposition (Drnovšek, Kandić 2009)

Let E be a normed Riesz space, and let \mathcal{I} be a nonzero semigroup of positive operators on E. The following statements are equivalent:

1. \mathcal{I} is ideal-reducible;
2. there exist a nonzero positive functional $\varphi \in E^*$ and a nonzero positive vector $f \in E$ such that $\varphi(\mathcal{I} f) = \{0\}$;
3. there exist nonzero positive operators A and B on E such that $A\mathcal{I}B = \{0\}$;
4. some nonzero semigroup ideal of \mathcal{I} is ideal-reducible.
A subset \mathcal{I} of a semigroup \mathcal{S} is said to be a semigroup ideal if ST and TS belong to \mathcal{I} for all $S \in \mathcal{S}$ and $T \in \mathcal{I}$.

Proposition (Drnovšek, Kandić 2009)

Let E be a normed Riesz space, and let \mathcal{S} be a nonzero semigroup of positive operators on E. The following statements are equivalent:

1. \mathcal{S} is ideal-reducible;
2. there exist a nonzero positive functional $\varphi \in E^*$ and a nonzero positive vector $f \in E$ such that $\varphi(\mathcal{S}f) = \{0\}$;
3. there exist nonzero positive operators A and B on E such that $A\mathcal{S}B = \{0\}$;
4. some nonzero semigroup ideal of \mathcal{S} is ideal-reducible.
A subset \mathcal{I} of a semigroup \mathcal{S} is said to be a *semigroup ideal* if ST and TS belong to \mathcal{I} for all $S \in \mathcal{S}$ and $T \in \mathcal{I}$.

Proposition (Drnovšek, Kandić 2009)

Let E be a normed Riesz space, and let \mathcal{S} be a nonzero semigroup of positive operators on E. The following statements are equivalent:

1. \mathcal{S} is ideal-reducible;
2. there exist a nonzero positive functional $\varphi \in E^*$ and a nonzero positive vector $f \in E$ such that $\varphi(\mathcal{S}f) = \{0\}$;
3. there exist nonzero positive operators A and B on E such that $A\mathcal{S}B = \{0\}$;
4. some nonzero semigroup ideal of \mathcal{S} is ideal-reducible.
A subset \mathcal{I} of a semigroup \mathcal{I} is said to be a \textit{semigroup ideal} if ST and TS belong to \mathcal{I} for all $S \in \mathcal{I}$ and $T \in \mathcal{I}$.

Proposition (Drnovšek, Kandić 2009)

Let E be a normed Riesz space, and let \mathcal{I} be a nonzero semigroup of positive operators on E. The following statements are equivalent:

1. \mathcal{I} is ideal-reducible;
2. there exist a nonzero positive functional $\varphi \in E^*$ and a nonzero positive vector $f \in E$ such that $\varphi(\mathcal{I}f) = \{0\}$;
3. there exist nonzero positive operators A and B on E such that $A\mathcal{I}B = \{0\}$;
4. some nonzero semigroup ideal of \mathcal{I} is ideal-reducible.
Let \(\mathcal{F} \) be a family of bounded linear operators on a Banach lattice \(E \), and \(\mathcal{I}, \mathcal{J} \) closed ideals invariant under \(\mathcal{F} \) with \(\mathcal{I} \subseteq \mathcal{J} \). Then the operator \(\hat{T} : \mathcal{J}/\mathcal{I} \to \mathcal{J}/\mathcal{I} \) defined by
\[
\hat{T}(x + \mathcal{I}) = Tx + \mathcal{I}
\]
is well defined for each \(x \in \mathcal{J} \).

Definition

A property of families of operators on a Banach lattice is said to be inherited by ideal-quotients if for each family \(\mathcal{F} \) having the property, and for every distinct pair \(\mathcal{I}, \mathcal{J} \) of closed ideals invariant under \(\mathcal{F} \) with \(\mathcal{I} \subseteq \mathcal{J} \), the family \(\hat{\mathcal{F}} \) also has the property, where \(\hat{\mathcal{F}} \) is the set of all quotient operators \(\hat{T} \) on \(\mathcal{J}/\mathcal{I} \) for \(T \in \mathcal{F} \).
Let \mathcal{F} be a family of bounded linear operators on a Banach lattice E, and \mathcal{I}, \mathcal{J} closed ideals invariant under \mathcal{F} with $\mathcal{I} \subseteq \mathcal{J}$. Then the operator $\hat{T} : \mathcal{J}/\mathcal{I} \to \mathcal{J}/\mathcal{I}$ defined by $\hat{T}(x + \mathcal{I}) = Tx + \mathcal{I}$ is well defined for each $x \in \mathcal{J}$.

Definition

A property of families of operators on a Banach lattice is said to be inherited by ideal-quotients if for each family \mathcal{F} having the property, and for every distinct pair \mathcal{I}, \mathcal{J} of closed ideals invariant under \mathcal{F} with $\mathcal{I} \subseteq \mathcal{J}$, the family $\hat{\mathcal{F}}$ also has the property, where $\hat{\mathcal{F}}$ is the set of all quotient operators \hat{T} on \mathcal{J}/\mathcal{I} for $T \in \mathcal{F}$.

The following lemma is the key to obtain ideal-triangularizing chains for families of operators.

Lemma (The Ideal-Triangularization Lemma)

If \mathcal{P} is a property of families of operators that is inherited by ideal-quotients, and if every family satisfying \mathcal{P} on a Banach lattice of dimension at least two is ideal-reducible, then every family satisfying \mathcal{P} is ideal-triangularizable.
The following lemma is the key to obtain ideal-triangularizing chains for families of operators.

Lemma (The Ideal-Triangularization Lemma)

If \mathcal{P} is a property of families of operators that is inherited by ideal-quotients, and if every family satisfying \mathcal{P} on a Banach lattice of dimension at least two is ideal-reducible, then every family satisfying \mathcal{P} is ideal-triangularizable.
Which properties are inherited by ideal-quotients?

- commutativity
- nilpotence
- quasinilpotence
- compactness
- weak compactness
- positivity
- being a Riesz operator
- being an abstract integral operator on a Banach lattice with order continuous norm
Which properties are inherited by ideal-quotients?

- commutativity
- nilpotence
- quasinilpotence
- compactness
- weak compactness
- positivity
- being a Riesz operator
- being an abstract integral operator on a Banach lattice with order continuous norm
Which properties are inherited by ideal-quotients?

- commutativity
- nilpotence
- quasinilpotence
- compactness
- weak compactness
- positivity
- being a Riesz operator
- being an abstract integral operator on a Banach lattice with order continuous norm
Which properties are inherited by ideal-quotients?

- commutativity
- nilpotence
- quasinilpotence
- compactness
- weak compactness
- positivity
- being a Riesz operator
- being an abstract integral operator on a Banach lattice with order continuous norm
Which properties are inherited by ideal-quotients?

- commutativity
- nilpotence
- quasinilpotence
- compactness
- weak compactness
- positivity
- being a Riesz operator
- being an abstract integral operator on a Banach lattice with order continuous norm
Which properties are inherited by ideal-quotients?

- commutativity
- nilpotence
- quasinilpotence
- compactness
- weak compactness
- positivity
- being a Riesz operator
- being an abstract integral operator on a Banach lattice with order continuous norm
Which properties are inherited by ideal-quotients?

- commutativity
- nilpotence
- quasinilpotence
- compactness
- weak compactness
- positivity
- being a Riesz operator
- being an abstract integral operator on a Banach lattice with order continuous norm
Which properties are inherited by ideal-quotients?

- commutativity
- nilpotence
- quasinilpotence
- compactness
- weak compactness
- positivity
- being a Riesz operator
- being an abstract integral operator on a Banach lattice with order continuous norm
Which properties are inherited by ideal-quotients?

- commutativity
- nilpotence
- quasinilpotence
- compactness
- weak compactness
- positivity
- being a Riesz operator
- being an abstract integral operator on a Banach lattice with order continuous norm
Let us see an example how in practice the Ideal-triangularization lemma works.

Every positive nilpotent operator T on a Banach lattice E is ideal-triangularizable.

- If T is a zero operator, then every closed ideal is invariant under T.
- Assume T is nonzero.
- The absolute kernel $N(T) = \{ x \in E : T|x| = 0 \}$ is a nonzero closed ideal invariant under T, so that T is ideal-reducible.
- Nilpotency of operators is inherited by ideal-quotients.
- Apply the Ideal-triangularization lemma.
Let us see an example how in practice the Ideal-triangularization lemma works.

Every positive nilpotent operator T on a Banach lattice E is ideal-triangularizable.

- If T is a zero operator, then every closed ideal is invariant under T.
- Assume T is nonzero.
- The absolute kernel $N(T) = \{ x \in E : T|x| = 0 \}$ is a nonzero closed ideal invariant under T, so that T is ideal-reducible.
- Nilpotency of operators is inherited by ideal-quotients.
- Apply the Ideal-triangularization lemma.
Let us see an example how in practice the Ideal-triangularization lemma works.

Every positive nilpotent operator T on a Banach lattice E is ideal-triangularizable.

- If T is a zero operator, then every closed ideal is invariant under T.
- Assume T is nonzero.
- The absolute kernel $N(T) = \{ x \in E : T|x| = 0 \}$ is a nonzero closed ideal invariant under T, so that T is ideal-reducible.
- Nilpotency of operators is inherited by ideal-quotients.
- Apply the Ideal-triangularization lemma.
Let us see an example how in practice the Ideal-triangularization lemma works.

Every positive nilpotent operator T on a Banach lattice E is ideal-triangularizable.

- If T is a zero operator, then every closed ideal is invariant under T.
- Assume T is nonzero.
 - The absolute kernel $N(T) = \{ x \in E : T|x| = 0 \}$ is a nonzero closed ideal invariant under T, so that T is ideal-reducible.
 - Nilpotency of operators is inherited by ideal-quotients.
 - Apply the Ideal-triangularization lemma.
Let us see an example how in practice the Ideal-triangularization lemma works.

Every positive nilpotent operator T on a Banach lattice E is ideal-triangularizable.

- If T is a zero operator, then every closed ideal is invariant under T.
- Assume T is nonzero.
- The absolute kernel $N(T) = \{ x \in E : T|x| = 0 \}$ is a nonzero closed ideal invariant under T, so that T is ideal-reducible.
- Nilpotency of operators is inherited by ideal-quotients.
- Apply the Ideal-triangularization lemma.
Let us see an example how in practice the Ideal-triangularization lemma works.

Every positive nilpotent operator T on a Banach lattice E is ideal-triangularizable.

- If T is a zero operator, then every closed ideal is invariant under T.
- Assume T is nonzero.
- The absolute kernel $N(T) = \{ x \in E : T|x| = 0 \}$ is a nonzero closed ideal invariant under T, so that T is ideal-reducible.
- Nilpotency of operators is inherited by ideal-quotients.
- Apply the Ideal-triangularization lemma.
Let us see an example how in practice the Ideal-triangularization lemma works.

Every positive nilpotent operator T on a Banach lattice E is ideal-triangularizable.

- If T is a zero operator, then every closed ideal is invariant under T.
- Assume T is nonzero.
- The absolute kernel $N(T) = \{ x \in E : T|x| = 0 \}$ is a nonzero closed ideal invariant under T, so that T is ideal-reducible.
- Nilpotency of operators is inherited by ideal-quotients.
- Apply the Ideal-triangularization lemma.
Let $M_n(\mathbb{R})$ be a vector space of all real $n \times n$ matrices. The mapping φ_j that maps every matrix S to the j-th diagonal entry of S is a positive linear functional on $M_n(\mathbb{R})$. Suppose that \mathcal{S} is a multiplicative semigroup of positive matrices in $M_n(\mathbb{R})$. If there exists a positive number j with $1 \leq j \leq n$ such that $\varphi_j(S) = 0$ for all $S \in \mathcal{S}$, then \mathcal{S} is ideal-reducible. This is a direct consequence of the characterization of ideal-reducibility of semigroups of positive operators, since we have

$$\varphi_j(S) = \langle Se_j, e_j \rangle = e_j^T Se_j.$$

Actually, we can say even more about ideal-reducibility and ideal-triangularizability of semigroups of positive matrices.
Recall that a map \(\varphi : \mathcal{S}_1 \to \mathcal{S}_2 \) between two semigroups \(\mathcal{S}_1 \) and \(\mathcal{S}_2 \) is multiplicative whenever \(\varphi(ab) = \varphi(a)\varphi(b) \) for all \(a, b \in \mathcal{S}_1 \).

Theorem

Let \(\mathcal{S} \) be a semigroup of positive \(n \times n \) matrices. Then the following statements hold.

- If \(\varphi_j \) is multiplicative on \(\mathcal{S} \) for some \(1 \leq j \leq n \), then \(\mathcal{S} \) is ideal-reducible.
- \(\mathcal{S} \) is ideal-triangularizable if and only if \(\varphi_j \) is multiplicative on \(\mathcal{S} \) for \(1 \leq j \leq n \).
Recall that a map $\varphi : \mathcal{S}_1 \rightarrow \mathcal{S}_2$ between two semigroups \mathcal{S}_1 and \mathcal{S}_2 is multiplicative whenever $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in \mathcal{S}_1$.

Theorem

Let \mathcal{I} be a semigroup of positive $n \times n$ matrices. Then the following statements hold.

- If φ_j is multiplicative on \mathcal{I} for some $1 \leq j \leq n$, then \mathcal{I} is ideal-reducible.
- \mathcal{I} is ideal-triangularizable if and only if φ_j is multiplicative on \mathcal{I} for $1 \leq j \leq n$.
Recall that a map $\varphi : S_1 \rightarrow S_2$ between two semigroups S_1 and S_2 is multiplicative whenever $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in S_1$.

Theorem

Let \mathcal{S} be a semigroup of positive $n \times n$ matrices. Then the following statements hold.

- If φ_j is multiplicative on \mathcal{S} for some $1 \leq j \leq n$, then \mathcal{S} is ideal-reducible.
- \mathcal{S} is ideal-triangularizable if and only if φ_j is multiplicative on \mathcal{S} for $1 \leq j \leq n$.
Recall that a map $\varphi : S_1 \to S_2$ between two semigroups S_1 and S_2 is multiplicative whenever $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in S_1$.

Theorem

Let \mathcal{S} be a semigroup of positive $n \times n$ matrices. Then the following statements hold.

- If φ_j is multiplicative on \mathcal{S} for some $1 \leq j \leq n$, then \mathcal{S} is ideal-reducible.
- \mathcal{S} is ideal-triangularizable if and only if φ_j is multiplicative on \mathcal{S} for $1 \leq j \leq n$.
Let E be a Riesz space.

- A positive vector $a \in E$ is said to be an atom if $0 \leq x, y \leq a$ and $x \wedge y = 0$ imply $x = 0$ or $y = 0$.
- In Archimedean spaces atoms are precisely discrete vectors, i.e., a positive vector $a \in E$ is said to be a discrete vector if $0 \leq x \leq a$ imply the existence of a nonnegative scalar λ such that $x = \lambda a$.
- The latter implies that the principal ideal \mathcal{B}_a generated by a is one dimensional projection band.
- E is said to be atomic if the band A generated by all atoms of E is equal to E. If $A = \{0\}$, then E is atomless.
- If E is Dedekind complete, then $C := A^d$ is an atomless part of the lattice E.
Let E be a Riesz space.

- A positive vector $a \in E$ is said to be an atom if $0 \leq x, y \leq a$ and $x \wedge y = 0$ imply $x = 0$ or $y = 0$.

- In Archimedean spaces atoms are precisely discrete vectors, i.e., a positive vector $a \in E$ is said to be a discrete vector if $0 \leq x \leq a$ imply the existence of a nonnegative scalar λ such that $x = \lambda a$.

- The latter implies that the principal ideal \mathcal{B}_a generated by a is one dimensional projection band.

- E is said to be atomic if the band A generated by all atoms of E is equal to E. If $A = \{0\}$, then E is atomless.

- If E is Dedekind complete, then $C := A^d$ is an atomless part of the lattice E.
Let E be a Riesz space.

- A positive vector $a \in E$ is said to be an atom if $0 \leq x, y \leq a$ and $x \wedge y = 0$ imply $x = 0$ or $y = 0$.
- In Archimedean spaces atoms are precisely discrete vectors, i.e., a positive vector $a \in E$ is said to be a discrete vector if $0 \leq x \leq a$ imply the existence of a nonnegative scalar λ such that $x = \lambda a$.

- The latter implies that the principal ideal B_a generated by a is one dimensional projection band.
- E is said to be atomic if the band A generated by all atoms of E is equal to E. If $A = \{0\}$, then E is atomless.
- If E is Dedekind complete, then $C := A^d$ is an atomless part of the lattice E.
Let E be a Riesz space.

- A positive vector $a \in E$ is said to be an atom if $0 \leq x, y \leq a$ and $x \land y = 0$ imply $x = 0$ or $y = 0$.

- In Archimedean spaces atoms are precisely discrete vectors, i.e., a positive vector $a \in E$ is said to be a discrete vector if $0 \leq x \leq a$ imply the existence of a nonnegative scalar λ such that $x = \lambda a$.

- The latter implies that the principal ideal \mathcal{B}_a generated by a is one dimensional projection band.

- E is said to be atomic if the band A generated by all atoms of E is equal to E. If $A = \{0\}$, then E is atomless.

- If E is Dedekind complete, then $C := A^d$ is an atomless part of the lattice E.

Let E be a Riesz space.

- A positive vector $a \in E$ is said to be an atom if $0 \leq x, y \leq a$ and $x \wedge y = 0$ imply $x = 0$ or $y = 0$.
- In Archimedean spaces atoms are precisely discrete vectors, i.e., a positive vector $a \in E$ is said to be a discrete vector if $0 \leq x \leq a$ imply the existence of a nonnegative scalar λ such that $x = \lambda a$.
- The latter implies that the principal ideal \mathcal{B}_a generated by a is one dimensional projection band.
- E is said to be atomic if the band A generated by all atoms of E is equal to E. If $A = \{0\}$, then E is atomless.
- If E is Dedekind complete, then $C := A^d$ is an atomless part of the lattice E.
Let E be a Riesz space.

- A positive vector $a \in E$ is said to be an atom if $0 \leq x, y \leq a$ and $x \wedge y = 0$ imply $x = 0$ or $y = 0$.
- In Archimedean spaces atoms are precisely discrete vectors, i.e., a positive vector $a \in E$ is said to be a discrete vector if $0 \leq x \leq a$ imply the existence of a nonnegative scalar λ such that $x = \lambda a$.
- The latter implies that the principal ideal B_a generated by a is one dimensional projection band.
- E is said to be atomic if the band A generated by all atoms of E is equal to E. If $A = \{0\}$, then E is atomless.
- If E is Dedekind complete, then $C := A^d$ is an atomless part of the lattice E.
Suppose E is a normed Riesz space and a an atom in E. Then $E = \mathcal{B}_a \oplus \mathcal{B}_a^d$ is an order direct sum of two bands of E.

- For a (positive) $x \in E$ there exist a (positive) scalar λ_x and a (positive) vector $y_x \in \mathcal{B}_a^d$ such that $x = \lambda_x a + y_x$.
- The mapping $\varphi_a : E \to \mathbb{R}$ defined by $\varphi_a(x) = \lambda_x$ is a bounded positive linear functional on E.
- $\varphi_a(STa) \geq \varphi_a(Sa) \varphi_a(Ta)$ for positive operators S and T on E.
- If $E = \mathbb{R}^n$, then the normalized atoms of E are precisely the standard basis vectors. If $S = [s_{ij}]_{i,j=1}^n$ is a positive matrix and a is an atom in \mathbb{R}^n, then $\varphi_a(Sa) = s_{jj}$ for some $1 \leq j \leq n$.
Suppose E is a normed Riesz space and a an atom in E. Then $E = \mathcal{B}_a \oplus \mathcal{B}^d_a$ is an order direct sum of two bands of E.

- For a (positive) $x \in E$ there exist a (positive) scalar λ_x and a (positive) vector $y_x \in \mathcal{B}^d_a$ such that $x = \lambda_x a + y_x$.

- The mapping $\varphi_a : E \rightarrow \mathbb{R}$ defined by $\varphi_a(x) = \lambda_x$ is a bounded positive linear functional on E.

- $\varphi_a(STa) \geq \varphi_a(Sa)\varphi_a(Ta)$ for positive operators S and T on E.

- If $E = \mathbb{R}^n$, then the normalized atoms of E are precisely the standard basis vectors. If $S = [s_{ij}]_{i,j=1}^n$ is a positive matrix and a is an atom in \mathbb{R}^n, then $\varphi_a(Sa) = s_{jj}$ for some $1 \leq j \leq n$.
Suppose E is a normed Riesz space and a an atom in E. Then $E = \mathcal{B}_a \oplus \mathcal{B}_a^d$ is an order direct sum of two bands of E.

- For a (positive) $x \in E$ there exist a (positive) scalar λ_x and a (positive) vector $y_x \in \mathcal{B}_a^d$ such that $x = \lambda_x a + y_x$.
- The mapping $\varphi_a : E \to \mathbb{R}$ defined by $\varphi_a(x) = \lambda_x$ is a bounded positive linear functional on E.
- $\varphi_a(STa) \geq \varphi_a(Sa)\varphi_a(Ta)$ for positive operators S and T on E.
- If $E = \mathbb{R}^n$, then the normalized atoms of E are precisely the standard basis vectors. If $S = [s_{ij}]_{i,j=1}^n$ is a positive matrix and a is an atom in \mathbb{R}^n, then $\varphi_a(Sa) = s_{jj}$ for some $1 \leq j \leq n$.
Suppose E is a normed Riesz space and a an atom in E. Then $E = B_a \oplus B_a^d$ is an order direct sum of two bands of E.

- For a (positive) $x \in E$ there exist a (positive) scalar λ_x and a (positive) vector $y_x \in B_a^d$ such that $x = \lambda_x a + y_x$.
- The mapping $\varphi_a : E \to \mathbb{R}$ defined by $\varphi_a(x) = \lambda_x$ is a bounded positive linear functional on E.
- $\varphi_a(STa) \geq \varphi_a(Sa)\varphi_a(Ta)$ for positive operators S and T on E.
- If $E = \mathbb{R}^n$, then the normalized atoms of E are precisely the standard basis vectors. If $S = [s_{ij}]_{i,j=1}^n$ is a positive matrix and a is an atom in \mathbb{R}^n, then $\varphi_a(Sa) = s_{jj}$ for some $1 \leq j \leq n$.

Suppose E is a normed Riesz space and a an atom in E. Then $E = \mathcal{B}_a \oplus \mathcal{B}_a^d$ is an order direct sum of two bands of E.

- For a (positive) $x \in E$ there exist a (positive) scalar λ_x and a (positive) vector $y_x \in \mathcal{B}_a^d$ such that $x = \lambda_x a + y_x$.

- The mapping $\varphi_a : E \to \mathbb{R}$ defined by $\varphi_a(x) = \lambda_x$ is a bounded positive linear functional on E.

- $\varphi_a(STa) \geq \varphi_a(Sa) \varphi_a(Ta)$ for positive operators S and T on E.

- If $E = \mathbb{R}^n$, then the normalized atoms of E are precisely the standard basis vectors. If $S = [s_{ij}]_{i,j=1}^n$ is a positive matrix and a is an atom in \mathbb{R}^n, then $\varphi_a(Sa) = s_{jj}$ for some $1 \leq j \leq n$.
Proposition

Let E be a normed Riesz space and \mathcal{I} a semigroup of positive operators on E.

1. If \mathcal{I} is ideal-triangularizable, then the mapping $S \mapsto \varphi_a(Sa)$ is multiplicative on \mathcal{I} for every atom $a \in E$.

2. If the mapping $S \mapsto \varphi_a(Sa)$ is multiplicative on \mathcal{I} for some atom $a \in E$, then \mathcal{I} is ideal-reducible.

3. If E is atomic Banach lattice with order continuous norm, then \mathcal{I} is ideal-triangularizable if and only if the mapping $S \mapsto \varphi_a(Sa)$ is multiplicative on \mathcal{I} for all atoms $a \in E$.

The mapping $S \mapsto \varphi_a(Sa)$ is called a coordinate functional associated to an atom a, and the number $\varphi_a(Sa)$ is called the diagonal entry of S associated to the atom a.
Proposition

Let E be a normed Riesz space and \mathcal{S} a semigroup of positive operators on E.

1. If \mathcal{S} is ideal-triangularizable, then the mapping $S \mapsto \varphi_a(Sa)$ is multiplicative on \mathcal{S} for every atom $a \in E$.

2. If the mapping $S \mapsto \varphi_a(Sa)$ is multiplicative on \mathcal{S} for some atom $a \in E$, then \mathcal{S} is ideal-reducible.

3. If E is atomic Banach lattice with order continuous norm, then \mathcal{S} is ideal-triangularizable if and only if the mapping $S \mapsto \varphi_a(Sa)$ is multiplicative on \mathcal{S} for all atoms $a \in E$.

The mapping $S \mapsto \varphi_a(Sa)$ is called a coordinate functional associated to an atom a, and the number $\varphi_a(Sa)$ is called the diagonal entry of S associated to the atom a.
Proposition

Let E be a normed Riesz space and \mathcal{I} a semigroup of positive operators on E.

1. If \mathcal{I} is ideal-triangularizable, then the mapping $S \mapsto \varphi_a(Sa)$ is multiplicative on \mathcal{I} for every atom $a \in E$.

2. If the mapping $S \mapsto \varphi_a(Sa)$ is multiplicative on \mathcal{I} for some atom $a \in E$, then \mathcal{I} is ideal-reducible.

3. If E is atomic Banach lattice with order continuous norm, then \mathcal{I} is ideal-triangularizable if and only if the mapping $S \mapsto \varphi_a(Sa)$ is multiplicative on \mathcal{I} for all atoms $a \in E$.

The mapping $S \mapsto \varphi_a(Sa)$ is called a coordinate functional associated to an atom a, and the number $\varphi_a(Sa)$ is called the diagonal entry of S associated to the atom a.
Proposition

Let E be a normed Riesz space and \mathcal{I} a semigroup of positive operators on E.

1. If \mathcal{I} is ideal-triangularizable, then the mapping $S \mapsto \phi_a(Sa)$ is multiplicative on \mathcal{I} for every atom $a \in E$.

2. If the mapping $S \mapsto \phi_a(Sa)$ is multiplicative on \mathcal{I} for some atom $a \in E$, then \mathcal{I} is ideal-reducible.

3. If E is atomic Banach lattice with order continuous norm, then \mathcal{I} is ideal-triangularizable if and only if the mapping $S \mapsto \phi_a(Sa)$ is multiplicative on \mathcal{I} for all atoms $a \in E$.

The mapping $S \mapsto \phi_a(Sa)$ is called a coordinate functional associated to an atom a, and the number $\phi_a(Sa)$ is called the diagonal entry of S associated to the atom a.
Proposition

Let E be a normed Riesz space and \mathcal{I} a semigroup of positive operators on E.

1. If \mathcal{I} is ideal-triangularizable, then the mapping $S \mapsto \varphi_a(Sa)$ is multiplicative on \mathcal{I} for every atom $a \in E$.

2. If the mapping $S \mapsto \varphi_a(Sa)$ is multiplicative on \mathcal{I} for some atom $a \in E$, then \mathcal{I} is ideal-reducible.

3. If E is atomic Banach lattice with order continuous norm, then \mathcal{I} is ideal-triangularizable if and only if the mapping $S \mapsto \varphi_a(Sa)$ is multiplicative on \mathcal{I} for all atoms $a \in E$.

The mapping $S \mapsto \varphi_a(Sa)$ is called a coordinate functional associated to an atom a, and the number $\varphi_a(Sa)$ is called the diagonal entry of S associated to the atom a.
If the lattice is not atomic (3) does not hold even in the case when every operator from the semigroup of positive operators is ideal-triangularizable. Namely, R. Drnovšek and others in 2002 constructed an irreducible semigroup of square zero nonzero positive operators on the space $L^p([0, 1))(1 \leq p < \infty)$ with the property that every finite subset of that semigroup is ideal-triangularizable.

We also cannot omit the assumption that the norm is order continuous. Let φ be a Banach limit on the atomic Dedekind complete space l^∞ and let $e = (1, 1, \ldots)$ be the order unit of l^∞. Then the positive rank-one operator $T = e \otimes \varphi$ is an idempotent. For every $n \in \mathbb{N}$ we have

$$\varphi_{e_n}(Te_n) = \varphi_{e_n}((e \otimes \varphi)e_n) = \varphi_{e_n}(e)\varphi(e_n) = 0.$$

It can be proved that T is not ideal-triangularizable.
If the lattice is not atomic (3) does not hold even in the case when every operator from the semigroup of positive operators is ideal-triangularizable. Namely, R. Drnovšek and others in 2002 constructed an irreducible semigroup of square zero nonzero positive operators on the space $L^p([0, 1))(1 \leq p < \infty)$ with the property that every finite subset of that semigroup is ideal-triangularizable.

We also cannot omit the assumption that the norm is order continuous. Let φ be a Banach limit on the atomic Dedekind complete space l^∞ and let $e = (1, 1, \ldots)$ be the order unit of l^∞. Then the positive rank-one operator $T = e \otimes \varphi$ is an idempotent. For every $n \in \mathbb{N}$ we have

$$\varphi_{e_n}(Te_n) = \varphi_{e_n}((e \otimes \varphi)e) = \varphi_{e_n}(e)\varphi(e_n) = 0.$$

It can be proved that T is not ideal-triangularizable.
Corollary

Let I be a semigroup of $n \times n$ positive matrices.

1. If every matrix in I has a zero diagonal, then I is ideal-triangularizable and every matrix from I is also nilpotent.

2. If the diagonal of every matrix in I consists only of ones, then I is ideal-triangularizable.
Corollary

Let \mathcal{I} be a semigroup of $n \times n$ positive matrices.

1. If every matrix in \mathcal{I} has a zero diagonal, then \mathcal{I} is ideal-triangularizable and every matrix from \mathcal{I} is also nilpotent.

2. If the diagonal of every matrix in \mathcal{I} consists only of ones, then \mathcal{I} is ideal-triangularizable.
Corollary

Let \mathcal{S} be a semigroup of $n \times n$ positive matrices.

1. If every matrix in \mathcal{S} has a zero diagonal, then \mathcal{S} is ideal-triangularizable and every matrix from \mathcal{S} is also nilpotent.

2. If the diagonal of every matrix in \mathcal{S} consists only of ones, then \mathcal{S} is ideal-triangularizable.
In the preceding corollary we had the situation where the coordinate functionals associated to atoms were constant on a given semigroup. In general, constancy does not imply ideal-triangularizability.

Example

For arbitrary $c \in (0, 1)$, the positive matrix

$$A_c = \begin{bmatrix} \frac{c}{\sqrt{c - c^2}} & \sqrt{c - c^2} \\ \sqrt{c - c^2} & 1 - c \end{bmatrix}$$

is an idempotent, and so the coordinate functionals associated to e_1 and e_2 are constantly equal c and $1 - c$ on the semigroup $\{A_c\}$, respectively. The operator A_c is ideal-irreducible since B_{e_1} and B_{e_2} are not invariant under A_c.
In the preceding corollary we had the situation where the coordinate functionals associated to atoms were constant on a given semigroup. In general, constancy does not imply ideal-triangularizability.

Example

For arbitrary $c \in (0, 1)$, the positive matrix

$$A_c = \begin{bmatrix}
c & \sqrt{c - c^2} \\
\sqrt{c - c^2} & 1 - c
\end{bmatrix}$$

is an idempotent, and so the coordinate functionals associated to e_1 and e_2 are constantly equal c and $1 - c$ on the semigroup $\{A_c\}$, respectively. The operator A_c is ideal-irreducible since B_{e_1} and B_{e_2} are not invariant under A_c.
Theorem

Let \mathcal{I} be a semigroup of positive ideal-triangularizable operators on a Banach lattice with order continuous norm such that every coordinate functional associated to an atom is multiplicative on \mathcal{I}. If every operator in \mathcal{I} is a compact or an abstract integral operator, then \mathcal{I} is ideal-triangularizable.
Let L be a Dedekind complete Banach lattice. Denote by $L_r(L)$ the Dedekind complete Riesz space of all regular operators on L. It is well known that $L_r(L)$ becomes a Banach lattice algebra with respect to the regular norm defined by $\| T \|_r := \| T \|$. The center $\mathcal{Z}(L)$ is the ideal in $L_r(L)$ generated by the identity operator I, i.e.,

$$
\mathcal{Z}(L) = \{ T \in L_r(L) : |T| \leq \lambda I \text{ for some } \lambda \geq 0 \}.
$$

If $T \in \mathcal{Z}(L)$, then the operator norm and the regular norm of T coincide. Since $\mathcal{Z}(L)$ is also a band in $L_r(L)$, we have a band decomposition $L_r(L) = \mathcal{Z}(L) \oplus \mathcal{Z}(L)^d$. Let P be the band projection onto $\mathcal{Z}(L)$. The operator P is a contraction with respect to the operator norm. Schep proved that the component $P(T)$ of a positive operator T in $\mathcal{Z}(L)$ is

$$
P(T) = \inf \left\{ \sum_{i=1}^n P_i TP_i : 0 \leq P_i \leq I, P_i^2 = P_i, \sum_{i=1}^n P_i = I \right\}.
$$
Let L be a Dedekind complete Banach lattice. Denote by $L_r(L)$ the Dedekind complete Riesz space of all regular operators on L. It is well known that $L_r(L)$ becomes a Banach lattice algebra with respect to the regular norm defined by $\|T\|_r := \| |T||$. The center $Z(L)$ is the ideal in $L_r(L)$ generated by the identity operator I, i.e.,

$$Z(L) = \{ T \in L_r(L) : \|T\| \leq \lambda I \text{ for some } \lambda \geq 0 \}.$$

If $T \in Z(L)$, then the operator norm and the regular norm of T coincide. Since $Z(L)$ is also a band in $L_r(L)$, we have a band decomposition $L_r(L) = Z(L) \oplus Z(L)^d$. Let P be the band projection onto $Z(L)$. The operator P is a contraction with respect to the operator norm. Schep proved that the component $P(T)$ of a positive operator T in $Z(L)$ is

$$P(T) = \inf \left\{ \sum_{i=1}^n P_i TP_i : 0 \leq P_i \leq I, P_i^2 = P_i, \sum_{i=1}^n P_i = I \right\}.$$
Let A be the band generated by all atoms in L, and let $\mathcal{A} \subseteq A$ be the maximal set of pairwise disjoint atoms of norm one. Given $a \in A$, we denote by P_a the band projection onto the band \mathcal{B}_a. Let T be a positive operator on L. It can be proved that the operator

\[
\mathcal{D}(T) = \sup \left\{ \sum_{a \in \mathcal{F}} P_a TP_a : \mathcal{F} \text{ is a finite subset of } \mathcal{A} \right\}
\]

exists, since it is a supremum of an increasing net that is bounded from above. We also have $0 \leq \mathcal{D}(T) \leq T$. If L is atomic (i.e., $A = L$), then $\mathcal{D}(T) = P(T)$. For a general L we have

Proposition

Let T be a positive operator on L. If P_A denotes the band projection onto the band A, then $\mathcal{D}(T) = P_A P(T)$.
Let A be the band generated by all atoms in L, and let $\mathcal{A} \subseteq A$ be the maximal set of pairwise disjoint atoms of norm one. Given $a \in A$, we denote by P_a the band projection onto the band \mathcal{B}_a. Let T be a positive operator on L. It can be proved that the operator

$$D(T) = \sup \left\{ \sum_{a \in \mathcal{F}} P_a TP_a : \mathcal{F} \text{ is a finite subset of } \mathcal{A} \right\}$$

exists, since it is a supremum of an increasing net that is bounded from above. We also have $0 \leq D(T) \leq T$. If L is atomic (i.e., $A = L$), then $D(T) = P(T)$. For a general L we have

Proposition

Let T be a positive operator on L. If P_A denotes the band projection onto the band A, then $D(T) = P_A P(T)$.
Let A be the band generated by all atoms in L, and let $\mathcal{A} \subseteq A$ be the maximal set of pairwise disjoint atoms of norm one. Given $a \in A$, we denote by P_a the band projection onto the band \mathcal{B}_a. Let T be a positive operator on L. It can be proved that the operator

$$
\mathcal{D}(T) = \sup \left\{ \sum_{a \in \mathcal{F}} P_a T P_a : \mathcal{F} \text{ is a finite subset of } \mathcal{A} \right\}
$$

exists, since it is a supremum of an increasing net that is bounded from above. We also have $0 \leq \mathcal{D}(T) \leq T$. If L is atomic (i.e., $A = L$), then $\mathcal{D}(T) = P(T)$. For a general L we have

Proposition

Let T be a positive operator on L. If P_A denotes the band projection onto the band A, then $\mathcal{D}(T) = P_A P(T)$.
We extend the operator \mathcal{D} to the operator on the whole space $\mathcal{L}_r(L)$ by defining $\mathcal{D}(T) := P_A \mathcal{P}(T)$ for $T \in \mathcal{L}_r(L)$. This extension is called the *atomic diagonal operator* and the operator $\mathcal{D}(T)$ on L is said to be the *atomic diagonal* of an operator $T \in \mathcal{L}_r(L)$.

Proposition

The following assertions hold for the atomic diagonal operator \mathcal{D}:

(a) \mathcal{D} is a band projection onto the band

$$\{ T \in \mathcal{L}_r(L) : \|T\| \leq \lambda P_A \text{ for some } \lambda \geq 0 \}$$

in $\mathcal{L}_r(L)$ that can be identified by the center $\mathcal{Z}(A)$;

(b) $\|\mathcal{D}(T)\| \leq \|\mathcal{P}(T)\| \leq \|T\|$ for all $T \in \mathcal{L}_r(L)$;

(c) $\mathcal{P}(T) = \mathcal{D}(T)$ for every positive compact operator T on L.

We extend the operator D to the operator on the whole space $L_r(L)$ by defining $D(T) := PA P(T)$ for $T \in L_r(L)$. This extension is called the atomic diagonal operator and the operator $D(T)$ on L is said to be the atomic diagonal of an operator $T \in L_r(L)$.

Proposition

The following assertions hold for the atomic diagonal operator D:

(a) D is a band projection onto the band

$$\{ T \in L_r(L) : |T| \leq \lambda PA \text{ for some } \lambda \geq 0 \}$$

in $L_r(L)$ that can be identified by the center $H(A)$;

(b) $\|D(T)\| \leq \|P(T)\| \leq \|T\|$ for all $T \in L_r(L)$;

(c) $P(T) = D(T)$ for every positive compact operator T on L.
Theorem

Let T be a positive power-compact operator on a Banach lattice L with order continuous norm. The following conditions are mutually equivalent:

1. T is ideal-triangularizable;
2. $T - D(T)$ is quasinilpotent;
3. The diagonal entries of T consists precisely of eigenvalues (except maybe zero) of the operator T repeated according to their algebraic multiplicities.
Theorem

Let T be a positive power-compact operator on a Banach lattice L with order continuous norm. The following conditions are mutually equivalent:

1. T is ideal-triangularizable;
2. $T - \mathcal{D}(T)$ is quasinilpotent;
3. The diagonal entries of T consists precisely of eigenvalues (except maybe zero) of the operator T repeated according to their algebraic multiplicities.
Let T be a positive power-compact operator on a Banach lattice L with order continuous norm. The following conditions are mutually equivalent:

1. T is ideal-triangularizable;
2. $T - D(T)$ is quasinilpotent;
3. The diagonal entries of T consists precisely of eigenvalues (except maybe zero) of the operator T repeated according to their algebraic multiplicities.
Theorem

Let T be a positive power-compact operator on a Banach lattice L with order continuous norm. The following conditions are mutually equivalent:

1. T is ideal-triangularizable;
2. $T - D(T)$ is quasinilpotent;
3. The diagonal entries of T consists precisely of eigenvalues (except maybe zero) of the operator T repeated according to their algebraic multiplicities.
Theorem (Drnovšek, Kandić 2009)

Let E be an atomless Banach lattice with order continuous norm and let \mathcal{S} be a semigroup of positive ideal-triangularizable compact operators on E. Then \mathcal{S} is ideal-triangularizable.

- So far we have seen that the presence of atoms of a Banach lattice with order continuous norm plays an important role in spectra of ideal-triangularizable positive compact operators.
- Suppose that S and T are positive operators on an atomless Banach lattice with order continuous norm. If one of S and T is compact, then ST and TS are both compact. This implies $\mathcal{D}(ST) = \mathcal{D}(TS) = 0$.
Theorem (Drnovšek, Kandić 2009)

Let E be an atomless Banach lattice with order continuous norm and let \mathcal{S} be a semigroup of positive ideal-triangularizable compact operators on E. Then \mathcal{S} is ideal-triangularizable.

So far we have seen that the presence of atoms of a Banach lattice with order continuous norm plays an important role in spectra of ideal-triangularizable positive compact operators.

Suppose that S and T are positive operators on an atomless Banach lattice with order continuous norm. If one of S and T is compact, then ST and TS are both compact. This implies $\mathcal{D}(ST) = \mathcal{D}(TS) = 0.$
Theorem (Drnovšek, Kandić 2009)

Let E be an atomless Banach lattice with order continuous norm and let \mathcal{I} be a semigroup of positive ideal-triangularizable compact operators on E. Then \mathcal{I} is ideal-triangularizable.

- So far we have seen that the presence of atoms of a Banach lattice with order continuous norm plays an important role in spectra of ideal-triangularizable positive compact operators.

- Suppose that S and T are positive operators on an atomless Banach lattice with order continuous norm. If one of S and T is compact, then ST and TS are both compact. This implies $\mathcal{D}(ST) = \mathcal{D}(TS) = 0$.
Proposition

Let L be an atomic Banach lattice L with order continuous norm and \mathcal{I} a semigroup of positive operators on L. Then \mathcal{I} is ideal-triangularizable if and only if $\mathcal{D}(ST) = \mathcal{D}(S)\mathcal{D}(T)$ for all $S, T \in \mathcal{I}$.

Theorem

Let \mathcal{I} be a semigroup of ideal-triangularizable positive compact operators on a Banach lattice L with order continuous norm such that $\mathcal{D}(ST) = \mathcal{D}(TS)$ for every pair $\{S, T\} \subset \mathcal{I}$. Then the semigroup \mathcal{I} is ideal-triangularizable.
Proposition

Let L be an atomic Banach lattice L with order continuous norm and \mathcal{S} a semigroup of positive operators on L. Then \mathcal{S} is ideal-triangularizable if and only if $\mathcal{D}(ST) = \mathcal{D}(S)\mathcal{D}(T)$ for all $S, T \in \mathcal{S}$.

Theorem

Let \mathcal{S} be a semigroup of ideal-triangularizable positive compact operators on a Banach lattice L with order continuous norm such that $\mathcal{D}(ST) = \mathcal{D}(TS)$ for every pair $\{S, T\} \subseteq \mathcal{S}$. Then the semigroup \mathcal{S} is ideal-triangularizable.
Corollary

Let \mathcal{S} be a semigroup of positive $n \times n$ matrices. Suppose that for every matrix $S \in \mathcal{S}$ there exists a permutation matrix P_S (depending on S) such that the matrix $P^T_S S P_S$ is upper triangular. If $\mathcal{D}(ST) = \mathcal{D}(TS)$ for every pair $S, T \in \mathcal{S}$, then there exists a permutation matrix P such that every matrix in the semigroup $P^T \mathcal{S} P$ is upper triangular.
Example

Let

\[
A = \begin{bmatrix}
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\quad \text{and} \quad
B = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{bmatrix}.
\]

Then \(A^2 = B^2 = AB = BA = 0\), so that \(\mathcal{S} = \{0, A, B\}\) is a semigroup of ideal-triangularizable matrices such that \(\mathcal{D}(\mathcal{S}) = 0\) for all \(S \in \mathcal{S}\). However, \(\mathcal{S}\) is not ideal-triangularizable, as the diagonal of the matrix

\[
|A| + B = \begin{bmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{bmatrix}
\]

is zero, but the matrix is not nilpotent.
Example

Let e_1, e_2, \ldots, e_n be the standard basis vectors of \mathbb{R}^n, where $n \geq 3$. Define ideal-triangularizable nilpotent matrices by $A_i = e_i e_{i+1}^T$ for $i = 1, 2, \ldots, n-1$, and $A_n = e_n e_1^T$. Then the collection

$\{ A_1, A_2, \ldots, A_n \}$ has the property that $\mathcal{D}(A_i A_j) = 0$ for all $1 \leq i, j \leq n$. We claim that the collection is not ideal-triangularizable. Assume the contrary. Then the sum $S = A_1 + A_2 + \ldots + A_n$ is ideal-triangularizable. Since all the diagonal entries of S are zero, S must be nilpotent which contradicts the fact that $S^n = I$.

Main ideas of the proof of the main result

- We prove that S is ideal-reducible since we apply the ideal-triangularization lemma.
- We may assume that S is a closed semigroup which contains every nonnegative multiple of its members.
- If every member of S is quasinilpotent, then S is ideal-reducible.
- Otherwise there exists a nonzero positive operator S in S that is not the identity operator with spectral radius equal to one.
- If the geometric multiplicity of the eigenvalue 1 of S is equal to the algebraic multiplicity, then there is a positive idempotent (not the identity) of finite rank in S. This idempotent gives us ideal-reducibility of S.
We prove that \mathcal{I} is ideal-reducible since we apply the ideal-triangularization lemma.

We may assume that \mathcal{I} is a closed semigroup which contains every nonnegative multiple of its members.

If every member of \mathcal{I} is quasinilpotent, then \mathcal{I} is ideal-reducible.

Otherwise there exists a nonzero positive operator S in \mathcal{I} that is not the identity operator with spectral radius equal to one.

If the geometric multiplicity of the eigenvalue 1 of S is equal to the algebraic multiplicity, then there is a positive idempotent (not the identity) of finite rank in \mathcal{I}. This idempotent gives us ideal-reducibility of \mathcal{I}.

Main ideas of the proof of the main result
Main ideas of the proof of the main result

- We prove that \mathcal{S} is ideal-reducible since we apply the ideal-triangularization lemma.
- We may assume that \mathcal{S} is a closed semigroup which contains every nonnegative multiple of its members.
- If every member of \mathcal{S} is quasinilpotent, then \mathcal{S} is ideal-reducible.
- Otherwise there exists a nonzero positive operator S in \mathcal{S} that is not the identity operator with spectral radius equal to one.
- If the geometric multiplicity of the eigenvalue 1 of S is equal to the algebraic multiplicity, then there is a positive idempotent (not the identity) of finite rank in \mathcal{S}. This idempotent gives us ideal-reducibility of \mathcal{S}.
Main ideas of the proof of the main result

- We prove that \mathcal{I} is ideal-reducible since we apply the ideal-triangularization lemma.
- We may assume that \mathcal{I} is a closed semigroup which contains every nonnegative multiple of its members.
- If every member of \mathcal{I} is quasinilpotent, then \mathcal{I} is ideal-reducible.
- Otherwise there exists a nonzero positive operator S in \mathcal{I} that is not the identity operator with spectral radius equal to one.
- If the geometric multiplicity of the eigenvalue 1 of S is equal to the algebraic multiplicity, then there is a positive idempotent (not the identity) of finite rank in \mathcal{I}. This idempotent gives us ideal-reducibility of \mathcal{I}.
Main ideas of the proof of the main result

- We prove that \mathcal{I} is ideal-reducible since we apply the ideal-triangularization lemma.
- We may assume that \mathcal{I} is a closed semigroup which contains every nonnegative multiple of its members.
- If every member of \mathcal{I} is quasinilpotent, then \mathcal{I} is ideal-reducible.
- Otherwise there exists a nonzero positive operator S in \mathcal{I} that is not the identity operator with spectral radius equal to one.
- If the geometric multiplicity of the eigenvalue 1 of S is equal to the algebraic multiplicity, then there is a positive idempotent (not the identity) of finite rank in \mathcal{I}. This idempotent gives us ideal-reducibility of \mathcal{I}.
Otherwise there exists a square zero nonzero positive operator M in \mathcal{S}. It can be proved that the semigroup ideal in \mathcal{S} generated by M consists of quasinilpotent operator so that \mathcal{S} is again ideal-reducible.
Thank you for your attention.