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Weak convergence and Lévy convergence on the space of measures

Weak convergence and Lévy convergence of measures:

• abstract generalizations of the notion of the convergence of
distribution functions in probability theory

Let Fn and F be distribution functions and μn and μ be the Lebesgue-
Stieltjes measures given by Fn and F . The following are equivalent:

1 Fn(x) → F (x) for every continuity point x of F and Fn(∞) → F (∞)

2

∫
R

fdμn →
∫
R

fdμ for every f ∈ Cb(R)

3 μn(B) → μ(B) for every B ∈ B(R) with μ(∂B) = 0

• play an important role when proving many limit theorems in
probability theory and statistics, eg: the central limit theorem.

We have two types of generalizations that turn out to be equivalent: a
functional analytic one and a measure theoretic one.
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• X : metric space

• B(X ): the σ-field of all Borel subsets of X

• Cb(X ): the space of all bounded, continuous real functions on X

• ca(X ): the space of all σ-additive Borel measures on X

A functional analytic definition: weak convergence of measures

Let {μα} ⊂ ca(X ) be a net and μ ∈ ca(X ).

μα
w−→ μ

def⇐⇒
∫
X

fdμα →
∫
X

fdμ for every f ∈ Cb(X )

• The weak topology on ca(X ) is the topology generated by this
convergence.

• The weak topology is just the weak* topology on ca(X ) generated
by the duality

(μ, f ) ∈ ca(X )× Cb(X ) �→ 〈μ, f 〉 :=
∫
X

fdμ
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The portmanteau theorem

A measure theoretic definition: Lévy convergence of measures

μα
L−→ μ

def⇐⇒ μα(B) → μ(B) for every μ-continuity set B ∈ B(X )

B ∈ B(X ) is a μ-continuity set
def⇐⇒ μ(∂B) = 0 ⇐⇒ μ(B−) = μ(B◦)

The portmanteau theorem says that the following are equivalent:

1 μα
w−→ μ

2 lim supμα(C ) ≤ μ(C ) for every closed C and μα(X ) → μ(X )

3 μ(U) ≤ lim inf μα(U) for every open U and μα(X ) → μ(X )

4 μα
L−→ μ

In this talk we will:

• introduce a successful analogue of the portmanteau theorem for
nonadditive measures, which was given by Girotto and Holzer

• investigate further the possibility of metrizing the weak and Lévy topology
on the space of such nonadditive measures.
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Nonadditive measure

Definition (nonadditive measure)

X : a non-empty set, A: a class of subsets of X with ∅ ∈ A. A set
function μ : A → [0,∞] is called a nonadditive measure if it satisfies:

• μ(∅) = 0

• A,B ∈ A, A ⊂ B ⇒ μ(A) ≤ μ(B) (monotonicity)

It has already appeared in many papers: Hausdorff dimension (Hausdorff 1918),

lower/upper numerical probability (Koopman 1940), Maharam’s submeasure problem (Maharam

1947), capacity (Choquet 1953/54), semivariation (Dunford-Schwartz 1955), quasimeasure

(Alexiuk 1968), maxitive measure (Shilkret 1971), participation measure (Tsichritzis 1971),

submeasure (Drewnowski 1972, Dobrakov 1974), fuzzy measure (Sugeno 1974), k-triangular set

function (Agafanova-Klimkin 1974), game of characteristic function form, distorted measure

(Aumann-Shapley 1974), belief/plausibility function (Shafer 1976), possibility measure (Zadeh

1978), pre-measure (Šipoš 1979), necessity measure (Dubois-Prade 1980), approximately additive

(Kalton-Roberts 1983), decomposable measure (Weber 1984), Minkowski-Bouligrand dimension

(Schroeder 1991), subjective probabilities in decision making, and all that
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Choquet integral

To define weak convergence of nonadditive measures, we will introduce
an integral with respect to a nonadditive measure.

additive measure m → Lebesgue integral

∫
X

fdm

nonadditive measure μ → Choquet integral (C)

∫
X

fdμ

Definition (Choquet integral:1953/54, Schmeidler:1989, K:2008)

Let f : X → (−∞,∞) be a function. The (asymmetric) Choquet
integral of f with respect to a finite nonadditive μ is defined as:

(C)

∫
X

fdμ :=

∫ ∞

0

μ({f > t})dt −
∫ 0

−∞
{μ(X )− μ({f > t})}dt

= (C)

∫
X

f +dμ− (C)

∫
X

f −d μ̄,

where μ̄(A) := μ(X )− μ(Ac) is called the conjugate of μ.
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It is important to observe:

• The Choquet integral is NOT additive! It is only comonotonically
additive.

(C)

∫
X

(f + g)dμ 
= (C)

∫
X

fdμ+ (C)

∫
X

gdμ unless f ∼ g

• The Choquet integral is NOT homogeneous! It is only positively
homogeneous.

(C)

∫
X

(af )dμ 
= a ·
{
(C)

∫
X

fdμ

}
unless a ≥ 0

The theory of nonadditive measures and Choquet integrals has:

X : finite → A lot of practical applications:
decision models with nonadditive beliefs
overall rating in multiattribute evaluation

X : infinite → Focusing on theoretical considerations:
nonadditive extension of measure theory and
Lebesgue integration theory
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Difficulties when formalizing a nonadditive portmanteau theorem

Now we will introduce a result of Girotto and Holzer (2001).

Among other things we have to answer the following questions:

1 What is a reasonable definition of weak convergence of measures?

2 What is a proper definition of the μ-continuity set?

3 What is an alternative notion of the continuity of measures?

What is a definition of weak convergence of nonadditive measures?

• We expect that a reasonable definition should be given by:

μα
w−→ μ

def⇐⇒ (C)

∫
X

fdμα → (C)

∫
X

fdμ for every f ∈ Cb(X )

• It will be of interest to study other nonlinear integral cases, for
instance, the Sugeno integral and the Shilkret integral.

To answer the 2nd and 3rd questions, we have to carefully investigate
some essential problems coming from the nonadditivity of measures!
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What is a proper definition of the µ-continuity set?

• Which is a proper definition of the μ-continuity of a Borel set B?

1 μ(∂B) = 0

2 μ(B−) = μ(B◦)

3 something else

• Of course, for a nonadditive measure, the first and the second
conditions are not equivalent in general.

• On the other hand, by the definition, it holds that

μα
w−→ μ ⇐⇒ μ̄α

w−→ μ̄,

so we will expect that the same holds for Lévy convergence!

• This is not the case if we adopt the first definition, but this is the
case if we adopt the second definition.

• Actually, we should assume a stronger condition than the second
definition in order to add some continuity of measures.
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• This is not the case if we adopt the first definition, but this is the
case if we adopt the second definition.

• Actually, we should assume a stronger condition than the second
definition in order to add some continuity of measures.



Introduction Nonadditive measure Nonadditive portmanteau theorem Metrizability Problem and Answer References

Nonadditive version of the µ-continuity set

We begin with defining some regularizations of a nonadditive measure:

Definition (regularity system and strong regularity system)

Let μ : B(X ) → [0,∞) be a nonadditive measure and A ⊂ X .

• outer regularization: μ∗(A) := inf{μ(U) : A ⊂ U,U is open}
• inner regularization: μ∗(A) := sup{μ(C ) : C ⊂ A,C is closed}
• μ-regularity system:

Rμ := {B ∈ B(X ) : μ∗(B) = μ∗(B) = μ(B)}
• strong outer regularization:

μ�(A) := inf{μ(C ) : A ⊂ C ,C ∈ Rμ is closed}
• strong inner regularization:

μ�(A) := sup{μ(U) : U ⊂ A,U ∈ Rμ is open}
• μ-strong regularity system:

R◦
μ := {B ∈ B(X ) : μ�(B) = μ�(B) = μ(B)}
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Basic properties of µ-strong regularity system

The notion of the strongly regular sets is very useful when formalizing a
nonadditive portmanteau theorem.

Proposition

1 R◦
μ ⊂ Rμ and ∅,X ∈ R◦

μ

2 B ∈ Rμ ⇔ Bc ∈ Rμ̄ and B ∈ R◦
μ ⇔ Bc ∈ R◦

μ̄

3 Rμ and R◦
μ are NOT fields!

4 B ∈ R◦
μ ⇒ μ(B−) = μ(B◦)

5 Assume that μ is co-continuous, i.e.,
• c-continuous: μ(Cn) ↓ μ(C) whenever {Cn} is a decreasing sequence

of closed sets with C =
⋂∞

n=1 Cn

• o-continuous: μ(Un) ↑ μ(U) whenever {Un} is an increasing
sequence of open sets with U =

⋃∞
n=1 Un

Then B ∈ R◦
μ ⇔ μ(B−) = μ(B◦).

Due to (4) & (5), B ∈ R◦
μ is strong enough to behave as a μ-continuity

set in the definition of Lévy convergence.
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An analogue of the portmanteau theorem for nonadditive measures

We are ready to introduce a nonadditive portmanteau theorem:

Theorem (The nonadditive formalization: Girotto & Holzer 2001)

Let X be a metric space. Let {μα} ⊂ M(X ) be a net and μ ∈ M(X ).
Then the following are equivalent:

1 μα
w−→ μ

2 μ̄α
w−→ μ̄

3 For any closed C ∈ Rμ and any open U ∈ Rμ,

lim supμα(C ) ≤ μ(C ) and μ(U) ≤ lim inf μα(U)

4 μα(B) → μ(B) for any B ∈ R◦
μ

Definition (Lévy convergence of nonadditive measures)

μα
L−→ μ

def⇐⇒ μα(B) → μ(B) for every B ∈ R◦
μ

This means we can obtain a nonadditive version of the portmanteau theorem if we change the “µ-continuity sets” for the additive case into
the “µ-strongly regular sets,” which are stronger condition than the “µ-continuity sets,” in the definition of Lévy convergence.



Introduction Nonadditive measure Nonadditive portmanteau theorem Metrizability Problem and Answer References

Main Topic I: Metrizing the Lévy topology as a separable space

As is the case for additive measures, to metrize the Lévy topology we
need to assume some continuity and regularity conditions:

Mrco(X ) :=

{
μ is co-continuous

μ ∈ M(X ) :
μ(B) = μ∗(B) = μ∗(B) for all B ∈ B(X )

}

• It is easily seen that: Mrco(X ) = Mrco(X ) := {μ̄ : μ ∈ Mrco(X )}.
• If μ is autocontinuous and Radon, i.e.,

• μ(A�Bn) → μ(A) whenever A,Bn ∈ B(X ) and μ(Bn) → 0

• ∀B ∈ B(X ), ∃{Kn}: compact sets, ∃{Un}: open sets, Kn ⊂ B ⊂ Un

and μ(Un \ Kn) → 0

then μ, μ̄ ∈ Mrco(X ).

Theorem (Metrizing Mrco(X ) as a separable space)

Let X be a metric space. Then the following are equivalent:

1 X is separable

2 The Lévy topology on Mrco(X ) is separably metrizable
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Main Topic II: Two explicit metrics metrizing the Lévy topology

In the case of the usual μ, ν ∈ ca(X ), we know that:

• Lévy-Prokhorov metric:

ρ(μ, ν) := inf{ε > 0 : μ(B) ≤ ν(Bε) + ε for all B ∈ B(X )},

where Bε := {x ∈ X : d(x ,B) < ε}.
• Fortet-Mourier metric:

κ(μ, ν) := sup

{∣∣∣∣
∫
X

fdμ−
∫
X

fdν

∣∣∣∣ : f ∈ BL(X , d), ‖f ‖BL ≤ 1

}
,

where BL(X , d) denotes the space of all bounded, Lipschitz
functions on X with ‖f ‖BL := ‖f ‖∞ + ‖f ‖L.

metrize the Lévy topology on ca(X ).

A natural question comes to us:

Can the Lévy topology on the space of nonadditive measures be metrized
by these explicit metrics?
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Proper nonadditive versions of L-P and F-M metrics

Some difficulties when defining proper nonadditive versions of L-P and
F-M metrics:

• ρ(μ, ν) 
= ρ(ν, μ), i.e., ρ is NOT symmetric!

• ρ(μ, ν) 
= ρ(μ̄, ν̄), which means we NEED to calculate ρ(μ̄, ν̄) along
with ρ(μ, ν) in order to measure the distance between μ and ν!

We expect that proper nonadditive versions of the L-P and F-M metrics
should be given by the following formulas:

Definition (Lévy-Prokhorov and Fortet-Mourier metrics)

Let μ, ν ∈ Mrco(X ).

• Lévy-Prokhorov metric:

π(μ, ν) := ρ(μ, ν) + ρ(ν, μ) + ρ(μ̄, ν̄) + ρ(ν̄, μ̄)

• Fortet-Mourier metric:

κ(μ, ν) := sup

{∣∣∣∣(C)
∫
X

fdμ− (C)

∫
X

fdν

∣∣∣∣ : f ∈ BL(X , d), ‖f ‖BL ≤ 1

}
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Problem and partial answer

PROBLEM: Is the Lévy topology on Mrco(X ) metrizable w.r.t. π and κ?

PARTIAL ANSWER: The Lévy topology can be metrized not on the
whole space Mrco(X ) but on a certain subset P of Mrco(X ).

Definition (uniform autocontinuity and uniform equi-autocontinuity)

Let μ ∈ M(X ) and P ⊂ M(X ).

• μ is uniformly autocontinuous
def⇐⇒ ∀ε > 0, ∃δ > 0,

∀A, ∀B ∈ B(X ),

μ(B) < δ ⇒ μ(A ∪ B)− ε < μ(A) < μ(A \ B) + ε

• P is uniformly equi-autocontinuous
def⇐⇒ ∀ε > 0, ∃δ > 0, ∀μ ∈ P, ∀A, ∀B ∈ B(X ),

μ(B) < δ ⇒ μ(A ∪ B)− ε < μ(A) < μ(A \ B) + ε
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Examples of uniform equi-autocontinuity sets

Example (uniform equi-autocontinuity set)

• SUB(X ) := {μ ∈ M(X ) : μ is subadditive} is uniformly
equi-autocontinuous.

• Let (Ω,A) be a measurable space and P : A → [0, 1] be a uniformly
autocontinuous nonadditive probability measure. Let {ξn} be a
sequence of X -valued random elements on Ω. Then {P ◦ ξ−1

n } is
uniformly equi-autocontinuous.

• Let λ1 < 0 < λ2 be constants. Then

P := {μ ∈ M(X ) : μ satisfies λ-rule for some λ ∈ [λ1, λ2]}
is uniformly equi-autocontinuous, where μ is said to satisfy λ-rule if

μ(A ∪ B) = μ(A) + μ(B) + λ · μ(A) · μ(B)
whenever A ∩ B = ∅, i.e., μ is superadditive if λ > 0; subadditive if
λ < 0; additive if λ = 0.
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Main theorem

Now we can state our main theorem that gives a partial answer to our
problem at this moment:

Theorem

Let P ⊂ M(X ) be uniformly equi-autocontinuous. Assume that every
μ ∈ P is Radon. Then the Lévy topology on P and P̄ can be metrized
w.r.t. π and κ.

The above theorem can be proved by the following uniformity result for
weak convergence of measures:

The uniformity for weak convergence on the unit ball in BL(X , d)

Let {μα} ⊂ M(X ) be uniformly equi-autocontinuous and μ ∈ M(X )
uniformly autocontinuous. Assume that μ is Radon. The following are
equivalent:

1 (C)
∫
X
fdμα → (C)

∫
X
fdμ for every f ∈ BL(X , d)

2 sup
{∣∣(C) ∫

X
fdμα − (C)

∫
X
fdμ

∣∣ : ‖f ‖BL ≤ 1, f ∈ BL(X , d)
} → 0
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Applications to nonadditive probability theory

Theorem (The nonadditive LeCam theorem)

Let {μn} ⊂ M(X ) and μ ∈ M(X ). Assume that {μn} is uniformly

equi-autocontinuous and every μn is Radon. If μn
L−→ μ and if μ is

c-continuous and tight, i.e., ∀ε > 0, ∃Kε: compact, μ(X \ Kε) < ε, then
{μn} is uniformly tight, i.e.,

∀ε > 0, ∃Kε: compact, sup
n∈N

μn(X \ Kε) < ε.

Corollary

Let (Ω,A) be a measurable space and let P : A → [0, 1] be a uniformly
autocontinuous nonadditive probability. Let ξ and ξn (n = 1, 2, . . . ) be
X-valued random elements on Ω. Assume that P ◦ ξ−1

n is Radon and

P ◦ ξ−1 is co-continuous and that P ◦ ξ−1
n

L−→ P ◦ ξ−1. The following are
equivalent:

1 P ◦ ξ−1 is tight.

2 {P ◦ ξ−1
n } is uniformly tight.
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∀ε > 0, ∃Kε: compact, sup
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μn(X \ Kε) < ε.
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Let (Ω,A) be a measurable space and let P : A → [0, 1] be a uniformly
autocontinuous nonadditive probability. Let ξ and ξn (n = 1, 2, . . . ) be
X-valued random elements on Ω. Assume that P ◦ ξ−1

n is Radon and

P ◦ ξ−1 is co-continuous and that P ◦ ξ−1
n

L−→ P ◦ ξ−1. The following are
equivalent:

1 P ◦ ξ−1 is tight.

2 {P ◦ ξ−1
n } is uniformly tight.
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Thank you very much for your attention!
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