Mean Ergodic Theorems on Norming Dual Pairs

Markus Kunze

based on joint work with Moritz Gerlach

Positivity VII Leiden, July 22 –26 2013

Theorem

X Banach Space, $T \in \mathcal{L}(X)$ power bounded, $A_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$.

Theorem

X Banach Space, $T \in \mathcal{L}(X)$ power bounded, $A_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$.

Equivalent

- \bullet $\|\cdot\|$ -lim $_{n\to\infty}$ A_nx exists for all $x\in X$, i.e. T is mean ergodic.
- **2** $A_n x$ has a $\sigma(X, X^*)$ -cluster point for all $x \in X$.
- 3 fix(T) separates $fix(T^*)$.

Theorem

X Banach Space, $T \in \mathcal{L}(X)$ power bounded, $A_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$.

Equivalent

- $\|\cdot\|$ -lim $_{n\to\infty}$ A_nx exists for all $x\in X$, i.e. T is mean ergodic.
- 2 A_nx has a $\sigma(X, X^*)$ -cluster point for all $x \in X$.
- \odot fix(T) separates fix(T^*).

In this case: $A_n x \to Px$ where P projects onto $\operatorname{fix}(T)$ along $\overline{\operatorname{rg}(I-T)}^{\|\cdot\|}$.

Theorem

X Banach Space, $T \in \mathcal{L}(X)$ power bounded, $A_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$.

Equivalent

- $\|\cdot\|$ -lim $_{n\to\infty}$ A_nx exists for all $x\in X$, i.e. T is mean ergodic.
- 2 A_nx has a $\sigma(X, X^*)$ -cluster point for all $x \in X$.

In this case: $A_n x \to Px$ where P projects onto $\operatorname{fix}(T)$ along $\overline{\operatorname{rg}(I-T)}^{\|\cdot\|}$.

• Typical spaces to work on: L^p -spaces, C(K).

Theorem

X Banach Space, $T \in \mathcal{L}(X)$ power bounded, $A_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$.

Equivalent

- $\|\cdot\|$ -lim $_{n\to\infty}$ A_nx exists for all $x\in X$, i.e. T is mean ergodic.
- **2** $A_n x$ has a $\sigma(X, X^*)$ -cluster point for all $x \in X$.
- \odot fix(T) separates fix(T*).

In this case: $A_n x \to Px$ where P projects onto $\operatorname{fix}(T)$ along $\overline{\operatorname{rg}(I-T)}^{\|\cdot\|}$.

- Typical spaces to work on: L^p -spaces, C(K).
- Typical space not to work on: $C_b(\Omega)$, $\mathcal{M}(\Omega)$ Ω Polish.

• Problem with $C_b(\Omega)$: Norm topology is too strong!

- Problem with $C_b(\Omega)$: Norm topology is too strong!
- Equivalent: Norm dual is too large.

- Problem with $C_b(\Omega)$: Norm topology is too strong!
- Equivalent: Norm dual is too large.
- Our Approach: Replace X^* with $Y \subset X^*$ which is norm closed and norming for X. \leadsto norming dual pair (X, Y).

- Problem with $C_b(\Omega)$: Norm topology is too strong!
- Equivalent: Norm dual is too large.
- Our Approach: Replace X^* with $Y \subset X^*$ which is norm closed and norming for X. \leadsto norming dual pair (X, Y). Consider weak topologies $\sigma := \sigma(X, Y)$ and $\sigma' := \sigma(Y, X)$. Or consistent topologies.

- Problem with $C_b(\Omega)$: Norm topology is too strong!
- Equivalent: Norm dual is too large.
- Our Approach: Replace X^* with $Y \subset X^*$ which is norm closed and norming for X. \leadsto norming dual pair (X, Y). Consider weak topologies $\sigma := \sigma(X, Y)$ and $\sigma' := \sigma(Y, X)$. Or consistent topologies.
- We require that T respects the duality, i.e. $T^*Y \subset Y$. This is equivalent with T is σ -continuous. We write $T \in \mathcal{L}(X, \sigma)$. Notation: $T' := T^*|_{Y}$.

- Problem with $C_b(\Omega)$: Norm topology is too strong!
- Equivalent: Norm dual is too large.
- Our Approach: Replace X^* with $Y \subset X^*$ which is norm closed and norming for X. \leadsto norming dual pair (X, Y). Consider weak topologies $\sigma := \sigma(X, Y)$ and $\sigma' := \sigma(Y, X)$. Or consistent topologies.
- We require that T respects the duality, i.e. $T^*Y \subset Y$. This is equivalent with T is σ -continuous. We write $T \in \mathcal{L}(X, \sigma)$. Notation: $T' := T^*|_{Y}$.
- Mean ergodic theorems on locally convex spaces: Require equicontinuity!

$$\langle f, \mu \rangle := \int_{\Omega} f \, d\mu.$$

$$\langle f, \mu
angle := \int_{\Omega} f \, d\mu.$$

- Topologies:
 - $\sigma = \sigma(C_b(\Omega), \mathcal{M}(\Omega)).$

$$\langle f, \mu
angle := \int_{\Omega} f \, d\mu.$$

- Topologies:
 - $\sigma = \sigma(C_b(\Omega), \mathcal{M}(\Omega)).$
 - $\sigma' = \sigma(\mathcal{M}(\Omega), C_b(\Omega)).$
 - β_0 strict topology on $C_b(\Omega)$. This is a consistent topology. On bounded sets = uniform convergence on compact sets

$$\langle f, \mu
angle := \int_{\Omega} f \, d\mu.$$

- Topologies:
 - $\sigma = \sigma(C_b(\Omega), \mathcal{M}(\Omega)).$

 - β_0 strict topology on $C_b(\Omega)$. This is a consistent topology. On bounded sets = uniform convergence on compact sets
- Operators: $T \in \mathcal{L}(C_b(\Omega))$ respects duality iff T is a *kernel operator*:

$$(Tf)(x) = \int_{\Omega} f(y) k(x, dy).$$

• We consider $X = C_b(\Omega)$ and $Y = \mathcal{M}(\Omega)$ in duality via

$$\langle \mathit{f}, \mu \rangle := \int_{\Omega} \mathit{f} \, \mathsf{d} \mu.$$

- Topologies:

 - β_0 strict topology on $C_b(\Omega)$. This is a consistent topology. On bounded sets = uniform convergence on compact sets
- Operators: $T \in \mathcal{L}(C_b(\Omega))$ respects duality iff T is a *kernel operator*:

$$(Tf)(x) = \int_{\Omega} f(y) k(x, dy).$$

Markov chains/processes on Polish spaces.

Theorem

(X,Y) norming dual pair, $T \in \mathcal{L}(X,\sigma)$, $A_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$.

Theorem

(X, Y) norming dual pair, $T \in \mathcal{L}(X, \sigma), A_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$.

Equivalent

- **1** σ -lim $A_n x$ exists for all $x \in X$ and σ' -lim $A'_n y$ exists for all $y \in Y$.
- **②** $\{A_nx\}$ is relatively σ -compact for every $x \in X$ and $\{A'_ny\}$ is relatively σ' -compact for every $y \in Y$.

Theorem

(X,Y) norming dual pair, $T \in \mathcal{L}(X,\sigma)$, $A_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$.

Equivalent

- **1** σ -lim $A_n x$ exists for all $x \in X$ and σ' -lim $A'_n y$ exists for all $y \in Y$.
- **②** $\{A_nx\}$ is relatively σ -compact for every $x \in X$ and $\{A'_ny\}$ is relatively σ' -compact for every $y \in Y$.

In this case:

1 The fixed spaces fix(T) and fix(T') separate each other.

Theorem

(X,Y) norming dual pair, $T \in \mathcal{L}(X,\sigma), A_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$.

Equivalent

- **1** σ -lim A_nx exists for all $x \in X$ and σ' -lim A'_ny exists for all $y \in Y$.
- **2** $\{A_nx\}$ is relatively σ -compact for every $x \in X$ and $\{A'_ny\}$ is relatively σ' -compact for every $y \in Y$.

In this case:

- **1** The fixed spaces fix(T) and fix(T') separate each other.
- We have $X = \operatorname{fix}(T) \oplus \overline{\operatorname{rg}(I-T)}^{\sigma}$ and $Y = \operatorname{fix}(T') \oplus \overline{\operatorname{rg}(I-T')}^{\sigma'}$.

Theorem

(X,Y) norming dual pair, $T \in \mathcal{L}(X,\sigma)$, $A_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$.

Equivalent

- **1** σ -lim $A_n x$ exists for all $x \in X$ and σ' -lim $A'_n y$ exists for all $y \in Y$.
- **②** $\{A_nx\}$ is relatively σ -compact for every $x \in X$ and $\{A'_ny\}$ is relatively σ' -compact for every $y \in Y$.

In this case:

- **1** The fixed spaces fix(T) and fix(T') separate each other.
- We have $X = \operatorname{fix}(T) \oplus \overline{\operatorname{rg}(I-T)}^{\sigma}$ and $Y = \operatorname{fix}(T') \oplus \overline{\operatorname{rg}(I-T')}^{\sigma'}$.
- **5** The ergodic projection P belongs to $\mathcal{L}(X, \sigma)$.

Theorem

(X, Y) norming dual pair, $T \in \mathcal{L}(X, \sigma), A_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$.

Equivalent

- **1** σ -lim $A_n x$ exists for all $x \in X$ and σ' -lim $A'_n y$ exists for all $y \in Y$.
- **2** $\{A_nx\}$ is relatively σ -compact for every $x \in X$ and $\{A'_ny\}$ is relatively σ' -compact for every $y \in Y$.

In this case:

- **3** The fixed spaces fix(T) and fix(T') separate each other.
- We have $X = \operatorname{fix}(T) \oplus \overline{\operatorname{rg}(I-T)}^{\sigma}$ and $Y = \operatorname{fix}(T') \oplus \overline{\operatorname{rg}(I-T')}^{\sigma'}$.
- **1** The ergodic projection P belongs to $\mathcal{L}(X, \sigma)$.
 - Extension to more general semigroups and average schemes.

Examples show that:

• σ -convergence of $A_n x$ for all $x \in X$ does not imply σ' -convergence of $A'_n y$.

Examples show that:

- σ -convergence of $A_n x$ for all $x \in X$ does not imply σ' -convergence of $A'_n y$.
- Ergodic decompositions of *X* and *Y* do not imply mean ergodicity.

Examples show that:

- σ -convergence of $A_n x$ for all $x \in X$ does not imply σ' -convergence of $A'_n y$.
- Ergodic decompositions of *X* and *Y* do not imply mean ergodicity. However: Weaker convergence of Cesàro means.

Examples show that:

- σ -convergence of $A_n x$ for all $x \in X$ does not imply σ' -convergence of $A'_n y$.
- Ergodic decompositions of X and Y do not imply mean ergodicity.
 However: Weaker convergence of Cesàro means.
- If fix(T) and fix(T') separate each other, we need not have ergodic decompositions, unless these spaces are finite dimensional.

Examples show that:

- σ -convergence of $A_n x$ for all $x \in X$ does not imply σ' -convergence of $A'_n y$.
- Ergodic decompositions of X and Y do not imply mean ergodicity.
 However: Weaker convergence of Cesàro means.
- If fix(T) and fix(T') separate each other, we need not have ergodic decompositions, unless these spaces are finite dimensional.

We give an example for the latter. Put

$$K_n:=\{0,1,\ldots,n\} imes\{n^{-1}\}\quad K_0:=\mathbb{N} imes\{0\}\quad \Omega:=\bigcup_{n=0}^\infty K_n.$$

Examples show that:

- σ -convergence of $A_n x$ for all $x \in X$ does not imply σ' -convergence of $A'_n y$.
- Ergodic decompositions of X and Y do not imply mean ergodicity.
 However: Weaker convergence of Cesàro means.
- If fix(T) and fix(T') separate each other, we need not have ergodic decompositions, unless these spaces are finite dimensional.

We give an example for the latter. Put

 $K_n := \{0, 1, \dots, n\} \times \{n^{-1}\}$ $K_0 := \mathbb{N} \times \{0\}$ $\Omega := \bigcup_{n=0}^{\infty} K_n$. We put $X = C_b(\Omega)$ $Y = \mathscr{M}(\Omega)$. $T \in \mathscr{L}(X, \sigma)$ is given by $Tf = f \circ \varphi$, where φ acts as follows.

$$K_1 \circ \bigcirc \bigcirc \bigcirc$$

$$K_1 \circ \longrightarrow \circ$$

We have

$$\operatorname{fix}(T) = \Big\{ \sum_{n=0}^{\infty} a_n \mathbb{1}_{K_n} : a_n \to a_0 \Big\}$$

$$K_1 \circ \longrightarrow \circ$$

We have

$$\operatorname{fix}(T) = \Big\{ \sum_{n=0}^{\infty} a_n \mathbb{1}_{K_n} : a_n \to a_0 \Big\}$$

$$\operatorname{fix}(T') = \Big\{ \sum_{n=1}^{\infty} a_n \zeta_n : a_n \in \ell^1 \Big\}$$

$$K_1 \circ \longrightarrow \circ$$

We have

$$\operatorname{fix}(T) = \Big\{ \sum_{n=0}^{\infty} a_n \mathbb{1}_{K_n} : a_n \to a_0 \Big\}$$

$$\operatorname{fix}(T') = \Big\{ \sum_{n=1}^{\infty} a_n \zeta_n : a_n \in \ell^1 \Big\}$$

 \rightsquigarrow fix(T) and fix(T') separate each other.

$$K_1 \circ \longrightarrow \circ$$

We have

$$\operatorname{fix}(T) = \Big\{ \sum_{n=0}^{\infty} a_n \mathbb{1}_{K_n} : a_n \to a_0 \Big\}$$

$$\operatorname{fix}(T') = \Big\{ \sum_{n=1}^{\infty} a_n \zeta_n : a_n \in \ell^1 \Big\}$$

 \rightsquigarrow fix(T) and fix(T') separate each other.

But
$$\delta_{(0,0)} \not\in \operatorname{fix}(T') \oplus \overline{\operatorname{rg}(I-T')}^{\sigma'}$$
.

Additional assumption on $C_b(\Omega)$

We consider the pair $(C_b(\Omega), \mathcal{M}(\Omega))$. We break the symmetry by assuming

(RC) For every Lipschitz f, the set $\{A_n f\}$ is relatively β_0 -compact.

Additional assumption on $C_b(\Omega)$

We consider the pair $(C_b(\Omega), \mathcal{M}(\Omega))$. We break the symmetry by assuming

(RC) For every Lipschitz f, the set $\{A_n f\}$ is relatively β_0 -compact.

This is satisfied if

- *T* is strongly Feller: $TB_b(\Omega) \subset C_b(\Omega)$.
- The sequence A_nf is equicontinuous for Lipschitz f
 - → e-property, cf. Komorowski, Peszat, Szarek, Ann. Prob. '10

Additional assumption on $C_b(\Omega)$

We consider the pair $(C_b(\Omega), \mathcal{M}(\Omega))$. We break the symmetry by assuming

(RC) For every Lipschitz f, the set $\{A_n f\}$ is relatively β_0 -compact.

This is satisfied if

- *T* is strongly Feller. $TB_b(\Omega) \subset C_b(\Omega)$.
- The sequence $A_n f$ is equicontinuous for Lipschitz f
 - → e-property, cf. Komorowski, Peszat, Szarek, Ann. Prob. '10

Lemma

(RC) and $\{A'_n\delta_x\}$ tight for all $x \in \Omega$ and T Markovian $\Rightarrow \{A_n : n\}$ is β_0 -equicontinuous.

Theorem

Let T be Markovian and assume (RC). Equivalent:

- β_0 -lim $_{n\to\infty}$ $A'_n f$ exists for all $f\in C_b(\Omega)$.
- $A'_n \delta_x$ has a σ' -cluster point for every $x \in \Omega$.
- fix(T') separates fix(T).
- $\mathcal{M}(E) = \operatorname{fix}(T) \oplus \overline{\operatorname{rg}(I T')}^{\sigma'}$.

The End

Thank you for your attention.