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In this case: Anx — Px where P projects onto fix(T) along tg(I — 7).

@ Typical spaces to work on:  LP-spaces, C(K).
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Markus Kunze (Ulm University) July 23rd 2013 2/10




Our Setting

@ Problem with Cp(2):

Markus Kunze (Ulm University)

Norm topology is too strong!



Our Setting

@ Problem with Cp(€2):  Norm topology is too strong!
@ Equivalent:  Norm dual is too large.

Markus Kunze (Ulm University) July 23rd 2013 3/10



Our Setting

@ Problem with Cp(€2):  Norm topology is too strong!
@ Equivalent:  Norm dual is too large.

@ Our Approach:  Replace X* with Y c X* which is norm closed
and norming for X. ~»  norming dual pair (X, Y).

Markus Kunze (Ulm University) July 23rd 2013 3/10



Our Setting

@ Problem with Cp(€2):  Norm topology is too strong!
@ Equivalent:  Norm dual is too large.

@ Our Approach:  Replace X* with Y C X* which is norm closed
and norming for X. ~»  norming dual pair (X, Y).
Consider weak topologies o := o(X, Y) and o’ := o (Y, X).
Or consistent topologies.

Markus Kunze (Ulm University) July 23rd 2013 3/10



Our Setting

@ Problem with Cp(€2):  Norm topology is too strong!

@ Equivalent:  Norm dual is too large.

@ Our Approach:  Replace X* with Y C X* which is norm closed
and norming for X. ~»  norming dual pair (X, Y).
Consider weak topologies o := o(X, Y) and ¢’ := o(Y, X).
Or consistent topologies.

@ We require that T respects the duality, i.e. T*Y C Y.
This is equivalent with T is o-continuous. We write T € .Z(X, o).
Notation: T’ := T*|y.

Markus Kunze (Ulm University) July 23rd 2013 3/10



Our Setting
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@ Equivalent:  Norm dual is too large.

@ Our Approach:  Replace X* with Y C X* which is norm closed
and norming for X. ~»  norming dual pair (X, Y).
Consider weak topologies o := o(X, Y) and ¢’ := o(Y, X).
Or consistent topologies.

@ We require that T respects the duality, i.e. T*Y C Y.
This is equivalent with T is o-continuous. We write T € .Z(X, o).
Notation: T’ := T*|y.

@ Mean ergodic theorems on locally convex spaces: Require
equicontinuity!
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Main Example
@ We consider X = Cp(Q2) and Y = .#(Q2) in duality via

(f, 1) :I/Qfdu-

@ Topologies:
> 0 =0(Cp(Q), #(Q)).
> o' =o(H(Q), Cp(Q)).
» [ strict topology on Cp(2). This is a consistent topology.
On bounded sets = uniform convergence on compact sets

@ Operators: T € Z(Cp(R2)) respects duality iff T is a kernel
operator.

(TH(x) = /Q (y) K(x, dy).

@ ~» Markov chains/processes on Polish spaces.

Markus Kunze (Ulm University) July 23rd 2013 4/10



Main Result |

Theorem
n—1
(X, Y) norming dual pair, T € Z(X, ), An := %,kzo Tk,

Markus Kunze (Ulm University) July 23rd 2013 5/10



Main Result |

Theorem

n—1

(X, Y) norming dual pair, T € £(X,0), Ay =1 3 T

. k=0
Equivalent

@ o-im Ayx exists for all x € X and o’Him ALy exists forally € Y.

@ {A.x} is relatively o-compact for every x € X and { Ay} is

relatively o'-compact for every y € Y.

Markus Kunze (Ulm University)

July 23rd 2013

5/10




Main Result |

Theorem
n—1
(X, Y) norming dual pair, T € £(X,0), Ay =1 3 T
k=0
Equivalent

@ o-im Ayx exists for all x € X and o’Him ALy exists forally € Y.

@ {A.x} is relatively o-compact for every x € X and { Ay} is
relatively o'-compact for every y € Y.
In this case:

© The fixed spaces fix(T) and fix(T') separate each other.

Markus Kunze (Ulm University) July 23rd 2013 5/10




Main Result |

Theorem
n—1
(X, Y) norming dual pair, T € £(X,0), Ay =1 3 T
k=0
Equivalent

@ o-im Ayx exists for all x € X and o’Him ALy exists forally € Y.

@ {A.x} is relatively o-compact for every x € X and { Ay} is
relatively o'-compact for every y € Y.
In this case:

© The fixed spaces fix(T) and fix(T') separate each other.

Q We have X = fix(T)org(I— T)" and Y = fix(T') @ rg(/ — T’)U/-

Markus Kunze (Ulm University) July 23rd 2013

5/10




Main Result |

Theorem
n—1
(X, Y) norming dual pair, T € £(X,0), Ay =1 3 T
k=0
Equivalent

@ o-im Ayx exists for all x € X and o’Him ALy exists forally € Y.

@ {A.x} is relatively o-compact for every x € X and { Ay} is
relatively o’-compact for every y € Y.
In this case:

© The fixed spaces fix(T) and fix(T') separate each other.

Q We have X = fix(T)org(I— T)" and Y = fix(T') @ rg(/ — T’)U/-

© The ergodic projection P belongs to £ (X, o).

Markus Kunze (Ulm University) July 23rd 2013

5/10




Main Result |
Theorem

n—1
(X, Y) norming dual pair, T € £(X,0), Ay =1 3 T
k=0
Equivalent

@ o-im Ayx exists for all x € X and o’Him ALy exists forally € Y.

@ {A.x} is relatively o-compact for every x € X and { Ay} is
relatively o’-compact for every y € Y.
In this case:

© The fixed spaces fix(T) and fix(T') separate each other.

O We have X = fix(T) @ 1g(l — T)” and Y = fix(T") & 1e(l — 7).
© The ergodic projection P belongs to £ (X, o).

@ Extension to more general semigroups and average schemes.
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Counterexamples

Examples show that:

@ o-convergence of A,x for all x € X does not imply ¢’-convergence

of ALy.

@ Ergodic decompositions of X and Y do not imply mean ergodicity.

However:  Weaker convergence of Cesaro means.

o If fix(T) and fix(T’) separate each other, we need not have
ergodic decompositions, unless these spaces are finite
dimensional.

We give an example for the latter. Put

Kn:=1{0,1,....,n} x {n7} Ko:=Nx{0} Q:=Up,Kn
Weput X =Cp(Q2) Y=#(Q). TeZL(X,0) Iisgivenby
Tf = f o ¢, where ¢ acts as follows.
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Counterexamples contd
We have

fix(T) = {iaann can — ao}
Ky A po0—>0

n=0
K3 0—>»0—»0—>»0
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Counterexamples contd

We have

fix(T) = {iaann can — ao}

n=0

fix(T') = {iang‘n “ap € 61}
n=1

~ fix(T) and fix(T’) separate each
other.

But d(0.0) ¢ fix(T") & re(1— T7) .
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Additional assumption on Cp(£2)

We consider the pair (Cp(Q2), .#(X2)). We break the symmetry by
assuming

(RC) For every Lipschitz f, the set {Anf} is relatively So-compact.
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Additional assumption on Cp(£2)

We consider the pair (Cp(Q2),.#(2)). We break the symmetry by
assuming

(RC) For every Lipschitz f, the set {Anf} is relatively So-compact.
This is satisfied if
@ T is strongly Feller:  TBp(Q2) C Cp(92).

@ The sequence Ajf is equicontinuous for Lipschitz f
~  e-property, cf. Komorowski, Peszat, Szarek, Ann. Prob. '10
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Additional assumption on Cp(£2)

We consider the pair (Cp(Q2),.#(2)). We break the symmetry by
assuming

(RC) For every Lipschitz f, the set {Anf} is relatively So-compact.
This is satisfied if
@ T is strongly Feller:  TBp(Q2) C Cp(92).

@ The sequence Ajf is equicontinuous for Lipschitz f
~  e-property, cf. Komorowski, Peszat, Szarek, Ann. Prob. '10

Lemma

(RC) and {A},dx} tight for all x € Q and T Markovian
= {An : n} is By-equicontinuous.
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Main Result Il

Theorem

Let T be Markovian and assume (RC). Equivalent:
@ [o-limy_,o AL exists for all f € Cp(RQ).
@ A 0x has a o'-cluster point for every x € Q.
o fix(T') separates fix(T).

o .M(E)=fix(T)org(I—T7) .
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The End
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Thank you for your attention.



