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The Classical Mean Ergodic Theorem

Theorem

X Banach Space, T ∈ L (X ) power bounded, An := 1
n

n−1∑
k=0

T k .

Equivalent
1 ‖ · ‖-limn→∞ Anx exists for all x ∈ X, i.e. T is mean ergodic.
2 Anx has a σ(X ,X ∗)-cluster point for all x ∈ X.
3 fix(T ) separates fix(T ∗).

4 X = fix(T )⊕ rg(I − T )
‖·‖

.

In this case: Anx → Px where P projects onto fix(T ) along rg(I − T )
‖·‖

.

Typical spaces to work on: Lp-spaces, C(K ).
Typical space not to work on: Cb(Ω), M (Ω) Ω Polish.
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Our Setting

Problem with Cb(Ω): Norm topology is too strong!

Equivalent: Norm dual is too large.
Our Approach: Replace X ∗ with Y ⊂ X ∗ which is norm closed
and norming for X .  norming dual pair (X ,Y ).
Consider weak topologies σ := σ(X ,Y ) and σ′ := σ(Y ,X ).
Or consistent topologies.
We require that T respects the duality, i.e. T ∗Y ⊂ Y .
This is equivalent with T is σ-continuous. We write T ∈ L (X , σ).
Notation: T ′ := T ∗|Y .
Mean ergodic theorems on locally convex spaces: Require
equicontinuity!
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Main Example

We consider X = Cb(Ω) and Y = M (Ω) in duality via

〈f , µ〉 :=

∫
Ω

f dµ.

Topologies:
I σ = σ(Cb(Ω),M (Ω)).
I σ′ = σ(M (Ω),Cb(Ω)).
I β0 strict topology on Cb(Ω). This is a consistent topology.

On bounded sets = uniform convergence on compact sets

Operators: T ∈ L (Cb(Ω)) respects duality iff T is a kernel
operator:

(Tf )(x) =

∫
Ω

f (y) k(x ,dy).

 Markov chains/processes on Polish spaces.
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Main Result I

Theorem

(X ,Y ) norming dual pair, T ∈ L (X , σ),An := 1
n

n−1∑
k=0

T k .

Equivalent
1 σ-lim Anx exists for all x ∈ X and σ′-lim A′ny exists for all y ∈ Y.
2 {Anx} is relatively σ-compact for every x ∈ X and {A′ny} is

relatively σ′-compact for every y ∈ Y.
In this case:

3 The fixed spaces fix(T ) and fix(T ′) separate each other.

4 We have X = fix(T )⊕ rg(I − T )
σ

and Y = fix(T ′)⊕ rg(I − T ′)
σ′

.
5 The ergodic projection P belongs to L (X , σ).

Extension to more general semigroups and average schemes.
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Counterexamples

Examples show that:
σ-convergence of Anx for all x ∈ X does not imply σ′-convergence
of A′ny .

Ergodic decompositions of X and Y do not imply mean ergodicity.
However: Weaker convergence of Cesàro means.
If fix(T ) and fix(T ′) separate each other, we need not have
ergodic decompositions, unless these spaces are finite
dimensional.

We give an example for the latter. Put
Kn := {0,1, . . . ,n} × {n−1} K0 := N× {0} Ω :=

⋃∞
n=0 Kn.

We put X = Cb(Ω) Y = M (Ω). T ∈ L (X , σ) is given by
Tf = f ◦ ϕ, where ϕ acts as follows.
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Counterexamples cont’d

We have

fix(T ) =
{ ∞∑

n=0

an1Kn : an → a0

}
fix(T ′) =

{ ∞∑
n=1

anζn : an ∈ `1
}

 fix(T ) and fix(T ′) separate each
other.

But δ(0,0) 6∈ fix(T ′)⊕ rg(I − T ′)
σ′

.
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Additional assumption on Cb(Ω)

We consider the pair (Cb(Ω),M (Ω)). We break the symmetry by
assuming

(RC) For every Lipschitz f , the set {Anf} is relatively β0-compact.

This is satisfied if
T is strongly Feller: TBb(Ω) ⊂ Cb(Ω).
The sequence Anf is equicontinuous for Lipschitz f
 e-property, cf. Komorowski, Peszat, Szarek, Ann. Prob. ’10

Lemma
(RC) and {A′nδx} tight for all x ∈ Ω and T Markovian
⇒ {An : n} is β0-equicontinuous.
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Main Result II

Theorem
Let T be Markovian and assume (RC). Equivalent:

β0-limn→∞ A′nf exists for all f ∈ Cb(Ω).
A′nδx has a σ′-cluster point for every x ∈ Ω.
fix(T ′) separates fix(T ).

M (E) = fix(T )⊕ rg(I − T ′)
σ′

.
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The End

Thank you for your attention.
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