International Conference "Positivity VII"

Leiden University and Delft University of Technology

Algebraic Band Preserving Operators

Z. A. Kusraeva

Southern Mathematical Institute of Vladikavkaz Scientific Center of Russian Academy of science

July 22-26, 2013 / The Netherlands, Leiden

Let E and F be Archimedean vector lattices.

Definition 1. An linear operator $T : E \to F$ is said to be band preserving if $|Tu| \land |v| = 0$ for all u and v in E with $|u| \land |v| = 0$.

Definition 2. A linear operator $T : E \to F$ is called order bounded if for every $v \in E_+$ there exists $u \in F_+$ such that $|T(w)| \le u$ in F whenever $|w| \le v$ in E.

An order bounded band preserving operator on E is an orthomorphism on E.

• Is any band preserving linear operator in a vector lattice automatically order bounded?

The question was raised in Wickstead A. Representation and duality of multiplication operators on Archimedean Riesz spaces// Composition Math. **35**(3), 1977, p. 225–238.

Recall that a universally complete vector lattice is a vector lattice, which is Dedekind complete and laterally complete (any set of pairwise disjoint elements is bounded). The first example of a band preserving unbounded operator:

Abramovich Yu. A., Veksler A. I., Koldunov A. V. Operators preserving disjointness // Dokl. Academ. Nauk USSR 248 (1979), 1033-1036.

A characterisation of universally complete vector lattices in which all band preserving operators are order bounded was given in:

Abramovich Yu. A., Veksler A. I., Koldunov A. V. Disjointness preserving operators, their continuity and multiplicative representation // Linear Operators and Their Applications, Leningrad Ped. Inst., Leningrad, (1981). [in Russian]

McPolin P. and Wickstead A. The order boundedness of band preserving operators on uniformly complete vector lattices // Math. Proc. Cambridge Philos. Soc., **97**(3) (1985), 481-487 Let E be a vector lattice with a cofinal family of projection bands.

Definition 3. A collection of elements $\{e_{\gamma} : \gamma \in \Gamma\} \subset E$ is said to be *d*-independent, if for each projection band *B* in *E* the set $\{\rho_B e_{\gamma} : \rho_B e_{\gamma} \neq 0, \gamma \in \Gamma\}$ is linearly independent.

Any maximal (by inclusion) set of d-independent vectors is called d-basis.

Consider a vector lattice E and let $\mathcal{E} := \{e_{\gamma}, \gamma \in \Gamma\}$ be a fixed d-basis. Then for each element $x \in E$ there exists a full collection ρ_{ξ} ($\xi \in \Xi$) of pairwise disjoint band projections (depending on x) such that for each index ξ the set $\Gamma_{\xi} = \{\gamma \in \Gamma : \rho_{\xi} e_{\gamma} \neq 0\}$ is finite and the elements $\rho_{\xi}x$ are the linear combination of these linearly independent projections $\rho_{\xi}e_{\gamma}$ with $\gamma \in \Gamma_{\xi}$. So for each $x \in E$ the following representation holds:

$$x = \sum_{\xi} \sum_{\gamma \in \Gamma} \alpha_{\gamma}^{\xi} \rho_{\xi} \mathbf{e}_{\gamma},$$

where α_{γ}^{ξ} are some scalars (depending on x), such that for each ξ only a finite number of coefficients α_{γ}^{ξ} may be nonzero. This expression is called a *d*-expansion of x with respect to *d*-basis $\{e_{\gamma}\}$.

Definition 4. A universally complete vector lattice E is called locally one-dimensional if $\{1\}$ is a *d*-basis of E.

Theorem 1. Assume, that E is a universally complete vector lattice. Then the following assertions are equivalent:

(1) E is locally one-dimensional.

(2) every band preserving linear operator in E is order bounded.

So the Wickstead problem in a class of universally complete vector lattices was reduced to the description of locally one-dimensional vector lattices. And this led to another problem:

• Is the class of locally one-dimensional vector lattices coincident with the class of atomic vector lattices?

Abramovich Yu., Wickstead A. The regularity of order bounded operators into C(K) // Quart. J. Math. Oxford, Ser. 2, 44 (1993), 257–270.

Definition 5. An element $x \in E_+$ is called an atom or discrete if [0, x] = [0, 1]x in other words: if from $0 \le y \le x$ follows that $y = \lambda x$ for some $0 \le \lambda \le 1$.

A vector lattice is called atomic or discrete if for every element $0 \neq y \in E_+$ there exists a discrete element $x \in E$ such that $0 < x \leq y$.

Gutman A. Locally one-dimensional K-spaces and σ -distributive Boolean algebras // Siberian Adv. Math, **5**(2), 1995, p. 99–121.

Theorem 2. There is a purely nonatomic locally one-dimensional universally complete vector lattice.

Theorem 3. A universally complete vector lattice is locally one-dimensional if and only if it's base is σ -distributive.

Recall that the base $\mathfrak{B}(E)$ of a vector lattice E is the complete Boolean algebra of all bands in E.

Definition 6. A Boolean σ -algebra B is called σ -distributive if for every double sequence $(b_{n,m})_{n,m\in\mathbb{N}}$ in B the following holds:

$$\bigvee_{n\in\mathbf{N}}\bigwedge_{m\in\mathbf{N}}b_{n,m}=\bigwedge_{\varphi\in\mathbf{N}^{\mathbf{N}}}\bigvee_{n\in\mathbf{N}}b_{n,\varphi(n)}$$

Definition 7. A linear operator $T : E \to E$ is said to be algebraic if there exists a non-zero annihilator polynomial φ , that is $\varphi(T) = 0$.

An annihilator polynomial of minimal degree is called minimal polynomial of operator T and is denoted by φ_T .

Simple examples of algebraic operators:

- A projection P (an idempotent operator: P² = P) on E. If P ≠ 0, 1, then it's minimal polynomial is φ_P(λ) = λ² − λ;
- A nilpotent operator $(S^m = 0 \text{ for some } m \in \mathbb{N})$ on E. And it's minimal polynomial is $\varphi_S(\lambda) = \lambda^k$, where $k \leq m$.

• When are all algebraic band preserving operators order bounded in a vector lattice?

In other words, we want to examine the Wickstead problem for the class of algebraic operators.

Definition 8. We call T a strongly diagonal operator on E if there exist pairwise disjoint band projections ρ_1, \ldots, ρ_m and real numbers $\alpha_1, \ldots, \alpha_m$ such that $T = \alpha_1 \rho_1 + \cdots + \alpha_m \rho_m$.

In the equality above, we may assume that $\rho_1 + \cdots + \rho_m = I_E$ and that $\alpha_1, \ldots, \alpha_m$ are pairwise different.

In particular, every strongly diagonal operator on E is an orthomorphism.

Boulabiar K., Buskes G., Sirotkin G. Algebraic order bounded disjointness preserving operators and strongly diagonal operators // Integral Equations and Operator Theory, 54, p. 9–31, 2006.

Theorem 4. Let E be an Archimedean vector lattice. An operator T on E is strongly diagonal if and only if the following conditions hold:

- (1) T is order bounded.
- (2) T is band preserving.
- (3) T is algebraic.

The following result is proved in **Abramovich Yu. A., Kitover A. K.** Inverses of disjointness preserving operators // Memoirs of the American Mathematical Society,vol. 143, №679, 2000.

Theorem 5. If E is a universally complete vector lattice, then for each non-zero band B there is a non-zero band $B_0 \subseteq B$ such that B_0 has a d-basis consisting of weak order units in B_0 .

Theorem 6. Let E be a universally complete vector lattice. Then the following assertions are equivalent:

(1) The Boolean algebra $\mathfrak{B}(E)$ is σ -distributive.

(2) Every algebraic band preserving operator in *E* is order bounded.

(3) Every algebraic band preserving operator in *E* is strongly diagonal.

(4) Every band preserving projection in E is a band projection.

Proof: $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$

 $(1) \Rightarrow (2)$ Gutman (Theorem 3). $(2) \Rightarrow (3)$ Boulabiar-Buskes-Sirotkin (Theorem 4). $(3) \Rightarrow (4)$ Let P be a band preserving projection in E. Then P is algebraic, and thus strongly diagonal by (3):

$$P = \sum_{i=1}^{m} \alpha_i \rho_i \quad (\rho_i \perp \rho_j, \ i \neq j).$$

Multiplying both parts of this equality by ρ_i , we get:

$$P\rho_i = \alpha_i \rho_i \quad (i = 1, \dots, m).$$

Since $P\rho_i$ is a projection, we have: $\alpha_i^2 \rho_i = \alpha_i \rho_i \Rightarrow \rho_i (\alpha_i^2 - \alpha_i) = 0$. Thus, if $\rho_i \neq 0$ then either $\alpha_i = 1$ or $\alpha_i = 0$ and P is a band projection as the sum of pair-wise disjoint band projections.

Proof: (4) \Rightarrow (1)

(4) \Rightarrow (1) By contradiction: We assume that $\mathfrak{B}(E)$ is not σ -distributive and construct a band preserving projection which is not a band projection.

Let $\mathcal{E} = \{e_{\gamma}\}_{\gamma \in \Gamma}$ be an arbitrary *d*-basis in *E*. For an element $x \in E$ there exists a full collection of pairwise disjoint band projections $\rho_{\mathcal{E}_{I}}$ such that the representation holds:

$$x = \sum_{\xi} \sum_{\gamma \in \Gamma} \alpha_{\gamma}^{\xi} \rho_{\xi} \mathbf{e}_{\gamma},$$

where the set $\{\gamma \in \Gamma : \alpha_{\gamma}^{\xi} \neq 0\}$ is finite for all ξ . By Theorem 5 we may assume that $\mathbf{1} \in \mathcal{E}$. Fix $\mathbf{1} \neq \gamma_0 \in \Gamma$ and define a band preserving projection $P : E \to E$ by

$$\mathsf{P} x := \sum_{\xi} \alpha_{\gamma_0}^{\xi} \rho_{\xi} \mathsf{e}_{\gamma_0} \quad (x \in \mathsf{E}). \ \Box$$

Theorem 7. Let E be a universally complete vector lattice. Then the following assertions are equivalent:

(1) The Boolean algebra $\mathfrak{B}(E)$ is σ -distributive.

(2) Every band preserving nilpotent operator in *E* is order bounded.

(3) Every band preserving nilpotent operator in *E* is strongly diagonal.

(4) Every band preserving nilpotent operator in E is trivial.

(1) \Rightarrow (2) Gutman (Theorem 3). (2) \Rightarrow (3) Boulabiar-Buskes-Sirotkin (Theorem 4). (3) \Rightarrow (4) Consider a band preserving nilpotent operator *T*. by (3) *T* is strongly diagonal: $T = \sum_{i=1}^{s} \alpha_i P_i$, where $P_i \perp P_j$ ($i \neq j$; i, j = 1, ..., s. Obviously,

$$T^{N} = \left(\sum_{i=1}^{s} \alpha_{i} P_{i}\right)^{N} = \sum_{i=1}^{s} \alpha_{i}^{N} P_{i} = 0.$$

As P_i are pair-wise disjoint, we have from the last equality that $\alpha_i = 0$ for all $i = 1, \dots s$ and thus T = 0.

 $(4) \Rightarrow (1)$ By contradiction: We assume that $\mathfrak{B}(E)$ is not σ -distributive and construct a non-trivial band preserving operator T with $T^m = 0$, $m \in \mathbb{N}$. By Theorem 5 we can also assume that there exists a *d*-basis in *E* consisting of weak order units.

Again we have a representation of $x \in E$:

$$x = \sum_{\xi} \sum_{\gamma \in \Gamma} \lambda_{\gamma}^{\xi}
ho_{\xi} e_{\gamma},$$

where the set $\{\gamma \in \Gamma : \alpha_{\gamma}^{\xi} \neq 0\}$ is finite for all ξ . Fix $e_1, \ldots, e_{m+1} \in \mathcal{E}$ and put

 $T(e_i) = e_{i+1} \ (i = 1, ..., m); \quad T(e) = 0, \text{ if } e \neq e_i \ (i = 1, ..., m).$

Proof: (4) \Rightarrow (1)

This means that the operator $T: E \rightarrow E$ is defined as follows:

$$T(x) = \sum_{\xi \in \Xi} \sum_{i=1}^{m+1} \alpha_{\xi}^i \rho_{\xi}(e_{i+1}).$$

 ${\cal T}$ is a linear band preserving (by construction) operator associated to a square (m+1) imes (m+1)-matrix A:

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

It follows that $T^m = 0$. \Box

Theorem 8. Let E be a universally complete vector lattice. The following assertions are equivalent:

(1) The Boolean algebra $\mathfrak{P}(E)$ is σ -distributive.

(2) Every algebraic band preserving operator in *E* is order bounded.

(3) Every algebraic band preserving operator in *E* is strongly diagonal.

(4) Every band preserving projection in E is a band projection.

(5) Every band preserving nilpotent operator in *E* is order bounded.

(6) Every band preserving nilpotent operator in *E* is strongly diagonal.

(7) Every band preserving nilpotent operator in E is trivial.

Gutman A.E., Kusraev A.G., Kutateladze S.S.

The Wickstead Problem // Siberian Electronic Math. Reports. 2008. V. 5. P. 293-333.

Theorem 9. The vector lattice $L^0(\Omega, \Sigma, \mu)$ is locally one-dimensional if and only if it is atomic (\equiv the associated Boolean algebra $\mathfrak{B}(\Omega, \Sigma, \mu)$ is atomic). Theorem 10. For $L^0(\Omega, \Sigma, \mu)$ with atomless $\mathfrak{B}(\Omega, \Sigma, \mu)$ the following statements hold:

(1) there exists a nontrivial band preserving projection in $L^0(\Omega, \Sigma, \mu)$, which is not order bounded.

(2) there exists a nontrivial band preserving nilpotent operator in $L^0(\Omega, \Sigma, \mu)$, which is not order bounded.

THANK YOU FOR ATTENTION!

A

→ < Ξ → <</p>

э

Z. A. Kusraeva Southern Mathematical Institute of Vladika Algebraic Band Preserving Operators