Approximation of solutions to some abstract Cauchy problems by means of Szász-Mirakjan-Kantorovich operators

Vita Leonessa

Department of Mathematics, Computer Science and Economics
University of Basilicata, Potenza, Italy
vita.leonessa@unibas.it

joint work with
Francesco Altomare and Mirella Cappelletti Montano
Department of Mathematics, University of Bari

Positivity VII Leiden, 22-26 July, 2013

Statement of the problem

Let A be a closed operator defined on a suitable domain D(A) of a certain Banach space $(E, \|\cdot\|)$.

It is well-known that if (A, D(A)) generates a C_0 -semigroup $(T(t))_{t\geq 0}$ on E, then the abstract Cauchy problem

$$\begin{cases} \frac{du}{dt}(t) = Au(t), & t \ge 0, \\ u(0) = u_0, & u_0 \in D(A) \end{cases}$$
 (ACP)

associated with (A, D(A)), admits a unique solution $u:[0,+\infty[\to E \text{ given}]$ by 1

$$u(t) = T(t)(u_0)$$
 for every $t \ge 0$ (1)

¹See, e.g., Chapter A-II in [R. Nagel (Ed.), One-parameter semigroups of positive operators, Lecture Notes in Math. **1184**, Springer-Verlag (Berlin, 1986)].

Statement of the problem

Our general aim is to investigate the possibility to determine a suitable sequence $(L_n)_{n\geq 1}$ of positive linear operators on E such that for every $t\geq 0$ and for every sequence $(\rho_n)_{n\geq 1}$ of positive integers such that $\lim_{n\to\infty}\frac{\rho_n}{n}=t$, one has

$$T(t)(f) = \lim_{n \to \infty} L_n^{\rho_n}(f) \qquad (f \in E), \tag{2}$$

where each $L_n^{\rho_n}$ denotes the iterate of L_n of order ρ_n .

This technique, based on approximation theory, was developed by F. Altomare in the nineties 2 and allows to obtain some qualitative properties of the semigroup, and hence of the solution to (ACP), by means of similar ones held by the operators L_n thanks to the representation formula (2).

²[F. Altomare, *Approximation theory methods for the study of diffusion equations*, Approximation Theory, Proc. IDOMAT, 75 M-W- Müler, M. Felten, D.H. Mache Eds., Math. Res. 86 Akademie Verlag, Berlin, 1995, 9-26

Statement of the problem

Our general aim is to investigate the possibility to determine a suitable sequence $(L_n)_{n\geq 1}$ of positive linear operators on E such that for every $t\geq 0$ and for every sequence $(\rho_n)_{n\geq 1}$ of positive integers such that $\lim_{n\to\infty}\frac{\rho_n}{n}=t$, one has

$$T(t)(f) = \lim_{n \to \infty} L_n^{\rho_n}(f) \qquad (f \in E), \tag{2}$$

where each $L_n^{\rho_n}$ denotes the iterate of L_n of order ρ_n . This technique, based on approximation theory, was developed by F. Altomare in the nineties 2 and allows to obtain some qualitative properties of the semigroup, and hence of the solution to (ACP), by means of similar ones held by the operators L_n thanks to the representation formula (2).

²[F. Altomare, *Approximation theory methods for the study of diffusion equations*, Approximation Theory, Proc. IDOMAT, 75 M-W- Müler, M. Felten, D.H. Mache Eds., Math. Res., 86, Akademie Verlag, Berlin, 1995, 9-26.

A consequence of Trotter's theorem

Proposition

Let (A,D(A)) be the generator of a C_0 -semigroup $(T(t))_{t\geq 0}$ on E for which there exist $M\geq 1$ and $\omega\in \mathbf{R}$ such that $\|T(t)\|\leq Me^{\omega t}$ $(t\geq 0)$. If D is a core for (A,D(A)) (i.e., a linear subspace of D(A) dense in D(A) for the graph norm $\|u\|_A:=\|u\|+\|Au\|$ $(u\in D(A))$ and $(L_n)_{n\geq 1}$ is a sequence of bounded linear operators on E such that

- (i) $||L_n^k|| \leq Me^{\omega k/n}$ for every $n, k \geq 1$;
- (ii) $\lim_{n\to\infty} n(L_n(u)-u) = A(u)$ for every $u\in D$,

then, for every $u \in E$,

$$T(t)(u) = \lim_{n \to \infty} L_n^{\rho_n}(u)$$

where $t \ge 0$ and $(\rho_n)_{n\ge 1}$ is a sequence of positive integers such that $\lim_{n\to\infty} \frac{\rho_n}{n} = t$.

(See Thm 2.1 in [F. Altomare, V. L., S. Milella, *Cores for second-order differential operators on real intervals*, Commun. Appl. Anal. **13** (2009), no. 4, 477-496.])

$$\begin{split} &C([0,+\infty[):=\{f:[0,+\infty[\to\mathbf{R}\,|\,f\text{ continuous on }[0,+\infty[\}\\ &C^2([0,+\infty[):=\{f\in C([0,+\infty[)\,|\,f\text{ twice continuously derivable on }[0,+\infty[\}\\ \end{split}$$

$$(C_b([0,+\infty[),\|\cdot\|_\infty,\leq))$$
 Banach lattice

$$C_*([0, +\infty[) := \left\{ f \in C_b([0, +\infty[) \mid \text{ there exists } \lim_{x \to +\infty} f(x) \in \mathbf{R} \right\}$$

$$C_0([0, +\infty[) := \left\{ f \in C_*([0, +\infty[) \mid \lim_{x \to +\infty} f(x) = 0 \right\}$$

Banach sublattices of $C_b([0, +\infty[$

$$K([0,+\infty[):=\{f\in C([0,+\infty[)\,|\, \operatorname{Supp}(f) \text{ is compact}\}\}$$

$$K^2([0,+\infty[):=\{f\in K([0,+\infty[)\,|\, f \text{ twice continuously derivable on } [0,+\infty[$$

$$\begin{split} &C([0,+\infty[):=\{f:[0,+\infty[\to\mathbf{R}\,|\,f\text{ continuous on }[0,+\infty[\}\\ &C^2([0,+\infty[):=\{f\in C([0,+\infty[)\,|\,f\text{ twice continuously derivable on }[0,+\infty[\}\\ \end{split}$$

$$C_b([0,+\infty[):=\{f\in C([0,+\infty[)\,|\,f \text{ bounded}\}\ (C_b([0,+\infty[),\|\cdot\|_\infty,\leq) \text{ Banach lattice}$$

$$C_*([0, +\infty[) := \left\{ f \in C_b([0, +\infty[) \mid \text{ there exists } \lim_{x \to +\infty} f(x) \in \mathbf{R} \right\}$$

$$C_0([0, +\infty[) := \left\{ f \in C_*([0, +\infty[) \mid \lim_{x \to +\infty} f(x) = 0 \right\}$$

Banach sublattices of $C_b([0, +\infty[)]$

$$K([0,+\infty[):=\{f\in C([0,+\infty[)\,|\,\operatorname{Supp}(f)\text{ is compact}\}\$$

 $K^2([0,+\infty[):=\{f\in K([0,+\infty[)\,|\,f\text{ twice continuously derivable on }[0,+\infty[$

$$\begin{split} &C([0,+\infty[):=\{f:[0,+\infty[\to\mathbf{R}\,|\,f\text{ continuous on }[0,+\infty[\}\\ &C^2([0,+\infty[):=\{f\in C([0,+\infty[)\,|\,f\text{ twice continuously derivable on }[0,+\infty[\}\\ \end{split}$$

$$C_b([0,+\infty[):=\{f\in C([0,+\infty[)\,|\,f \text{ bounded}\}\ (C_b([0,+\infty[),\|\cdot\|_\infty,\leq) \text{ Banach lattice}$$

$$C_*([0, +\infty[) := \left\{ f \in C_b([0, +\infty[) \mid \text{ there exists } \lim_{x \to +\infty} f(x) \in \mathbf{R} \right\}$$

$$C_0([0, +\infty[) := \left\{ f \in C_*([0, +\infty[) \mid \lim_{x \to +\infty} f(x) = 0 \right\}$$

Banach sublattices of $C_b([0, +\infty[)$

$$K([0,+\infty[):=\{f\in C([0,+\infty[)\,|\, \operatorname{Supp}(f) \text{ is compact}\}\}$$

$$K^2([0,+\infty[):=\{f\in K([0,+\infty[)\,|\, f \text{ twice continuously derivable on } [0,+\infty[$$

$$C([0,+\infty[):=\{f:[0,+\infty[\to\mathbf{R}\,|\,f\text{ continuous on }[0,+\infty[\}$$

$$C^2([0,+\infty[):=\{f\in C([0,+\infty[)\,|\,f\text{ twice continuously derivable on }[0,+\infty[\}$$

$$C_b([0,+\infty[):=\{f\in C([0,+\infty[)\,|\,f \text{ bounded}\}\$$

 $(C_b([0,+\infty[),\|\cdot\|_\infty,\leq) \text{ Banach lattice}$

$$C_*([0, +\infty[) := \left\{ f \in C_b([0, +\infty[) \mid \text{ there exists } \lim_{x \to +\infty} f(x) \in \mathbf{R} \right\}$$

$$C_0([0, +\infty[) := \left\{ f \in C_*([0, +\infty[) \mid \lim_{x \to +\infty} f(x) = 0 \right\}$$

Banach sublattices of $C_b([0,+\infty[)$

$$\mathcal{K}([0,+\infty[):=\{f\in\mathcal{C}([0,+\infty[)\,|\,\mathsf{Supp}(f)\ \mathsf{is\ compact}\}\ \mathcal{K}^2([0,+\infty[):=\{f\in\mathcal{K}([0,+\infty[)\,|\,f\ \mathsf{twice\ continuously\ derivable\ on\ }[0,+\infty[\}$$

Moreover, for every $m \geq 1$, set $w_m(x) := (1 + x^m)^{-1}$ $(x \geq 0)$ and

$$E_m := \left\{ f \in C([0, +\infty[) \mid \sup_{x \ge 0} w_m(x) | f(x)| \in \mathbf{R} \right\}$$

$$(E_m, \| \cdot \|_m, \le) \text{ Banach lattice, where } \|f\|_m := \sup_{x \ge 0} w_m(x) |f(x)| \text{ } (f \in E_m)$$

$$E_m^* := \left\{ f \in E_m \mid \lim_{x \to +\infty} w_m(x) f(x) \in \mathbf{R} \right\}$$

$$E_m^0 := \left\{ f \in E_m^* \mid \lim_{x \to +\infty} w_m(x) f(x) = 0 \right\}$$

Banach sublattices of E_m

Moreover, for every $m \ge 1$, set $w_m(x) := (1 + x^m)^{-1}$ $(x \ge 0)$ and

$$E_m := \left\{ f \in C([0, +\infty[) \mid \sup_{x \ge 0} w_m(x) | f(x)| \in \mathbf{R} \right\}$$

$$(E_m, \| \cdot \|_m, \le) \text{ Banach lattice, where } \|f\|_m := \sup_{x \ge 0} w_m(x) |f(x)| \text{ } (f \in E_m)$$

$$E_m^* := \left\{ f \in E_m \mid \lim_{x \to +\infty} w_m(x) f(x) \in \mathbf{R} \right\}$$

$$E_m^0 := \left\{ f \in E_m^* \mid \lim_{x \to +\infty} w_m(x) f(x) = 0 \right\}$$

Banach sublattices of E_m

The class of second-order differential operators

For a fixed $0 \le l \le 2$, let V_l be the second-order differential operator defined by

$$V_{I}(u)(x) := xu''(x) + \frac{1}{2}u'(x) \quad (x > 0, u \in C^{2}(]0, +\infty[)).$$
 (3)

Note that, up to a change of variable, the operators in (3) are strictly connected with a backward equation of the type

$$\frac{\partial u}{\partial t}(x,t) = ax^{2-\rho} \frac{\partial^2 u}{\partial x^2}(x,t) + bx^{1-\rho} \frac{\partial u}{\partial x}(x,t), \quad x,t > 0,$$
 (4)

with p>0 and b>(1-p)a, that corresponds, for example, to the radial component of the N-dimensional Brownian motion $(N\geq 1)$ or to a stochastic process that is the limit of a sequence of random walks.

The class of second-order differential operators

For a fixed $0 \le l \le 2$, let V_l be the second-order differential operator defined by

$$V_{I}(u)(x) := xu''(x) + \frac{1}{2}u'(x) \quad (x > 0, u \in C^{2}(]0, +\infty[)).$$
 (3)

Note that, up to a change of variable, the operators in (3) are strictly connected with a backward equation of the type

$$\frac{\partial u}{\partial t}(x,t) = ax^{2-p} \frac{\partial^2 u}{\partial x^2}(x,t) + bx^{1-p} \frac{\partial u}{\partial x}(x,t), \quad x,t > 0,$$
 (4)

with p>0 and b>(1-p)a, that corresponds, for example, to the radial component of the N-dimensional Brownian motion ($N\geq 1$) or to a stochastic process that is the limit of a sequence of random walks.

Semigroups generated by V_I

It is known that such an operator, defined on a suitable domain of continuous functions on $[0,+\infty[$, as well as on weighted continuous functions on $[0,+\infty[$, generates a strongly continuous semigroup 3 .

Moreover, it generates, in a suitable domain, a Feller semigroup also in $L^p([0,+\infty[)])$.

³F. Altomare, S. Milella, *Degenerate differential equations and modified Szász-Mirakjan operators*, Rend. Circ. Mat. Palermo, **59** (2010), 227-250.

⁴S. Fornaro, G. Metafune, D. Pallara, J. Prüss, L^p -theory for some elliptic and parabolic problems with first order degeneracy at the boundary, J. Math. Pures Appl., **87** (2007), 367-393.

Szász-Mirakjan operators

Let

$$S([0,+\infty[):=\{f:[0,+\infty[
ightarrow \mathbf{R}\,|\, ext{ there exist } M\geq 0 ext{ and } lpha\in \mathbf{R} \}$$
 such that $|f(x)|\leq M\mathrm{e}^{lpha x}\}$

In 1941 G.M. Mirakjan (see also, e.g., [J. Favard, 1944], [O. Szász, 1950]) introduced the Szász-Mirakjan operators

$$S_n(f)(x) := e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} f\left(\frac{k}{n}\right) \quad (n \ge 1, x \ge 0)$$
 (5)

defined for every function $f \in S([0, +\infty[)$.

Szász-Mirakjan-Kantorovich operators

Let $T([0,+\infty[)$ be the space of all functions $f \in L^1_{loc}([0,+\infty[)$ such that $F \in S([0,+\infty[)]$, where

$$F(x) := \int_0^x f(t)dt \quad (x \ge 0).$$

In 1954 P.L. Butzer considered the so-called Szász-Mirakjan-Kantorovich operators defined by setting, for every $n \ge 1$, $f \in \mathcal{T}([0, +\infty[)$ and $x \ge 0$,

$$K_n(f)(x) := e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} \left[n \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) dt \right]. \tag{6}$$

Following an idea in

► F. Altomare, V. L., On a sequence of positive linear operators associated with a continuous selection of Borel measures, Mediterr. j. math. 3 (2006), 363-382,

we modify the K_n 's as follows.

Let $(a_n)_{\geq 1}$ and $(b_n)_{n\geq 1}$ be two sequences in [0,1] such that $a_n < b_n$ for every $n \geq 1$. Then, for every $n \geq 1$, $f \in \mathcal{T}([0,+\infty])$ and $x \geq 0$,

$$M_n(f)(x) := e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} \left[\frac{n}{b_n - a_n} \int_{\frac{k+a_n}{n}}^{\frac{k+b_n}{n}} f(t) dt \right].$$
 (7)

Note that

$$\bigcup_{k=0}^{\infty} \left[\frac{k+a_n}{n}, \frac{k+b_n}{n} \right] \subsetneq [0, +\infty]$$

Moreover, if $a_n = 0$ and $b_n = 1$ $(n \ge 1)$, then $M_n = K_n$.

Following an idea in

► F. Altomare, V. L., On a sequence of positive linear operators associated with a continuous selection of Borel measures, Mediterr. j. math. 3 (2006), 363-382,

we modify the K_n 's as follows.

Let $(a_n)_{\geq 1}$ and $(b_n)_{n\geq 1}$ be two sequences in [0,1] such that $a_n < b_n$ for every $n\geq 1$. Then, for every $n\geq 1$, $f\in T([0,+\infty])$ and $x\geq 0$,

$$M_n(f)(x) := e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} \left[\frac{n}{b_n - a_n} \int_{\frac{k+a_n}{n}}^{\frac{k+b_n}{n}} f(t) dt \right]. \tag{7}$$

Note that

$$\bigcup_{k=0}^{\infty} \left[\frac{k+a_n}{n}, \frac{k+b_n}{n} \right] \subsetneq [0, +\infty[$$

Moreover, if $a_n = 0$ and $b_n = 1$ $(n \ge 1)$, then $M_n = K_n$.

Following an idea in

► F. Altomare, V. L., On a sequence of positive linear operators associated with a continuous selection of Borel measures, Mediterr. j. math. 3 (2006), 363-382,

we modify the K_n 's as follows.

Let $(a_n)_{\geq 1}$ and $(b_n)_{n\geq 1}$ be two sequences in [0,1] such that $a_n < b_n$ for every $n\geq 1$. Then, for every $n\geq 1$, $f\in \mathcal{T}([0,+\infty])$ and $x\geq 0$,

$$M_n(f)(x) := e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} \left[\frac{n}{b_n - a_n} \int_{\frac{k+a_n}{n}}^{\frac{k+b_n}{n}} f(t) dt \right]. \tag{7}$$

Note that

$$\bigcup_{k=0}^{\infty} \left[\frac{k+a_n}{n}, \frac{k+b_n}{n} \right] \subsetneq [0, +\infty[$$

Moreover, if $a_n = 0$ and $b_n = 1$ $(n \ge 1)$, then $M_n = K_n$.

Observe that

$$S([0,+\infty[)\cap C([0,+\infty[)\subset T([0,+\infty[)$$

and, if $m \ge 1$ and $p \in [1, +\infty[$,

$$E_m \subset T([0,+\infty[) \text{ and } L^p([0,+\infty[) \subset T([0,+\infty[).$$

About M_n 's operators

- ► F. Altomare, M. Cappelletti Montano and V. L., *On a modification of Szász-Mirakjan-Kantorovich operators*, Results. Math. Vol. **63**, Issue 3 (2013), 837-863, DOI: 10.1007/s0025-012-0236-z.
- Approximation properties of $(M_n)_{n\geq 1}$
 - on $C_b([0,+\infty[), C_*([0,+\infty[), C_0([0,+\infty[)])])$
 - on E_m , E_m^* , E_m^0
 - on $L^p([0,+\infty[), 1 \le p < +\infty$
- Estimates of the rate of convergence
- M. Cappelletti Montano and V. L., Approximation of some Feller semigroups associated with a modification of Szász-Mirakjan-Kantorovich operators, Acta Math. Hunga., 139, Issue 3 (2013), 255-275, DOI: 10.1007/s10474-012-0267-7.

About M_n 's operators

- F. Altomare, M. Cappelletti Montano and V. L., On a modification of Szász-Mirakjan-Kantorovich operators, Results. Math. Vol. 63, Issue 3 (2013), 837-863, DOI: 10.1007/s0025-012-0236-z.
- Approximation properties of $(M_n)_{n\geq 1}$
 - on $C_b([0,+\infty[), C_*([0,+\infty[), C_0([0,+\infty[)])])$
 - on E_m , E_m^* , E_m^0
 - on $L^p([0,+\infty[), 1 \le p < +\infty$
- Estimates of the rate of convergence
- M. Cappelletti Montano and V. L., Approximation of some Feller semigroups associated with a modification of Szász-Mirakjan-Kantorovich operators, Acta Math. Hunga., 139, Issue 3 (2013), 255-275, DOI: 10.1007/s10474-012-0267-7.

- ① $M_n(\mathbb{P}_m) \subset \mathbb{P}_m$ for every $n \geq 1$, where \mathbb{P}_m is the space of (the restriction to $[0, +\infty[$ of) all polynomials of degree not greater than $m, m \geq 1$.
- ② Fix $f \in C_b([0, +\infty[)$, then f is increasing $\iff M_n(f)$ is increasing for every $n \ge 1$ f is convex $\iff M_n(f)$ is convex for every $n \ge 1$.
- For every n ≥ 1, M ≥ 0 and α ∈]0,1] one has M_n(Lip_Mα) ⊂ Lip_Mα, where Lip_Mα is the class of all continuous functions on [0, +∞[that are Lipschitz continuous of order α (with Lipschitz constant M) on [0, +∞[.
- If $f \in C_b([0, +\infty[)$ is convex and increasing (resp. convex and decreasing), then for every $n \ge 1$

$$f \leq M_n(f)$$
 on $[0, +\infty[$ (resp. $M_n(f) \leq f$ on $[0, +\infty[)$

- ① $M_n(\mathbb{P}_m) \subset \mathbb{P}_m$ for every $n \geq 1$, where \mathbb{P}_m is the space of (the restriction to $[0, +\infty[$ of) all polynomials of degree not greater than $m, m \geq 1$.
- ② Fix $f \in C_b([0, +\infty[), \text{ then} \\ f \text{ is increasing} \iff M_n(f) \text{ is increasing for every } n \geq 1.$
 - f is convex $\iff M_n(f)$ is convex for every $n \ge 1$.
- ⊙ For every $n \ge 1$, $M \ge 0$ and $\alpha \in]0,1]$ one has $M_n(\text{Lip}_M \alpha) \subset \text{Lip}_M \alpha$, where $\text{Lip}_M \alpha$ is the class of all continuous functions on $[0,+\infty[$ that are Lipschitz continuous of order α (with Lipschitz constant M) on $[0,+\infty[$.
- If $f \in C_b([0, +\infty[)$ is convex and increasing (resp. convex and decreasing), then for every $n \ge 1$

$$f \leq M_n(f)$$
 on $[0, +\infty[$ (resp. $M_n(f) \leq f$ on $[0, +\infty[)$

- ① $M_n(\mathbb{P}_m) \subset \mathbb{P}_m$ for every $n \geq 1$, where \mathbb{P}_m is the space of (the restriction to $[0, +\infty[$ of) all polynomials of degree not greater than $m, m \geq 1$.
- ② Fix $f \in C_b([0, +\infty[)$, then f is increasing $\iff M_n(f)$ is increasing for every $n \ge 1$. f is convex $\iff M_n(f)$ is convex for every $n \ge 1$.
- ⊙ For every $n \ge 1$, $M \ge 0$ and $\alpha \in]0,1]$ one has $M_n(\text{Lip}_M \alpha) \subset \text{Lip}_M \alpha$, where $\text{Lip}_M \alpha$ is the class of all continuous functions on $[0,+\infty[$ that are Lipschitz continuous of order α (with Lipschitz constant M) on $[0,+\infty[$.
- If $f \in C_b([0, +\infty[)$ is convex and increasing (resp. convex and decreasing), then for every $n \ge 1$

$$f \leq M_n(f)$$
 on $[0, +\infty[$ (resp. $M_n(f) \leq f$ on $[0, +\infty[)$

- **1** $M_n(\mathbb{P}_m)$ ⊂ \mathbb{P}_m for every $n \geq 1$, where \mathbb{P}_m is the space of (the restriction to $[0, +\infty[$ of) all polynomials of degree not greater than $m, m \geq 1$.
- ② Fix $f \in C_b([0, +\infty[)$, then f is increasing $\iff M_n(f)$ is increasing for every $n \ge 1$. f is convex $\iff M_n(f)$ is convex for every $n \ge 1$.
- **⊙** For every $n \ge 1$, $M \ge 0$ and $\alpha \in]0,1]$ one has $M_n(\text{Lip}_M \alpha) \subset \text{Lip}_M \alpha$, where $\text{Lip}_M \alpha$ is the class of all continuous functions on $[0,+\infty[$ that are Lipschitz continuous of order α (with Lipschitz constant M) on $[0,+\infty[$.
- If $f \in C_b([0, +\infty[)$ is convex and increasing (resp. convex and decreasing), then for every $n \ge 1$

$$f \leq M_n(f)$$
 on $[0, +\infty[$ (resp. $M_n(f) \leq f$ on $[0, +\infty[)$

- **③** $M_n(\mathbb{P}_m) \subset \mathbb{P}_m$ for every $n \geq 1$, where \mathbb{P}_m is the space of (the restriction to $[0, +\infty[$ of) all polynomials of degree not greater than $m, m \geq 1$.
- ② Fix $f \in C_b([0, +\infty[)$, then f is increasing $\iff M_n(f)$ is increasing for every $n \ge 1$. f is convex $\iff M_n(f)$ is convex for every $n \ge 1$.
- **⊙** For every $n \ge 1$, $M \ge 0$ and $\alpha \in]0,1]$ one has $M_n(\text{Lip}_M \alpha) \subset \text{Lip}_M \alpha$, where $\text{Lip}_M \alpha$ is the class of all continuous functions on $[0,+\infty[$ that are Lipschitz continuous of order α (with Lipschitz constant M) on $[0,+\infty[$.
- If $f \in C_b([0, +\infty[)$ is convex and increasing (resp. convex and decreasing), then for every $n \ge 1$

$$f \leq M_n(f)$$
 on $[0, +\infty[$ (resp. $M_n(f) \leq f$ on $[0, +\infty[)$

Asymptotic formulas

Let $(M_n)_{n\geq 1}$ be the sequence of operators given by

$$M_n(f)(x) := e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} \left[\frac{n}{b_n - a_n} \int_{\frac{k+a_n}{n}}^{\frac{k+b_n}{n}} f(t) dt \right]$$

and from now on suppose that there exists

$$I:=\lim_{n\to\infty}(a_n+b_n)\in\mathbf{R}.$$

Clearly $0 \le l \le 2$. Then, considering

$$V_l(u)(x) := xu''(x) + \frac{l}{2}u'(x) \quad (x > 0, u \in C^2(]0, +\infty[)),$$

we get

Asymptotic formulas

Theorem

Set $m \ge 2$. Then for every $u \in C^2([0, +\infty[) \cap E_m^0$ such that u'' is uniformly continuous and bounded,

$$\lim_{n\to\infty} n(M_n(u)-u) = V_l(u) \quad \text{in } E_m^0. \tag{8}$$

In particular,

$$\lim_{n\to\infty} n(M_n(u)-u)=V_l(u) \quad \text{uniformly on compact subsets of } [0,+\infty[.$$

Further, for every $u \in K^2([0, +\infty[),$

$$\lim_{n\to\infty} n(M_n(u)-u)=V_l(u) \quad \text{uniformly on } [0,+\infty[.$$

Consider two extensions of V_I associated with the following classical boundary conditions:

$$\lim_{x \to 0^+} V_I(u)(x) \in \mathbf{R} \quad \text{and} \quad \lim_{x \to +\infty} V_I(u)(x) = 0 \quad \text{if } I = 2$$
 (10)

or

$$\lim_{x \to 0^+} V_I(u)(x) = 0 \quad \text{and} \quad \lim_{x \to +\infty} V_I(u)(x) = 0 \quad \text{if } I < 2$$
 (11)

$$(V_I, D_0(V_I))$$
 where

$$D_0(V_I) := \{ u \in C_0([0, +\infty[) \cap C^2(]0, +\infty[) \mid u \text{ satisfies (10) or (11)} \}$$

$$(V_I, D_*(V_I))$$
 where

$$D_*(V_I) := \{ u \in C_*([0, +\infty[) \cap C^2(]0, +\infty[) \mid u \text{ satisfies (10) or (11)} \}.$$

Consider two extensions of V_I associated with the following classical boundary conditions:

$$\lim_{x \to 0^+} V_I(u)(x) \in \mathbf{R} \quad \text{and} \quad \lim_{x \to +\infty} V_I(u)(x) = 0 \quad \text{if } I = 2$$
 (10)

or

$$\lim_{x\to 0^+} V_I(u)(x) = 0 \quad \text{and} \quad \lim_{x\to +\infty} V_I(u)(x) = 0 \quad \text{if } I < 2 \qquad (11)$$

 $(V_I, D_0(V_I))$ where

$$D_0(V_I) := \{ u \in C_0([0, +\infty[) \cap C^2(]0, +\infty[) \mid u \text{ satisfies (10) or (11)} \}$$

 $(V_I, D_*(V_I))$ where

$$D_*(V_I) := \{ u \in C_*([0, +\infty[) \cap C^2(]0, +\infty[) \mid u \text{ satisfies (10) or (11)} \}.$$

Consider two extensions of V_I associated with the following classical boundary conditions:

$$\lim_{x \to 0^+} V_I(u)(x) \in \mathbf{R} \quad \text{and} \quad \lim_{x \to +\infty} V_I(u)(x) = 0 \quad \text{if } I = 2$$
 (10)

or

$$\lim_{x\to 0^+} V_I(u)(x) = 0 \quad \text{and} \quad \lim_{x\to +\infty} V_I(u)(x) = 0 \quad \text{if } I < 2 \qquad (11)$$

$$(V_I, D_0(V_I))$$
 where

$$D_0(V_I) := \{ u \in C_0([0, +\infty[) \cap C^2(]0, +\infty[) \mid u \text{ satisfies (10) or (11)} \}$$

$$(V_I, D_*(V_I))$$
 where

$$D_*(V_I) := \{ u \in C_*([0, +\infty[) \cap C^2(]0, +\infty[) \mid u \text{ satisfies (10) or (11)} \}.$$

Semigroups generated by V_l

Proposition

The operators $(V_I, D_0(V_I))$ and $(V_I, D_*(V_I))$ generate Feller semigroups $(T_0(t))_{t\geq 0}$ on $C_0([0,+\infty[)$ and $(T_*(t))_{t\geq 0}$ on $C_*([0,+\infty[),$ respectively. Moreover, set $D_1:=\{u\in K^2([0,+\infty[)|\lim_{x\to 0^+}u'(x)=0\}$ and $S:=\{u\in C^2(]0,+\infty[)|u$ is constant on a neighborhood of $+\infty\}$. Then

- if I < 2 the space D_1 is a core for $(V_I, D_0(V_I))$ and the space generated by $D_1 \cup S$ is a core for $(V_I, D_*(V_I))$;
- ② if I=2 the space $K^2([0,+\infty[)$ is a core for $(V_I,D_0(V_I))$ and the space generated by $K^2([0,+\infty[)\cup S$ is a core for $(V_I,D_*(V_I))$.

Proof. It is sufficient to apply Theorems 1, 3 and 4 in [F. Altomare, S. Milella, *Degenerate differential equations and modified Szász-Mirakjan operators*, Rend. Circ. Mat. Palermo, **59** (2010), 227-250].

For every $u \in E_m^0 \cap C^2(]0, +\infty[)$ such that

$$\lim_{x \to 0^+} V_l(u)(x) = 0 \text{ and } \lim_{x \to +\infty} w_m(x) V_l(u)(x) = 0$$
 (12)

 $V_I(u)$ can be continuously extended on $[0, +\infty[$ and its extension is on E_m^0 . Let $(W_I, D_m(W_I))$ such that

$$W_l(u)(x) = \begin{cases} V_l(u)(x) & \text{if } x > 0, \\ 0 & \text{if } x = 0, \end{cases}$$
 (13)

for every u belonging to

$$D_m(W_I) := \{ u \in E_m^0 \cap C^2(]0, +\infty[) \mid u \text{ satisfies (12)} \}$$

Semigroups generated by V_l

Proposition

The operator $(W_l, D_m(W_l))$ is the generator of a strongly continuous semigroup $(T_m(t))_{t\geq 0}$ on E_m^0 such that $\|T(t)\|_{E_m^0} \leq \mathrm{e}^{\omega_m t}$ for each $t\geq 0$, ω_m being

$$\omega_m := \sup_{x>0} \frac{2(m^2 - m)x^m + mlx^{m-1}}{2(1 + x^m)}.$$
 (14)

Moreover the set $D_1 := \{ u \in K^2([0, +\infty[) \mid \lim_{x \to 0^+} u'(x) = 0 \} \text{ is a core for } (W_I, D_m(W_I)).$

Proof. It is sufficient to apply Theorems 2-4 in [F. Altomare, S. Milella, *Degenerate differential equations and modified Szász-Mirakjan operators*, Rend. Circ. Mat. Palermo, 59 (2010), 227-250].

Approximation of the semigroup

Let $(T_m(t))_{m\geq 1}$ be the C_0 -semigroup generated by $(W_l, D_m(W_l))$. By means of $\|M_n\|_{E_m^0}\leq 1+d_m/n$, for every $k,n\geq 1$,

$$\|M_n^k\|_{E_m^0} \leq \left(1 + \frac{d_m}{n}\right)^k \leq \mathrm{e}^{d_m \frac{k}{n}} \leq \mathrm{e}^{\max\{d_m, \omega_m\} \frac{k}{n}}.$$

Moreover, $D_1 := \{u \in K^2([0, +\infty[) \mid \lim_{x \to 0^+} u'(x) = 0\} \text{ is a core for } (W_l, D_m(W_l)) \text{ and, for every } u \in D_1 \subset K^2([0, +\infty[),$

$$\lim_{n \to \infty} n(M_n(u) - u) = V_l(u)$$
 uniformly on $[0, +\infty[$

and accordingly, in E_m^0 (since $\|\cdot\|_w \leq \|w\|_{\infty} \|\cdot\|_{\infty}$). On account of the consequence of Trotter's theorem \bullet we get that, if $t \geq 0$ and $(\rho_n)_{n\geq 1}$ is a sequence of positive integers such that $\lim_{n\to\infty} \rho_n/n = t$, for every $f\in E_m^0$ we get

$$\lim_{n\to\infty}M_n^{\rho_n}(f)=T_m(t)\quad\text{in }E_m^0,$$

and hence uniformly on compact subsets of $[0, +\infty[$.

Let $(T_m(t))_{m\geq 1}$ be the C_0 -semigroup generated by $(W_l, D_m(W_l))$. By means of $\|M_n\|_{E_m^0}\leq 1+d_m/n$, for every $k,n\geq 1$,

$$\|M_n^k\|_{E_m^0} \leq \left(1 + \frac{d_m}{n}\right)^k \leq \mathrm{e}^{d_m \frac{k}{n}} \leq \mathrm{e}^{\max\{d_m, \omega_m\} \frac{k}{n}}.$$

Moreover, $D_1 := \{u \in K^2([0, +\infty[) \mid \lim_{x \to 0^+} u'(x) = 0\} \text{ is a core for } (W_l, D_m(W_l)) \text{ and, for every } u \in D_1 \subset K^2([0, +\infty[),$

$$\lim_{n\to\infty} n(M_n(u)-u) = V_I(u) \quad \text{uniformly on } \ [0,+\infty[,$$

and accordingly, in E_m^0 (since $\|\cdot\|_w \leq \|w\|_{\infty} \|\cdot\|_{\infty}$).

$$\lim_{n\to\infty}M_n^{\rho_n}(f)=T_m(t)\quad\text{in }E_m^0,$$

and hence uniformly on compact subsets of $[0, +\infty[$.

Let $(T_m(t))_{m\geq 1}$ be the C_0 -semigroup generated by $(W_l, D_m(W_l))$. By means of $\|M_n\|_{E_m^0}\leq 1+d_m/n$, for every $k,n\geq 1$,

$$\|M_n^k\|_{E_m^0} \leq \left(1 + \frac{d_m}{n}\right)^k \leq \mathrm{e}^{d_m \frac{k}{n}} \leq \mathrm{e}^{\max\{d_m, \omega_m\} \frac{k}{n}}.$$

Moreover, $D_1 := \{u \in K^2([0, +\infty[) \mid \lim_{x \to 0^+} u'(x) = 0\} \text{ is a core for } (W_l, D_m(W_l)) \text{ and, for every } u \in D_1 \subset K^2([0, +\infty[),$

$$\lim_{n\to\infty} n(M_n(u)-u) = V_I(u) \quad \text{uniformly on } \ [0,+\infty[,$$

and accordingly, in E_m^0 (since $\|\cdot\|_w \leq \|w\|_\infty \|\cdot\|_\infty$). On account of the consequence of Trotter's theorem • we get that, if $t \geq 0$ and $(\rho_n)_{n\geq 1}$ is a sequence of positive integers such that $\lim_{n\to\infty} \rho_n/n = t$, for every $f\in E_m^0$ we get

$$\lim_{n\to\infty} M_n^{\rho_n}(f) = T_m(t) \quad \text{in } E_m^0,$$

and hence uniformly on compact subsets of $[0, +\infty[$.

Let $(T_m)_{m\geq 1}$ be the C_0 -semigroup generated by $(W_l, D_m(W_l))$. By means of $\|M_n\|_{E_m^0} \leq 1 + d_m/n$, for every $k, n \geq 1$,

$$\|M_n^k\|_{E_m^0} \leq \left(1 + \frac{d_m}{n}\right)^k \leq e^{d_m \frac{k}{n}} \leq e^{\max\{d_m, \omega_m\} \frac{k}{n}}.$$

Moreover, $D_1 := \{u \in K^2([0, +\infty[) \mid \lim_{x \to 0^+} u'(x) = 0\} \text{ is a core for } (W_l, D_m(W_l)) \text{ and, for every } u \in D_1 \subset K^2([0, +\infty[),$

$$\lim_{n\to\infty} n(M_n(u)-u) = V_I(u) \quad \text{uniformly on } \ [0,+\infty[,$$

and accordingly, in E_m^0 (since $\|\cdot\|_w \leq \|w\|_{\infty} \|\cdot\|_{\infty}$). On account of the consequence of Trotter's theorem • we get then, if $t \geq 0$ and $(\rho_n)_{n\geq 1}$ is a sequence of positive integers such that $\lim_{n\to\infty} \rho_n/n = t$, for every $f\in E_m^0$ we get

$$\lim_{n\to\infty} M_n^{\rho_n}(f) = T_m(t) \quad \text{in } E_m^0$$

and hence uniformly on compact subsets of $[0, +\infty[$.

Theorem

Let $(T_0(t))_{t\geq 0}$ (resp., $(T_*(t))_{t\geq 0}$) be the Feller semigroup generated by the operators $(V_I,D_0(V_I))$ (resp., $(V_I,D_*(V_I))$). Then, if $t\geq 0$ and $(\rho_n)_{n\geq 1}$ is a sequence of positive integers such that $\lim_{n\to\infty}\rho_n/n=t$, for every $f\in C_0([0,+\infty[)$

$$\lim_{n\to\infty}M_n^{
ho_n}(f)=T_0(t)$$
 uniformly on $[0,+\infty[$

(resp., for every
$$f \in C_*([0,+\infty[)$$

$$\lim_{n o\infty}M_n^{
ho_n}(f)=\mathit{T}_*(t)$$
 uniformly on $[0,+\infty[)$

Approximation of the solution of differential problems

Denote by (A, D(A)) one of the following operators considered above:

$$(W_I, D_m(W_I)), (V_I, D_0(V_I))$$
 or $(V_I, D_*(V_I))$

and by $(T(t))_{t\geq 0}$ the corresponding semigroup.

Consider the differential problem

$$\begin{cases}
\frac{\partial u}{\partial t}(x,t) = A(u(\cdot,t)), & x \ge 0, t \ge 0, \\
u(x,0) = u_0(x), & u_0 \in D(A), x \ge 0
\end{cases}$$
(15)

associated with (A, D(A)).

Then

$$u(x,t) = T(t)(u_0)(x) = \lim_{n \to \infty} M_n^{[nt]}(u_0)(x)$$
 (16)

where $\rho_n = [nt]$ is the integer part of nt.

Qualitative properties of the solution

- u_0 positive $\Longrightarrow u(\cdot, t)$ positive for every $t \ge 0$
- $u_0 \in \mathbb{P}_m \Longrightarrow u(\cdot,t) \in \mathbb{P}_{[nt]m}$
- u_0 increasing $\Longrightarrow u(\cdot,t)$ increasing for every $t\geq 0$
- u_0 convex $\Longrightarrow u(\cdot, t)$ convex for every $t \ge 0$
- $u_0 \in \text{Lip}_M \alpha \Longrightarrow u(\cdot, t) \in \text{Lip}_M \alpha$ for every $t \ge 0$
- u_0 convex and increasing $\Longrightarrow u_0 \le u(\cdot, t)$ for every $t \ge 0$

Denote by $e_1(t) = t \ (t \ge 0)$ and set

$$D_p^0 = \{ u \in L^p(]0, +\infty[) \cap W_{loc}^{2,p}(]0, +\infty[) \mid u', \sqrt{e_1}u', e_1u'' \in L^p(]0, +\infty[)$$
 and $\lim_{x \to 0^+} u(x) = 0 \}.$

Then ⁵

Theorem

If $1 , the operator <math>(V_I, D_p^0)$ generates a Feller semigroup $(T_p(t))_{t \geq 0}$ in $L^p(]0, +\infty[)$. Moreover $D := \{u \in K^\infty(\mathbf{R}) \mid u(0) = 0\} \subset K^2([0, +\infty[))$ is a core for

(V_l, D_p^0), where $K^\infty(\mathbf{R})$ is the space of all continuous real valued functions with compact support that are infinitely many times derivable on \mathbf{R} .

⁵S. Fornaro, G. Metafune, D. Pallara, J. Prüss, *L^p*-theory for some elliptic and parabolic problems with first order degeneracy at the boundary, J. Math. Pures Appl., 87 (2007), 367-393.

Theorem

Fix
$$1 \le p < +\infty$$
. Then, $M_n(L^p([0, +\infty[)) \subset L^p([0, +\infty[))$ and $\|M_n\|_{L^p, L^p} \le (b_n - a_n)^{-1/p}$.

Moreover, if $(1/(b_n-a_n))_{n\geq 1}$ is bounded, then for every $f\in L^p([0,+\infty[)$

$$\lim_{n\to\infty} M_n(f) = f \quad \text{in } L^p([0,+\infty[).$$

Theorem

Fix $1 \le p < +\infty$ and assume that $I := \lim_{n \to \infty} (a_n + b_n) \in \mathbf{R}$. Then, for every $v \in K^2([0, +\infty[),$

$$\lim_{n\to\infty} n(M_n(v)-v)=V_l(v) \quad \text{in } L^p([0,+\infty[).$$

Proposition

Assume that either

(a) $a_n = 0$ and $b_n = 1$ for every $n \ge 1$

or

- (b) the following properties hold true:
 - (i) $0 < b_n a_n < 1$ for every $n \ge 1$;
 - (ii) there exist $\lim_{n\to\infty} a_n = 0$ and $\lim_{n\to\infty} b_n = 1$;
 - (iii) $M_1 := \sup_{n \ge 1} n(1 b_n + a_n) < +\infty.$

Then, for every $p \ge 1$ there exists $\tau_p \ge 0$, depending on the sequences $(a_n)_{n\ge 1}$ and $(b_n)_{n\ge 1}$, such that for every $k\ge 1$ and $n\ge 1$,

$$||M_n^k||_{L^p,L^p} \le e^{\frac{k}{n}\tau_p}.$$
 (17)

For example, fixed $\alpha \geq 1$,

$$a_n:=rac{1}{2}\left(1+rac{1}{2n^lpha}-rac{nlpha}{n^lpha+1}
ight) \quad ext{and} \quad b_n:=rac{1}{2}\left(1+rac{1}{2n^lpha}+rac{nlpha}{n^lpha+1}
ight)$$

Proposition

Assume that either

- (a) $a_n = 0$ and $b_n = 1$ for every $n \ge 1$ or
- (b) the following properties hold true:
 - (i) $0 < b_n a_n < 1$ for every $n \ge 1$;
 - (ii) there exist $\lim_{n\to\infty} a_n = 0$ and $\lim_{n\to\infty} b_n = 1$;
 - (iii) $M_1 := \sup_{n \ge 1} n(1 b_n + a_n) < +\infty.$

Then, for every $p \ge 1$ there exists $\tau_p \ge 0$, depending on the sequences $(a_n)_{n\ge 1}$ and $(b_n)_{n\ge 1}$, such that for every $k\ge 1$ and $n\ge 1$,

$$||M_n^k||_{L^p,L^p} \le e^{\frac{k}{n}\tau_p}.$$
 (17)

For example, fixed $\alpha \geq 1$,

$$a_n:=\frac{1}{2}\left(1+\frac{1}{2n^\alpha}-\frac{n\alpha}{n^\alpha+1}\right)\quad\text{and}\quad b_n:=\frac{1}{2}\left(1+\frac{1}{2n^\alpha}+\frac{n\alpha}{n^\alpha+1}\right).$$

Theorem

If $t \geq 0$ and $(\rho_n)_{n\geq 1}$ is a sequence of positive integers such that $\lim_{n\to\infty}\rho_n/n=t$, for every $f\in L_p(]0,+\infty[)$, 1< p<2,

$$\lim_{n \to \infty} M_n^{
ho_n}(f) = T_p(t)$$
 in $L^p(]0, +\infty[)$.

References

F. Altomare, M. Cappelletti Montano and V. L., *On a modification of Szász-Mirakjan-Kantorovich operators*, Results. Math. Vol. **63**, Issue 3 (2013), 837-863, DOI: 10.1007/s0025-012-0236-z.

M. Cappelletti Montano and V. L., *Approximation of some Feller semigroups associated with a modification of Szász-Mirakjan-Kantorovich operators*, Acta Math. Hunga., **139**, Issue 3 (2013), 255-275, DOI: 10.1007/s10474-012-0267-7.

THANKS FOR YOUR ATTENTION

Approximation results (on continuous function spaces)

Theorem

The following statements hold true:

- (a) M_n is a positive continuous linear operator from $C_b([0,+\infty[)$ into itself and $\|M_n\|_{C_b([0,+\infty[)}=1$.
- (b) $M_n(C_0([0,+\infty[)) \subset C_0([0,+\infty[) \text{ for every } n \geq 1.$

Remark

$$M_n(1)=1$$
, then $M_n(C_*([0,+\infty[))\subset C_*([0,+\infty[)$ for every $n\geq 1$.

Theorem

The following statements hold true:

- (a) If $f \in C_*([0,+\infty[)$ (in particular if $f \in C_0([0,+\infty[))$, then $\lim_{n\to\infty} M_n(f) = f$ uniformly on $[0,+\infty[$.
- (b) If $f \in C_b([0, +\infty[), then \lim_{n \to \infty} M_n(f) = f$ uniformly on compacts subsets of $[0, +\infty[$.

Approximation results (on weighted continuous function spaces)

Theorem

Then, for every $n, m \ge 1$,

- (a) M_n is a positive continuous linear operator from E_m into itself and $||M_n||_{E_m} \le 1 + d_m/n$, where d_m is a suitable positive constant.
- (b) $M_n(E_m^0) \subset E_m^0$.

Remark

 $M_n(\mathbf{1}) = \mathbf{1}$, then $M_n(E_m^*) \subset E_m^*$.

Theorem

The following statements hold true:

- (a) For every $m \ge 1$, if $f \in E_m^*$ (in particular, if $f \in E_m^0$), then $\lim_{n \to \infty} M_n(f) = f$ in $||\cdot||_m$.
- (b) For every $m \ge 1$, if $f \in E_m$, then $\lim_{n \to \infty} M_n(f) = f$ uniformly on compact subsets of $[0, +\infty[$.

Approximation results (on L^p -spaces $(p \ge 1)$)

Theorem

Fix
$$1 \le p < +\infty$$
. Then, $M_n(L^p([0,+\infty[)) \subset L^p([0,+\infty[))$ and
$$\|M_n\|_{L^p,L^p} \le (b_n-a_n)^{-1/p}.$$

Moreover, if $(1/(b_n-a_n))_{n\geq 1}$ is bounded, then for every $f\in L^p([0,+\infty[)$

$$\lim_{n\to\infty} M_n(f) = f \quad \text{in } L^p([0,+\infty[).$$

◆ back