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Introduction

By invariants of topological isomorphisms of Banach rearrangement
invariant (r.i.) spaces of measurable functions we understand the
properties of such spaces preserved when instead of the original norm
we consider an equivalent rearrangement invariant norm. Thus these
properties are the properties not of a single norm but of the whole
class of equivalent r.i. norms.

It is worth to note that such an approach allows us to consider also
isometrical invariants of r.i. spaces. Namely, if P is an isometrical
invariant of a r.i. space we introduce the corresponding topological
invariant P saying that a Banach r.i. space X has property P induced
by P if there is an equivalent r.i. norm on X such that equipped with
this norm X has property P.
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Introduction

We approach the study of topological invariants of Marcinkiewicz,
Lorentz, and Orlicz spaces in the following way. We say that such
spaces constitute an allied triple if the fundamental function of any of
them uniquely defines all three as subsets of the space of all
measurable functions. To study such triples we introduce the defined
below notion of norming function closely related but not identical to
fundamental function.

Our approach allows to establish a natural correspondence between
topological invariants of spaces in an allied triple. The properties that
are in such a correspondence are closely related but superficially
might look very different. For example, the Hardy - Littlewood
property of Marcinkiewicz space (which is non-separable) corresponds
to the ∆2 condition (equivalent to separability) in Orlich space.

Alexander A. Mekler A universal approach to topological invariants of Marcinkiewicz, Lorentz and Orlicz spaces.July 23, 2013 3 / 45



Introduction

We approach the study of topological invariants of Marcinkiewicz,
Lorentz, and Orlicz spaces in the following way. We say that such
spaces constitute an allied triple if the fundamental function of any of
them uniquely defines all three as subsets of the space of all
measurable functions. To study such triples we introduce the defined
below notion of norming function closely related but not identical to
fundamental function.

Our approach allows to establish a natural correspondence between
topological invariants of spaces in an allied triple. The properties that
are in such a correspondence are closely related but superficially
might look very different. For example, the Hardy - Littlewood
property of Marcinkiewicz space (which is non-separable) corresponds
to the ∆2 condition (equivalent to separability) in Orlich space.

Alexander A. Mekler A universal approach to topological invariants of Marcinkiewicz, Lorentz and Orlicz spaces.July 23, 2013 3 / 45



Modulars. Allied pairs of modulars. Symmetric modulars.

By a norming function we understand a real valued increasing
function F which is positive on open semi-axis [0,∞) and such that
F (0) = 0 and lim

t→∞
F (t) =∞.

Two norming functions are called
m∼equivalent (multiplicatively

equivalent) if there is a constant c ≥ 0 such that

c−1 · σc−1F2(t) ≤ F1(t) ≤ c · σcF2(t), 0 ≤ t <∞, (
m∼)

where σs is compression/dilation operator:
σsF (t) = F (s · t), s, t ≥ 0. In this case we will write F1

m∼ F2.

If the relations of
m∼ equivalence are satisfied only in a neighborhood

of 0 or ∞ then we will speak about
m∼ equivalence of norming

functions in the corresponding neighborhood.
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Modulars. Allied pairs of modulars. Symmetric modulars.

The class of all norming functions that are
m∼ equivalent to some

norming function is called its
m∼ modular. A property of a norming

function which holds for all elements of its
m∼modular is called its

m∼invariant.

A continuous strictly concave norming function ψ on [0,∞) is called
a Marcinkiewicz function or M-function if there is another norming
function ψ∗(t) such that

ψ∗(t)
m∼ t

ψ(t) , t > 0 and

ψ∗ is strictly concave.
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Modulars. Allied pairs of modulars. Symmetric modulars.

The function ψ∗ is called dual to function ψ. The modular of an
M-function ψ will be denoted Ψ and its elements will be called
equiconcave functions.

Similarly, a continuous strictly convex norming function φ on [0,∞) is
called Orlicz function or N-function; the conjugate function to an
N-function φ is denoted φ∗. The modular of an N-function φ is
denoted Φ and its elements are called equiconvex functions.
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Modulars. Allied pairs of modulars. Symmetric modulars.

The fundamental functions of the Lorentz space Λϕ and its Banach
dual - the Marcinkiewicz space Mψ are mutually dual functions:
ϕ = ψ∗, and therefore there is a simple connection between their
m∼invariants which we will discuss below.

To investigate the connection between
m∼invariants of a Marcinkiewicz

space Mψ and an Orlicz space L?φ we will consider such pairs (Mψ, L?φ)
of these spaces that the functions ψ and ϕ can be transformed into
each other with the help of some natural involutions. We will call
such pairs allied. The involutions we use are the following ones.
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Modulars. Allied pairs of modulars. Symmetric modulars.

Involution of duality. I1 : I1(ψ) := ψ∗.

Involution of conjugation. I2 : I2(φ) := φ∗.

Involution of inversion . I3 : I3(ϕ) := ϕ−1.

Involution of conversion.
I4 : I4ξ(0) := 0, I4ξ(t) := tξ( 1

t ), 0 < t <∞.
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Modulars. Allied pairs of modulars. Symmetric modulars.

For any N-function φ we have the following equivalencies of
M-functions: I3I2φ

m∼ I1I3φ; I4I3I2φ
m∼ I4I1I3φ.

The described above involutions clearly generate the corresponding
involutions of modulars. For modulars these equivalencies can be
written as two involution formulas:
1) I3I2Φ=I1I3Φ; 2) I4I3I2Φ=I4I1I3Φ.

The involution identities allow us to call the M-modular
Φ_ 3 φ_ := I4I1I3φ allied with the N-modular Φ. Every M-modular
Ψ is allied with the N-modular Ψ^ 3 ψ^ := (I3)−1I1I4ψ, where ψ is
an M-function and ψ ∈ Ψ.
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Modulars. Allied pairs of modulars. Symmetric modulars.

The couples of functions (φ_, φ), and (ψ,ψ^), as well as the couples
of modulars (Φ_,Φ) and (Ψ,Ψ^) are called (mutually) allied. The
m∼-invariants of modulars in an allied pair are also called mutually
allied. There is an easily established correspondence between allied
m∼invariants.

It will be important for us that an
m∼invariant of the Marcinkiewicz

space Mξ[0,∞) can be identified with a pair of
m∼invariants of the

Marcinkiewicz space Mξ(0, 1). It can be done in the following way.
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Modulars. Allied pairs of modulars. Symmetric modulars.

On the class of M-functions (as well as N-functions) we define the
involution of symmetry I5:

I I5ξ(t) := 1
ξ( 1

t )
, t ∈ (0,∞),

which also defines the involution on the class of equiconcave
(respectively, equiconvex) functions. An equiconcave function ξ and
its modular Ξ are called symmetric if ξ(t)

m∼ I5ξ(t), t ∈ [0,∞). It is
easy to see that the Marcinkiewicz space Mξ[0,∞) generated by an
equiconcave symmetric function ξ can be identified with the
Marcinkiewicz space Mξ(0, 1).

For an equiconcave function ξ on [0,∞) we define the functions ξ0

and ξ∞ as follows
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Modulars. Allied pairs of modulars. Symmetric modulars.

ξ0(t) = ξ(t) if t ∈ [0, 1] and ξ0(t) = I5ξ(t) if t ∈ [1,∞).

ξ∞(t) = I5ξ(t) if t ∈ [0, 1] and ξ∞(t) = ξ(t) if t ∈ [1,∞).

Both these functions are equiconcave and symmetric. ξ0 is called the
left (and ξ∞ the right) symmetric parenthesis for ξ. Thus we have a
natural correspondence between the Marcinkiewicz space Mξ(0,∞)
and the pair of Marcinkiewicz spaces Mξ0(0, 1) and Mξ∞(0, 1),
generated by the left and the right symmetric parentheses of the
equiconcave function ξ.
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Modulars. Allied pairs of modulars. Symmetric modulars.

For a norming function ξ defined on [0,∞) may be introduced three
kinds of ”supremal” functions of compression/dilation over the
parameter s ≥ 0, as well as two kinds of lim sup-functions, and also
the lower (γ) and the upper (δ) indices of compression-dilation.



Sξ(s) := supt∈[0,∞)
σsξ(t)
ξ(t) , γξ := lims→0

log2 Sξ(s)
log2 s

;

δξ := lims→∞
log2 Sξ(s)

log2 s
;

S0
ξ(s) := supt∈[0,1],s·t∈[0,1]

σsξ(t)
ξ(t) , γ

0
ξ := lims→0

log2 S
0
ξ(s)

log2 s
;

δ0
ξ := lims→∞

log2 S
0
ξ(s)

log2 s
;

S∞ξ (s) := supt≥1, s·t≥1
σsξ(t)
ξ(t) ξ(t), γ∞ξ := lims→0

log2 S
∞
ξ (s)

log2 s
;

δ∞ξ := lims→∞
log2 S

∞
ξ (s)

log2 s
;

L0
ξ(s) := lim supt→0

σsξ(t)
ξ(t) ; L∞ξ (s) := lim supt→∞

σsξ(t)
ξ(t) .
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Modulars. Allied pairs of modulars. Symmetric modulars.

For a symmetric equiconcave function ϕ the following
m∼equivalencies

can be proved

Sϕ(s)
m∼ S0

ϕ(s)
m∼ S∞ϕ (s), L0

ϕ(s)
m∼ L∞ϕ (s), s ≥ 0,

We can as well prove the equalities γϕ = γ iϕ, δϕ = δiϕ, i = 0,∞.
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Modulars. Allied pairs of modulars. Symmetric modulars.

Because all the information about the
m∼invariants of a triple of allied

spaces can be expressed in terms of limit-supremal values of operators
σs(s ≥ 0) on the norming function, it follows from the equivalencies
above that to any

m∼invariant of a Marcinkiewicz space M(0,∞)
correspond the pair of

m∼invariants of the space M(0, 1) and vice versa.
For a symmetric M-modular the

m∼invariants in this pair coincide.

It follows from the involution formulas that the N-modular allied with
a symmetric M-modular is itself symmetric. Therefore

m∼invariants of
the Orlicz space L?φ(0, 1) are in one-to-one correspondence with
m∼invariants of the Marcinkiewicz space Mφ_(0, 1).
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Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

I. Recall that an N-function φ and its N-modular Φ satisfy
∆2-condition if φ is

m∼equivalent at infinity to the function σ2φ.

An M-modular Ψ is denoted through (HLPM)- [respectively,
(HLPΛ)] whenever γψ > 0 [respectively, δψ < 1].

A symmetric M-modular Ψ is (HLPM)-modular if and only if
the allied N-modular Ψ^ satisfies the ∆2-condition.

It means that separability of the Orlicz space L∗Φ(0, 1) is equivalent to
the fact that the allied Marcinkiewicz space MΦ_(0, 1) has the Hardy
- Littlewood property.
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Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

II. A norming function F is called submultiplicative
(supermultiplicative) if there is a constant c > 0, such that the
following inequalities hold

F (s ·t) ≤ c ·F (s)·F (t) (respectively,F (s ·t) ≥ c ·F (s)·F (t)), s, t ≥ 0.

For equiconcave functions the following statements hold.

1.
m∼invariant of submultiplicativity is stronger than (HLPM)

m∼invariant.

2. An equiconcave function ψ is submultiplicative on [0,∞) if
and only if

ψ(s)
m∼ Sψ(s).
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Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

3. A symmetric equiconcave function ϕ is submultiplicative on
the segment [0, 1], if and only if in a neighborhood of 0

ϕ(s)
m∼ S0

ϕ(s).

4. Submultiplicativity of an M-modular Ψ is equivalent to
submultiplicativity of the allied N-modularΨ^.

Condition 4 above means that
m∼invariant of submultiplicativity

in the Marcinkiewicz space MΨ(0, 1) is equivalent to the well
known ∆′-condition in the Orlicz space L∗Ψ^(0, 1).
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Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

III. A norming function on [0,∞), that is at the same time sub- and
supermultiplicative will be called (as well as its modular)
equimultiplicative.

1. An equiconcave function ψ is equimultiplicative if and only if
we can find α, β : 0 ≤ α, β ≤ 1,

such that the following equivalencies hold:
at 0 ψ(t)

m∼ tα, at infinity ψ(t)
m∼ tβ.

2. For a symmetric equimultiplicative function α = β.

Similar statements (with α, β ≥ 1) take place for equiconvex
equimultiplicative functions.
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Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

IV. A norming function F is called a function of regular variation or
RVα-function at 0 (respectively, at ∞) with parameter α, 0 ≤ α ≤ ∞
if limt→0

σsF (t)
F (t) = sα (respectively, if limt→∞

σsF (t)
F (t) = sα).

If we speak only about one of singular points 0 or ∞, then we will
apply the notation F ∈ RV 0

α , respectively, F ∈ RV∞α . For an
equiconcave function the parameter of regular variation can take
values only in the interval [0, 1], and for an equiconvex one α must be
in the interval [1,∞).
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Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

It is worth to note that for an M-function ψ RV-property is a property
of the unit sphere of the Marcinkiewicz space Mψ(0,∞); this property

can be lost under an equivalent
m∼ renormalization. A topological

invariant of the Marcinkiewicz space MΨ(0,∞), induced by the
RVα-property, was first published for cases α = 0 and α = 1
independently by A. Mekler and E. Seneta, 1986, and then
generalized for arbitrary α, 0 ≤ α ≤ 1 jointly by E. Abakumov and A.
Mekler, 1994.
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Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

1. If for an equiconcave function ψ we have at 0

lim sup
t→0

σsψ(t)

ψ(t)
m∼ sα

(respectively, if we have at ∞)

lim sup
t→∞

σsψ(t)

ψ(t)
m∼ sα,

then there is a M-function ψ1
m∼ ψ, such that

ψ1 ∈ RV 0
α (respectively, ψ1 ∈ RV∞α ).
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Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

If α ≥ 1 then based on involution formulas we can make a similar
conclusion for

m∼invariants induced by RV∞α .

For functions equiconcave on [0,∞) we will denote RV
m∼invariants as

mRV 0
α and mRV∞α , respectively. It was obtained in jointly paper by

P.Dodds, B.De Pagter, A.Sedaev, E.Semenov, F. Sukochev, 2004, as
well as by N.Kalton and F.Sukochev, 2008, that for α = 0 and α = 1
the corresponding

m∼invariant provides criteria of existence or
nonexistence of some types of singular functionals on Marcinkiewicz
spaces that have the corresponding

m∼invariant property.
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Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

2. A symmetric submultiplicative M-modular
has mRV 0

α-invariant with an appropriate parameter α.

3. If an M-modular has mRV 0
1 -invariant

then it is submultiplicative on [0, 1] .
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Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

V. Let us consider a topological invariant as following.

Let ψ be an equiconvex symmetric function and δψ be its upper
index. It is known, S.Novikov, 1982, that for 1 < p 6= 1

δψ
the

Marcinkiewicz space Mψ([0, 1]) is p-convex (or equivalently the
Lorentz space Λψ∗([0, 1]) is q-concave, where 1/p + 1/q = 1) if and
only if when p < 1

δψ
. This fact is equivalent to the statement that for

an equiconcave function ψ on [0,∞) and for 1 < p 6= 1
δψ

the power

ψp is equiconcave if and only if when p < 1
δψ
.
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Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

Let us now consider an
m∼invariant property that ψ raised to the limit

power 1
δψ

also is equiconcave; such equiconcave functions, as well as

their modulars are called pseudopower functions. (To avoid the
clauses it follows from our definition of M-function that a power
function cannot be pseudopower.)

An example of a pseudopower function on [0,∞) is provided by the

equiconcave function (ϕ0)
1
2 , where ϕ0 is defined on [0, 1] as

ϕ0(0) := 0, ϕ0(t) := −t · log2
t
2 , and is extended symmetrically on

[0,∞) as ϕ0(t) = 1
ϕ0( 1

t
)
, t > 1.
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Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

As an example of a function that is not pseudopower we can consider

the equiconcave function (ϕ∞)
1
2 , where the function

ϕ∞(t) := t · log2 2t defined on [1,∞) is symmetrically extended on
(0, 1]: ϕ∞(t) = 1

ϕ∞( 1
t

)
, t ∈ (0, 1].

1. A symmetric equiconcave function ψ is a pseudopower function
if and only if S∞ψ (s)

m∼ L∞ψ (s).

2. A pseudopower symmetric M-modular is submultiplicative at infinity.

Alexander A. Mekler A universal approach to topological invariants of Marcinkiewicz, Lorentz and Orlicz spaces.July 23, 2013 27 / 45



Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

As an example of a function that is not pseudopower we can consider

the equiconcave function (ϕ∞)
1
2 , where the function

ϕ∞(t) := t · log2 2t defined on [1,∞) is symmetrically extended on
(0, 1]: ϕ∞(t) = 1

ϕ∞( 1
t

)
, t ∈ (0, 1].

1. A symmetric equiconcave function ψ is a pseudopower function
if and only if S∞ψ (s)

m∼ L∞ψ (s).

2. A pseudopower symmetric M-modular is submultiplicative at infinity.

Alexander A. Mekler A universal approach to topological invariants of Marcinkiewicz, Lorentz and Orlicz spaces.July 23, 2013 27 / 45



Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

As an example of a function that is not pseudopower we can consider

the equiconcave function (ϕ∞)
1
2 , where the function

ϕ∞(t) := t · log2 2t defined on [1,∞) is symmetrically extended on
(0, 1]: ϕ∞(t) = 1

ϕ∞( 1
t

)
, t ∈ (0, 1].

1. A symmetric equiconcave function ψ is a pseudopower function
if and only if S∞ψ (s)

m∼ L∞ψ (s).

2. A pseudopower symmetric M-modular is submultiplicative at infinity.

Alexander A. Mekler A universal approach to topological invariants of Marcinkiewicz, Lorentz and Orlicz spaces.July 23, 2013 27 / 45



Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

VI. We will say that the Marcinkiewicz space Mψ(0, 1) has the

property P∗, if the nonincreasing function ψ(t)
t belongs to L1[0, 1].

The
m∼invariant P∗ is obviously weaker than (HLP)-invariant. It is

well known that for an M-function ψ the inclusions
Mψ(0, 1) ∈ P∗ and dψ(t)

dt ∈ L log+ L(0, 1)
are equivalent.

VII. It is known that the Orlicz space L?φ(0, 1) and the Marcinkiewicz
space Mψ(0, 1) can be equal as sets. A criterion for such an equality
is that the following three conditions hold simultaneously :
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Examples of topological invariants of Marcinkiewicz and
Orlicz spaces.

1.φ(t)
m∼ I5I3I4ψ;

2.ψ ∈ (HLPM);

3.∃ ε > 0 :
∑
n≥1

2n · ψ−1
∗

(
ε · ψ∗(2−n)

)
<∞.

This is the ultimate form of the result obtained by A. Sedaev after
previous contributions by Rutickii and Lorentz.
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The semigroup of M-modulars.

We consider only M-modulars on the segment [0, 1] (we can consider
the case of symmetric M-modulars and reduce to it the general case
of M-modular on [0,∞)). On the set M of all such M-modulars we
can correctly define the following binary operation - composition
Ψ1 ◦Ψ2, where the last expression represents the modular of the
composition of M-functions

ψ1 ◦ ψ2(t) := ψ1

(
ψ2(t)

)
, t ∈ [0, 1].

The upper index of the composition of two functions
equiconcave on [0, 1] is less or equal than the product of upper
indices of the composed functions and moreover, if these
functions are power functions, pseudopower functions, or
mRV 0-functions, the above mentioned inequality becomes
equality.
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The semigroup of M-modulars.

The set M (endowed with the operation ◦) becomes a
noncommutative semigroup.

The M-modulars, that have some M-invariant property P make a
subset in M denoted as MP . This subset can have different
semigroup-like properties depending on P.

A subset V of the semigroup(M, ◦) is called

1. Subsemigroup if v1, v2 ∈ V ⇒ v1 ◦ v2 ∈ V;

2. Closed subsemigroup if v1, v2 ∈ V ⇔ v1 ◦ v2 ∈ V;

3. Right closed subsemigroup if v1 ◦ v2 ∈ V ⇒ v2 ∈ V;

4. Ideal if [v1 ∈ V or/and v2 ∈ V]⇒ v1 ◦ v2 ∈ V.

5. An ideal V is called closed if v1 ◦ v2 ∈ V ⇔ [v1 ∈ V or/and v2 ∈ V].
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The semigroup of M-modulars.

The complement Vc := M \ V of a closed semigroup V is a closed ideal.

The complement of a closed ideal is a closed semigroup.

The
m∼invariants we considered in Section 2 generate the following

substructures in the semigroup (M, ◦) .

I. 1◦. Each of the following
m∼invariants (HLP)M and mRV 0

1

generates a closed subsemigroup;

2◦.
m∼invariant (HLP)Λ generates an ideal, and

m∼invariant mRV 0
0

generates a closed ideal.
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The semigroup of M-modulars.

II. Every of the
m∼invariants of submultiplicativity and

supermultiplicativity generates a subsemigroup;

III.
m∼invariant of equimultiplicativity generates a subsemigroup

that is identical to the commutative subsemigroup of
M-modulars generated by power functions.

IV. The set
⋃

0<ω<1 mRV 0
ω generates a subsemigroup. Moreover,

(ψ ∈ mRV 0
α , ϕ ∈ mRV 0

β , 0 < α, β < 1)⇒ ψ ◦ ϕ ∈ RV 0
α·β.

V. The class of pseudopower M-modulars generates a
commutative right closed subsemigroup.
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Natural interpretation. Bases. Tables.
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Natural interpretation. Bases. Tables.

We introduce the class of interpreting natural sequences and the
relation of

a∼equivalency on it as follows.

A subset K of the naturals N is called biinfinite if both K and its
complement N \ K are infinite subsets of N.
Strictly increasing sequence of integer nonnegative numbers
b = {bk}0≤k<∞, where b0 = 0, is called a natural base if {bk}1≤k<∞
is a biinfinite subset of N. If b = {bk}k≥0 is a base then the biinfinite
set N \ {bk}k≥1 := {b∗i}i≥1 ordered as a strictly increasing sequence
and complemented by 0 as the first element is called the dual to b
base and is denoted b∗. The relation of duality defines an involution
on the set of all bases.
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Natural interpretation. Bases. Tables.

A base b1 is called
a∼equivalent (= additive equivalent) to the base b2

(we write: b1 a∼ b2), if there is a natural number d , such that
b1
k ≤ b2

k+d ≤ b1
k+2d , k ≥ 1.

The set of all bases that are
a∼equivalent to some base b is called

a∼modular of the base b and is denoted b. A property of a base valid
for every base from its

a∼modular is called
a∼invariant. An example of

an
a∼invariant is provided by the following property

A base b = {bn} is called condensing, if there is a natural number d
such that for any natural m, n we can find n′, n′ = n′(m) > n, such
that

n+m∑
i=n+1

χb(i) ≤
n′+m+d∑
i=n′+1

χb(i).
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Natural interpretation. Bases. Tables.

By the lower table of a natural base b (or the table of base
compression ) we will understand the following table of natural
numbers with infinite number of rows and columns
Tb(n,m) :=

∑bn+m

i=bn+1 χb(i), n,m ≥ 0.

Similarly, by the upper table of the base b (or the table of base
dilation) we will understand the following table
Tb(n,m) := bn+m − bn, n,m ≥ 0.

Notice that the lower table characterizes the distribution of the base
b as a subset of N while the upper table characterizes the distribution
of the complement of b in N i.e. the distribution of the dual base.
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Natural interpretation. Bases. Tables.

In what follows we will consider a base b = {bn} corresponding to a
symmetric equiconcave function, i.e. we assume that M-functions are
defined on the unit interval. It is easy to see that to verify the relation
of

m∼equivalence at 0 for such functions it is enough to verify that they
are

m∼equivalent on the countable subset {2−n}∞n=0. We can use this
fact to construct an interpretation of the functional model by a model
of sequences of natural numbers. We will clarify the simple idea of
such an interpretation without describing routine constructions.
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Natural interpretation. Bases. Tables.

We substitute a defined on [0, 1] M-function ψ by its uniform
piecewise linear approximation using the values of ψ at the points
2−n. By taking integer parts of absolute values of logarithms of
values of that piecewise linear approximation we can establish a
correspondence between the function ψ and a biinfinite sequence of
natural numbers (i.e. a base) bψ and vice versa.

Importantly, the relations of
m∼ and

a∼equivalence transform into each
other and that means that the correspondence between the modulars
Ψ↔ bψ is bijective.

Similarly the
m∼ and

a∼invariants transform into each other.
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Natural interpretation. Bases. Tables.

So regarding the question: What is common between Hardy-Littlewood
property of Marcinkiewicz space Mψ(0, 1) and separability of its allied
space L∗φ(0, 1) the answer may be formulated as following: The differences
between neighboring members, - next and previous, - in each of their
a∼common bases bψ

a∼ bφ are bounded.

Alexander A. Mekler A universal approach to topological invariants of Marcinkiewicz, Lorentz and Orlicz spaces.July 23, 2013 40 / 45



Natural interpretation. Bases. Tables.

Regarding the general case of a function ψ that is equiconcave
on[0,∞), it is not difficult to see that it allows the interpretation by a
pair of bases corresponding to the left and right symmetric
parentheses of the function ψ.

We can interpret all
m∼invariants of the spaces

Mψ, Λψ , and L?φ (ψ = φ_) in terms of limit and extremal relations
for the upper (as well as for the lower) table of the base of an
equiconcave function ψ. As examples we can consider

m∼invariants of
M-modulars on [0, 1] considered in Section 2.
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Natural interpretation. Bases. Tables.

I. 1. lim sup
n≥0

Tbψ(n, 1) <∞⇔ γbψ > 0 ⇔ ψ^ ∈ (∆2).

2. lim sup
n≥0

Tbψ∗ (n, 1) <∞⇔ δbψ < 1

II. Submultiplicativity ψ : sup
m,n≥1

(
Tbψ(0,m)− Tbψ(n,m)

)
<∞.

Supermultiplicativity ψ : sup
m,n≥1

(
Tbψ(n,m)− Tbψ(0,m)

)
<∞.
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Natural interpretation. Bases. Tables.

III. Equimultiplicativity of ψ is equivalent to any of the
following conditions

sup
n; k, m

|Tbψ(k ,m)− Tbψ(n,m)| <∞

or
ψ(t)

m∼ t
γbψ .

Repeating limit

lim
n→∞

lim
m→∞

m

Tbψ(n,m)
= α⇔ ψ ∈ RV 0

α , α ∈ [0, 1].
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Natural interpretation. Bases. Tables.

V. ψ pseudopower⇔ supn≥0 T
bψ∗ (n,m)

a∼ lim supn→∞ Tbψ∗ (n,m).

We can formulate a criterion that a symmetric function ψ is
pseudopower directly in terms of the base bψ:

ψ pseudopower⇔ base bψ condensing.

VI. Mψ(0, 1) ∈ P∗ ⇔
∑

n≥1 T
bψ(n, 1) · 2−n <∞.

VII. Mψ(0, 1) = L∗φ(0, 1)⇔

∃ϕ m∼ ψ : bϕ∗
a∼ bφ−1 and

∞∑
n=0

2−T
bϕ∗ (n,1) <∞.
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Natural interpretation. Bases. Tables.

Thus, in the case of the interval [0, 1] all the information about
topological invariants of a Marcinkiewicz space, the dual to it Lorentz
space, and the allied to it Orlicz space is contained in limit and
extremal values of the distribution of some natural sequence - their
common base (and the dual base as well).

In the case of Marcinkiewicz, Lorentz, and Orlicz spaces on [0,∞),
the information is contained in the corresponding values of both (left
and right) bases.

The converse is true as well. By choosing a biinfinite sequence of
naturals (or a pair of such sequences) we define the corresponding
allied triple of Marcinkiewicz, Lorentz, and Orlicz spaces. Moreover,
by varying the distributions of this sequence in natural series we can
arbitrary vary the topological invariants of the allied triple of spaces.
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