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Overview of problems we investigated

Provide conditions under which a positive element in an
ordered Banach algebra dominated by a positive ergodic
element will be ergodic.

Establish an ergodic theorem, providing necessary and
sufficient conditions for an element to be ergodic.
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Preliminaries

A: complex Banach algebra with unit 1

σ(a): the spectrum of a ∈ A

r(a): the spectral radius of a ∈ A

A point α ∈ iso σ(a) is a Riesz point relative to an ideal F in A if
the spectral idempotent p(a, α) ∈ F .

An ideal I in A is inessential if the spectrum of each element of I is
either finite or a sequence converging to zero.

In a semisimple Banach algebra, α ∈ σ(a) is a Riesz point relative
to an inessential ideal I if and only if α is a pole of the resolvent of
a and p(a, α) ∈ I .
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Preliminaries

An element a ∈ A is ergodic if the sequence
(∑n−1

k=0
ak

n

)
converges.

Lr (E ): the Banach algebra of all regular operators on a Dedekind
complete Banach lattice E with the r -norm

||T ||r := inf{||S || : S ∈ L(E ), |Tx | ≤ S |x | for all x ∈ E}

Kr (E ): the closure in Lr (E ) of the ideal of finite rank operators on
E
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Ordered Banach algebras

A subset C of A is called an algebra cone of A if C contains 1 and
is closed under addition, positive scalar multiplication and
multiplication.
We call C proper if C ∩ −C = {0}.
(A,C ) is an ordered Banach algebra (OBA) since A is partially
ordered by C :

x ≤ y if and only if y − x ∈ C

The elements of C are called the positive elements:

C = {x ∈ A : x ≥ 0}

An algebra cone C of A is normal if there exists a constant α > 0
with the following property:
if 0 ≤ x ≤ y relative to C , then ||x || ≤ α||y ||.
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Ordered Banach algebras

If
0 ≤ a ≤ b ⇒ r(a) ≤ r(b),

then the spectral radius is monotone w.r.t. C .

If C is normal, then the spectral radius is monotone w.r.t. C .

If (A,C ) is an OBA, F a closed ideal in A and π : A→ A/F the
canonical homomorphism, then (A/F , πC ) is an OBA.

Example

Let E be a Dedekind complete Banach lattice,
C = {x ∈ E : x ≥ 0} and K = {T ∈ L(E ) : TC ⊆ C}. Then
(Lr (E ),K ) is an OBA with a closed, normal algebra cone and
(Lr (E )/Kr (E ), πK ) is an OBA such that the spectral radius in
(Lr (E )/Kr (E ), πK ) is monotone.

Last fact proved by J. Martinez and J. M. Mazón in 1991.
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Ordered Banach algebras

Theorem (S. Mouton, H. Raubenheimer, 1997)

Let (A,C ) be an OBA with C closed and the spectral radius in
(A,C ) monotone, and let I be a closed inessential ideal in A such
that the spectral radius in (A/I , πC ) is monotone.

Suppose that
a, b ∈ A such that 0 ≤ a ≤ b and r(a) = r(b). If r(b) is a Riesz
point of σ(b), then r(a) is a Riesz point of σ(a).

Proved for bounded linear operators on Banach lattices by V.
Caselles in 1987.
Strengthened by F. Räbiger and M. P. H. Wolff in 1997.
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Strengthened by F. Räbiger and M. P. H. Wolff in 1997.

Mouton, Muzundu Domination by ergodic elements



Ordered Banach algebras

Theorem (S. Mouton, H. Raubenheimer, 1997)

Let (A,C ) be an OBA with C closed and the spectral radius in
(A,C ) monotone, and let I be a closed inessential ideal in A such
that the spectral radius in (A/I , πC ) is monotone. Suppose that
a, b ∈ A such that 0 ≤ a ≤ b and r(a) = r(b). If r(b) is a Riesz
point of σ(b), then r(a) is a Riesz point of σ(a).

Proved for bounded linear operators on Banach lattices by V.
Caselles in 1987.
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The ergodic theorem

Theorem

Let A be a Banach algebra and a ∈ A. Suppose that f is a complex
valued function analytic on a neighbourhood of σ(a) such that

1 every pole of the resolvent of a of order k is a zero of f of
order ≥ k and

2 there exists a neighbourhood U of σ(a)\K such that f (λ) = 0
for all λ ∈ U, where K is a subset of σ(a) consisting of n
poles of the resolvent of a, for some n ≥ 0.

Then f (a) = 0.

Theorem (representation for f (a))

Let A be a Banach algebra and a ∈ A. Suppose that f is a
complex valued function analytic on a neighbourhood of σ(a). If α
is a pole of order k of the resolvent of a, then
f (a) = f (a)(1− p) +

∑k−1
n=0

(a−α1)n

n! f (n)(α)p, where p = p(a, α).
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The ergodic theorem
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Corollary (1)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a).
Suppose that α 6= 0 is a pole of order k of the resolvent of a such
that fn(α)→ 1 and fn

(j)(α)→ 0 (j = 1, 2, . . . , k − 1) as n→∞.
If (α1− a)fn(a)→ 0 as n→∞, then fn(a)→ p(a, α) as n→∞.

Mouton, Muzundu Domination by ergodic elements



The ergodic theorem

Theorem (representation for f (a))

Let A be a Banach algebra and a ∈ A. Suppose that f is a
complex valued function analytic on a neighbourhood of σ(a). If α
is a pole of order k of the resolvent of a, then
f (a) = f (a)(1− p) +

∑k−1
n=0

(a−α1)n

n! f (n)(α)p, where p = p(a, α).

Corollary (1)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a).
Suppose that α 6= 0 is a pole of order k of the resolvent of a

such
that fn(α)→ 1 and fn

(j)(α)→ 0 (j = 1, 2, . . . , k − 1) as n→∞.
If (α1− a)fn(a)→ 0 as n→∞, then fn(a)→ p(a, α) as n→∞.

Mouton, Muzundu Domination by ergodic elements



The ergodic theorem

Theorem (representation for f (a))

Let A be a Banach algebra and a ∈ A. Suppose that f is a
complex valued function analytic on a neighbourhood of σ(a). If α
is a pole of order k of the resolvent of a, then
f (a) = f (a)(1− p) +

∑k−1
n=0

(a−α1)n

n! f (n)(α)p, where p = p(a, α).

Corollary (1)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a).
Suppose that α 6= 0 is a pole of order k of the resolvent of a such
that fn(α)→ 1 and fn

(j)(α)→ 0 (j = 1, 2, . . . , k − 1) as n→∞.
If (α1− a)fn(a)→ 0 as n→∞, then fn(a)→ p(a, α) as n→∞.

Mouton, Muzundu Domination by ergodic elements



The ergodic theorem

Corollary (1)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a).
Suppose that α 6= 0 is a pole of order k of the resolvent of a such
that fn(α)→ 1 and fn

(j)(α)→ 0 (j = 1, 2, . . . , k − 1) as n→∞.
If (α1− a)fn(a)→ 0 as n→∞, then fn(a)→ p(a, α) as n→∞.

If α is a simple pole:

Corollary (2)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a).
Suppose that α 6= 0 is a simple pole of the resolvent of a such that
fn(α)→ 1 as n→∞. If (α1− a)fn(a)→ 0 as n→∞, then
fn(a)→ p(a, α) as n→∞.

Mouton, Muzundu Domination by ergodic elements



The ergodic theorem

Corollary (1)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a).
Suppose that α 6= 0 is a pole of order k of the resolvent of a such
that fn(α)→ 1 and fn

(j)(α)→ 0 (j = 1, 2, . . . , k − 1) as n→∞.
If (α1− a)fn(a)→ 0 as n→∞, then fn(a)→ p(a, α) as n→∞.

If α is a simple pole:

Corollary (2)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a).
Suppose that α 6= 0 is a simple pole of the resolvent of a such that
fn(α)→ 1 as n→∞. If (α1− a)fn(a)→ 0 as n→∞, then
fn(a)→ p(a, α) as n→∞.

Mouton, Muzundu Domination by ergodic elements



The ergodic theorem

Corollary (1)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a).
Suppose that α 6= 0 is a pole of order k of the resolvent of a such
that fn(α)→ 1 and fn

(j)(α)→ 0 (j = 1, 2, . . . , k − 1) as n→∞.
If (α1− a)fn(a)→ 0 as n→∞, then fn(a)→ p(a, α) as n→∞.

If α is a simple pole:

Corollary (2)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a).
Suppose that α 6= 0 is a simple pole of the resolvent of a such that
fn(α)→ 1 as n→∞. If (α1− a)fn(a)→ 0 as n→∞, then
fn(a)→ p(a, α) as n→∞.

Mouton, Muzundu Domination by ergodic elements



The ergodic theorem

Corollary (1)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a).
Suppose that α 6= 0 is a pole of order k of the resolvent of a such
that fn(α)→ 1 and fn

(j)(α)→ 0 (j = 1, 2, . . . , k − 1) as n→∞.
If (α1− a)fn(a)→ 0 as n→∞, then fn(a)→ p(a, α) as n→∞.

The conditions force α to be a simple pole:

Corollary (3)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a).
Suppose that α 6= 0 is a pole of order at most k ≥ 1 of the
resolvent of a. If fn(α)→ 1 and (α1− a)fn(a)→ 0 as n→∞,
then α is a simple pole of the resolvent of a.

Mouton, Muzundu Domination by ergodic elements



The ergodic theorem

Corollary (1)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a).
Suppose that α 6= 0 is a pole of order k of the resolvent of a such
that fn(α)→ 1 and fn

(j)(α)→ 0 (j = 1, 2, . . . , k − 1) as n→∞.
If (α1− a)fn(a)→ 0 as n→∞, then fn(a)→ p(a, α) as n→∞.

The conditions force α to be a simple pole:

Corollary (3)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a).
Suppose that α 6= 0 is a pole of order at most k ≥ 1 of the
resolvent of a. If fn(α)→ 1 and (α1− a)fn(a)→ 0 as n→∞,
then α is a simple pole of the resolvent of a.

Mouton, Muzundu Domination by ergodic elements



The ergodic theorem

Corollary (1)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a).
Suppose that α 6= 0 is a pole of order k of the resolvent of a such
that fn(α)→ 1 and fn

(j)(α)→ 0 (j = 1, 2, . . . , k − 1) as n→∞.
If (α1− a)fn(a)→ 0 as n→∞, then fn(a)→ p(a, α) as n→∞.

The conditions force α to be a simple pole:

Corollary (3)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a).
Suppose that α 6= 0 is a pole of order at most k ≥ 1 of the
resolvent of a. If fn(α)→ 1 and (α1− a)fn(a)→ 0 as n→∞,
then α is a simple pole of the resolvent of a.

Mouton, Muzundu Domination by ergodic elements



The ergodic theorem

Corollary (2)

Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of
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α = 1; fn(λ) =
n−1∑
k=0

λn

n

Theorem (The ergodic theorem)

Let A be a Banach algebra, a ∈ A, fn(λ) =
∑n−1

k=0
λn

n (λ ∈ C,
n ∈ N) and 1 ∈ iso σ(a). Then a is ergodic and fn(a)→ p(a, 1) if
and only if 1 is a (simple) pole of the resolvent of a and
(1− a)fn(a)→ 0 as n→∞.
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space by N. Dunford in 1943, using partly operator theoretic
methods.
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Domination by ergodic elements

Theorem (Domination by ergodic elements)

Let (A,C ) be a semisimple OBA with C closed and normal and let
I be a closed inessential ideal of A such that the spectral radius in
(A/I , πC ) is monotone. Let a, b ∈ A such that 0 ≤ a ≤ b. If b is
ergodic and r(b) is a Riesz point of σ(b), then a is ergodic.

Sketch of proof.

We have r(a) ≤ r(b) ≤ 1.

Suppose r(a) = r(b) = 1.

r(b) a Riesz point of σ(b) ⇒ r(a) a Riesz point of σ(a).

We also have 0 ≤ an

n ≤
bn

n .

b ergodic ⇒ bn

n → 0.

Normality of C ⇒ an

n → 0; hence (1− a)fn(a)→ 0.

By the ergodic theorem a is ergodic.
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Corollary

Let E be a Dedekind complete Banach lattice and let
S ,T ∈ Lr (E ) such that 0 ≤ S ≤ T . If T is uniformly ergodic with
ergodic projection of finite rank, then S is uniformly ergodic.

Proved for the bounded linear operators on a Banach lattice (under
a weaker form of domination) by F. Räbiger and M. P. H. Wolff in
1997, using operator theoretic methods.
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