Domination by ergodic elements in ordered Banach algebras

S. Mouton^{1*} K. Muzundu²

¹Stellenbosch University

²University of Zambia

Positivity VII, Leiden, 22 - 26 July 2013

Outline of talk

æ

≣ ।•

・日・ ・ ヨ・・

• Overview of problems we investigated

э

- Overview of problems we investigated
- Some references

э

- Overview of problems we investigated
- Some references
- Preliminaries

< E

э

- Overview of problems we investigated
- Some references
- Preliminaries
- Ordered Banach algebras

- Overview of problems we investigated
- Some references
- Preliminaries
- Ordered Banach algebras
- The ergodic theorem

- Overview of problems we investigated
- Some references
- Preliminaries
- Ordered Banach algebras
- The ergodic theorem
- Domination by ergodic elements

Overview of problems we investigated

• Provide conditions under which a positive element in an ordered Banach algebra dominated by a positive ergodic element will be ergodic.

- Provide conditions under which a positive element in an ordered Banach algebra dominated by a positive ergodic element will be ergodic.
- Establish an ergodic theorem, providing necessary and sufficient conditions for an element to be ergodic.

Some references

æ

≣ ।•

@▶ ∢ ≣▶

First literature on ordered Banach algebras:

First literature on ordered Banach algebras:

- H. Raubenheimer and S. Rode: Cones in Banach algebras, *Indag. Math.* **7** (1996), 489 502.
- S. Mouton (née Rode) and H. Raubenheimer: More spectral theory in ordered Banach algebras, *Positivity* 1 (1997), 305 – 317.

First literature on ordered Banach algebras:

- H. Raubenheimer and S. Rode: Cones in Banach algebras, *Indag. Math.* **7** (1996), 489 502.
- S. Mouton (née Rode) and H. Raubenheimer: More spectral theory in ordered Banach algebras, *Positivity* 1 (1997), 305 – 317.
- S. Mouton and K. Muzundu: Commutatively ordered Banach algebras, *Quaest. Math.* **36** (2013), 1 29.

- S. Mouton: On spectral continuity of positive elements, *Studia Math.* **174** (2006), 75 84.
- S. Mouton: A condition for spectral continuity of positive elements, *Proc. Amer. Math. Soc.* **137** (2009), 1777 1782.

- S. Mouton: On spectral continuity of positive elements, *Studia Math.* **174** (2006), 75 84.
- S. Mouton: A condition for spectral continuity of positive elements, *Proc. Amer. Math. Soc.* **137** (2009), 1777 1782.
- G. Braatvedt, R. Brits and H. Raubenheimer: Gelfand-Hille type theorems in ordered Banach algebras, *Positivity* 13 (2009), 39 – 50.

 H. du T. Mouton and S. Mouton: Domination properties in ordered Banach algebras, *Studia Math.* 149 (2002), 63 – 73.

- H. du T. Mouton and S. Mouton: Domination properties in ordered Banach algebras, *Studia Math.* 149 (2002), 63 – 73.
- D. Behrendt and H. Raubenheimer: On domination of inessential elements in ordered Banach algebras, *III. J. Math.* 51 (2007), 927 – 936.

- H. du T. Mouton and S. Mouton: Domination properties in ordered Banach algebras, *Studia Math.* 149 (2002), 63 – 73.
- D. Behrendt and H. Raubenheimer: On domination of inessential elements in ordered Banach algebras, *III. J. Math.* 51 (2007), 927 – 936.
- S. Mouton and K. Muzundu: Domination by ergodic elements in ordered Banach algebras, to appear in *Positivity* (DOI 10.1007/s11117-013-0234-8).

ヘロン 人間と 人間と 人間と

æ

F. Räbiger and M. P. H. Wolff: Spectral and asymptotic properties of dominated operators, *J. Aust. Math. Soc.* (Ser. A) 63 (1997), 16 – 31.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- F. Räbiger and M. P. H. Wolff: Spectral and asymptotic properties of dominated operators, *J. Aust. Math. Soc.* (Ser. A) 63 (1997), 16 31.
- N. Dunford: Spectral theory. I. Convergence to projections, *Trans. Amer. Math. Soc.* **54** (1943), 185 217.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- F. Räbiger and M. P. H. Wolff: Spectral and asymptotic properties of dominated operators, *J. Aust. Math. Soc.* (Ser. A) 63 (1997), 16 31.
- N. Dunford: Spectral theory. I. Convergence to projections, *Trans. Amer. Math. Soc.* **54** (1943), 185 217.
- V. Caselles: On the peripheral spectrum of positive operators, *Israel J. Math.* **58** (1987), 144 160.
- J. Martinez and J. M. Mazón: Quasi-compactness of dominated positive operators and C₀-semigroups, *Math. Z.* 207 (1991), 109 – 120.

- F. Räbiger and M. P. H. Wolff: Spectral and asymptotic properties of dominated operators, *J. Aust. Math. Soc.* (Ser. A) 63 (1997), 16 31.
- N. Dunford: Spectral theory. I. Convergence to projections, *Trans. Amer. Math. Soc.* **54** (1943), 185 217.
- V. Caselles: On the peripheral spectrum of positive operators, *Israel J. Math.* **58** (1987), 144 160.
- J. Martinez and J. M. Mazón: Quasi-compactness of dominated positive operators and C₀-semigroups, *Math. Z.* 207 (1991), 109 – 120.
- S. Mouton and K. Muzundu: Domination by ergodic elements in ordered Banach algebras, to appear in *Positivity* (DOI 10.1007/s11117-013-0234-8).

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

A: complex Banach algebra with unit 1

ヘロト 人間ト 人注ト 人注ト

æ

- A: complex Banach algebra with unit 1
- $\sigma(a)$: the spectrum of $a \in A$
- r(a): the spectral radius of $a \in A$

- 4 回 > - 4 回 > - 4 回 >

æ

A: complex Banach algebra with unit 1

 $\sigma(a)$: the spectrum of $a \in A$

r(a): the spectral radius of $a \in A$

A point $\alpha \in \text{iso } \sigma(a)$ is a *Riesz point* relative to an ideal *F* in *A* if the spectral idempotent $p(a, \alpha) \in F$.

-

A: complex Banach algebra with unit 1

 $\sigma(a)$: the spectrum of $a \in A$

r(a): the spectral radius of $a \in A$

A point $\alpha \in iso \sigma(a)$ is a *Riesz point* relative to an ideal F in A if the spectral idempotent $p(a, \alpha) \in F$.

An ideal *I* in *A* is *inessential* if the spectrum of each element of *I* is either finite or a sequence converging to zero.

A: complex Banach algebra with unit 1

 $\sigma(a)$: the spectrum of $a \in A$

r(a): the spectral radius of $a \in A$

A point $\alpha \in iso \sigma(a)$ is a *Riesz point* relative to an ideal F in A if the spectral idempotent $p(a, \alpha) \in F$.

An ideal *I* in *A* is *inessential* if the spectrum of each element of *I* is either finite or a sequence converging to zero.

In a semisimple Banach algebra, $\alpha \in \sigma(a)$ is a Riesz point relative to an inessential ideal I if and only if α is a pole of the resolvent of a and $p(a, \alpha) \in I$.

An element $a \in A$ is *ergodic* if the sequence $\left(\sum_{k=0}^{n-1} \frac{a^k}{n}\right)$ converges.

An element $a \in A$ is *ergodic* if the sequence $\left(\sum_{k=0}^{n-1} \frac{a^k}{n}\right)$ converges.

 $\mathcal{L}^{r}(E)$: the Banach algebra of all regular operators on a Dedekind complete Banach lattice E with the *r*-norm

 $||T||_r := \inf\{||S|| : S \in \mathcal{L}(E), |Tx| \le S|x| \text{ for all } x \in E\}$

An element $a \in A$ is *ergodic* if the sequence $\left(\sum_{k=0}^{n-1} \frac{a^k}{n}\right)$ converges.

 $\mathcal{L}^{r}(E)$: the Banach algebra of all regular operators on a Dedekind complete Banach lattice E with the *r*-norm

 $||T||_r := \inf\{||S|| : S \in \mathcal{L}(E), |Tx| \le S|x| \text{ for all } x \in E\}$

 $\mathcal{K}^{r}(E)$: the closure in $\mathcal{L}^{r}(E)$ of the ideal of finite rank operators on E
æ

A subset C of A is called an *algebra cone* of A if C contains 1 and is closed under addition, positive scalar multiplication and multiplication.

< 同 ▶

A subset C of A is called an *algebra cone* of A if C contains 1 and is closed under addition, positive scalar multiplication and multiplication.

We call *C* proper if $C \cap -C = \{0\}$.

< 🗇 🕨

∃ → < ∃ →</p>

A subset C of A is called an *algebra cone* of A if C contains 1 and is closed under addition, positive scalar multiplication and multiplication.

We call *C* proper if $C \cap -C = \{0\}$.

(A, C) is an ordered Banach algebra (OBA) since A is partially ordered by C:

 $x \leq y$ if and only if $y - x \in C$

A subset C of A is called an *algebra cone* of A if C contains 1 and is closed under addition, positive scalar multiplication and multiplication.

We call *C* proper if $C \cap -C = \{0\}$.

(A, C) is an ordered Banach algebra (OBA) since A is partially ordered by C:

 $x \leq y$ if and only if $y - x \in C$

The elements of C are called the *positive* elements:

$$C = \{x \in A : x \ge 0\}$$

A subset C of A is called an *algebra cone* of A if C contains 1 and is closed under addition, positive scalar multiplication and multiplication.

We call C proper if $C \cap -C = \{0\}$.

(A, C) is an ordered Banach algebra (OBA) since A is partially ordered by C:

 $x \leq y$ if and only if $y - x \in C$

The elements of C are called the *positive* elements:

$$C = \{x \in A : x \ge 0\}$$

An algebra cone *C* of *A* is *normal* if there exists a constant $\alpha > 0$ with the following property: if $0 \le x \le y$ relative to *C*, then $||x|| \le \alpha ||y||$.

lf

$$0 \leq a \leq b \quad \Rightarrow \quad r(a) \leq r(b),$$

then the spectral radius is *monotone* w.r.t. *C*.

lf

$$0 \leq a \leq b \quad \Rightarrow \quad r(a) \leq r(b),$$

then the spectral radius is monotone w.r.t. C. If C is normal, then the spectral radius is monotone w.r.t. C.

lf

$$0 \leq a \leq b \quad \Rightarrow \quad r(a) \leq r(b),$$

then the spectral radius is monotone w.r.t. C. If C is normal, then the spectral radius is monotone w.r.t. C.

If (A, C) is an OBA, F a closed ideal in A and $\pi : A \to A/F$ the canonical homomorphism, then $(A/F, \pi C)$ is an OBA.

lf

$$0 \leq a \leq b \quad \Rightarrow \quad r(a) \leq r(b),$$

then the spectral radius is monotone w.r.t. C. If C is normal, then the spectral radius is monotone w.r.t. C.

If (A, C) is an OBA, F a closed ideal in A and $\pi : A \to A/F$ the canonical homomorphism, then $(A/F, \pi C)$ is an OBA.

Example

Let *E* be a Dedekind complete Banach lattice, $C = \{x \in E : x \ge 0\}$ and $K = \{T \in \mathcal{L}(E) : TC \subseteq C\}$.

lf

$$0 \leq a \leq b \quad \Rightarrow \quad r(a) \leq r(b),$$

then the spectral radius is monotone w.r.t. C. If C is normal, then the spectral radius is monotone w.r.t. C.

If (A, C) is an OBA, F a closed ideal in A and $\pi : A \to A/F$ the canonical homomorphism, then $(A/F, \pi C)$ is an OBA.

Example

Let *E* be a Dedekind complete Banach lattice, $C = \{x \in E : x \ge 0\}$ and $K = \{T \in \mathcal{L}(E) : TC \subseteq C\}$. Then $(\mathcal{L}^r(E), K)$ is an OBA with a closed, normal algebra cone

lf

$$0 \leq a \leq b \quad \Rightarrow \quad r(a) \leq r(b),$$

then the spectral radius is monotone w.r.t. C. If C is normal, then the spectral radius is monotone w.r.t. C.

If (A, C) is an OBA, F a closed ideal in A and $\pi : A \to A/F$ the canonical homomorphism, then $(A/F, \pi C)$ is an OBA.

Example

Let *E* be a Dedekind complete Banach lattice, $C = \{x \in E : x \ge 0\}$ and $K = \{T \in \mathcal{L}(E) : TC \subseteq C\}$. Then $(\mathcal{L}^r(E), K)$ is an OBA with a closed, normal algebra cone and $(\mathcal{L}^r(E)/\mathcal{K}^r(E), \pi K)$ is an OBA such that the spectral radius in $(\mathcal{L}^r(E)/\mathcal{K}^r(E), \pi K)$ is monotone.

lf

$$0 \leq a \leq b \quad \Rightarrow \quad r(a) \leq r(b),$$

then the spectral radius is monotone w.r.t. C. If C is normal, then the spectral radius is monotone w.r.t. C.

If (A, C) is an OBA, F a closed ideal in A and $\pi : A \to A/F$ the canonical homomorphism, then $(A/F, \pi C)$ is an OBA.

Example

Let *E* be a Dedekind complete Banach lattice, $C = \{x \in E : x \ge 0\}$ and $K = \{T \in \mathcal{L}(E) : TC \subseteq C\}$. Then $(\mathcal{L}^r(E), K)$ is an OBA with a closed, normal algebra cone and $(\mathcal{L}^r(E)/\mathcal{K}^r(E), \pi K)$ is an OBA such that the spectral radius in $(\mathcal{L}^r(E)/\mathcal{K}^r(E), \pi K)$ is monotone.

Last fact proved by J. Martinez and J. M. Mazón in 1991.

Let (A, C) be an OBA with C closed and the spectral radius in (A, C) monotone, and let I be a closed inessential ideal in A such that the spectral radius in $(A/I, \pi C)$ is monotone.

Let (A, C) be an OBA with C closed and the spectral radius in (A, C) monotone, and let I be a closed inessential ideal in A such that the spectral radius in $(A/I, \pi C)$ is monotone. Suppose that $a, b \in A$ such that $0 \le a \le b$ and r(a) = r(b). If r(b) is a Riesz point of $\sigma(b)$, then r(a) is a Riesz point of $\sigma(a)$.

Let (A, C) be an OBA with C closed and the spectral radius in (A, C) monotone, and let I be a closed inessential ideal in A such that the spectral radius in $(A/I, \pi C)$ is monotone. Suppose that $a, b \in A$ such that $0 \le a \le b$ and r(a) = r(b). If r(b) is a Riesz point of $\sigma(b)$, then r(a) is a Riesz point of $\sigma(a)$.

Proved for bounded linear operators on Banach lattices by V. Caselles in 1987.

Let (A, C) be an OBA with C closed and the spectral radius in (A, C) monotone, and let I be a closed inessential ideal in A such that the spectral radius in $(A/I, \pi C)$ is monotone. Suppose that $a, b \in A$ such that $0 \le a \le b$ and r(a) = r(b). If r(b) is a Riesz point of $\sigma(b)$, then r(a) is a Riesz point of $\sigma(a)$.

Proved for bounded linear operators on Banach lattices by V. Caselles in 1987. Strengthened by F. Räbiger and M. P. H. Wolff in 1997.

æ

Theorem

Let A be a Banach algebra and $a \in A$. Suppose that f is a complex valued function analytic on a neighbourhood of $\sigma(a)$

Theorem

Let A be a Banach algebra and $a \in A$. Suppose that f is a complex valued function analytic on a neighbourhood of $\sigma(a)$

Then f(a) = 0.

Theorem

Let A be a Banach algebra and $a \in A$. Suppose that f is a complex valued function analytic on a neighbourhood of $\sigma(a)$ such that

 every pole of the resolvent of a of order k is a zero of f of order ≥ k and

Then f(a) = 0.

Theorem

Let A be a Banach algebra and $a \in A$. Suppose that f is a complex valued function analytic on a neighbourhood of $\sigma(a)$ such that

- every pole of the resolvent of a of order k is a zero of f of order ≥ k and
- Observe the exists a neighbourhood U of σ(a)\K such that f(λ) = 0 for all λ ∈ U, where K is a subset of σ(a) consisting of n poles of the resolvent of a, for some n ≥ 0.

Then f(a) = 0.

Theorem

Let A be a Banach algebra and $a \in A$. Suppose that f is a complex valued function analytic on a neighbourhood of $\sigma(a)$ such that

- every pole of the resolvent of a of order k is a zero of f of order ≥ k and
- Observe the exists a neighbourhood U of σ(a)\K such that f(λ) = 0 for all λ ∈ U, where K is a subset of σ(a) consisting of n poles of the resolvent of a, for some n ≥ 0.

Then f(a) = 0.

Theorem (representation for f(a))

Let A be a Banach algebra and $a \in A$. Suppose that f is a complex valued function analytic on a neighbourhood of $\sigma(a)$. If α is a pole of order k of the resolvent of a,

Theorem

Let A be a Banach algebra and $a \in A$. Suppose that f is a complex valued function analytic on a neighbourhood of $\sigma(a)$ such that

- every pole of the resolvent of a of order k is a zero of f of order ≥ k and
- Observe the exists a neighbourhood U of σ(a)\K such that f(λ) = 0 for all λ ∈ U, where K is a subset of σ(a) consisting of n poles of the resolvent of a, for some n ≥ 0.

Then f(a) = 0.

Theorem (representation for f(a))

Let A be a Banach algebra and $a \in A$. Suppose that f is a complex valued function analytic on a neighbourhood of $\sigma(a)$. If α is a pole of order k of the resolvent of a, then $f(a) = f(a)(1-p) + \sum_{n=0}^{k-1} \frac{(a-\alpha 1)^n}{n!} f^{(n)}(\alpha)p$, where $p = p(a, \alpha)$.

Theorem (representation for f(a))

Let A be a Banach algebra and $a \in A$. Suppose that f is a complex valued function analytic on a neighbourhood of $\sigma(a)$. If α is a pole of order k of the resolvent of a, then $f(a) = f(a)(1-p) + \sum_{n=0}^{k-1} \frac{(a-\alpha 1)^n}{n!} f^{(n)}(\alpha)p$, where $p = p(a, \alpha)$.

Theorem (representation for f(a))

Let A be a Banach algebra and $a \in A$. Suppose that f is a complex valued function analytic on a neighbourhood of $\sigma(a)$. If α is a pole of order k of the resolvent of a, then $f(a) = f(a)(1-p) + \sum_{n=0}^{k-1} \frac{(a-\alpha 1)^n}{n!} f^{(n)}(\alpha)p$, where $p = p(a, \alpha)$.

Corollary (1)

Let A be a Banach algebra and $a \in A$. Let (f_n) be a sequence of complex valued functions analytic on a neighbourhood of $\sigma(a)$. Suppose that $\alpha \neq 0$ is a pole of order k of the resolvent of a

Theorem (representation for f(a))

Let A be a Banach algebra and $a \in A$. Suppose that f is a complex valued function analytic on a neighbourhood of $\sigma(a)$. If α is a pole of order k of the resolvent of a, then $f(a) = f(a)(1-p) + \sum_{n=0}^{k-1} \frac{(a-\alpha 1)^n}{n!} f^{(n)}(\alpha)p$, where $p = p(a, \alpha)$.

Corollary (1)

Let A be a Banach algebra and $a \in A$. Let (f_n) be a sequence of complex valued functions analytic on a neighbourhood of $\sigma(a)$. Suppose that $\alpha \neq 0$ is a pole of order k of the resolvent of a such that $f_n(\alpha) \rightarrow 1$ and $f_n^{(j)}(\alpha) \rightarrow 0$ (j = 1, 2, ..., k - 1) as $n \rightarrow \infty$. If $(\alpha 1 - a)f_n(a) \rightarrow 0$ as $n \rightarrow \infty$, then $f_n(a) \rightarrow p(a, \alpha)$ as $n \rightarrow \infty$.

伺 ト イヨト イヨト

Corollary (1)

Let A be a Banach algebra and $a \in A$. Let (f_n) be a sequence of complex valued functions analytic on a neighbourhood of $\sigma(a)$. Suppose that $\alpha \neq 0$ is a pole of order k of the resolvent of a such that $f_n(\alpha) \rightarrow 1$ and $f_n^{(j)}(\alpha) \rightarrow 0$ (j = 1, 2, ..., k - 1) as $n \rightarrow \infty$. If $(\alpha 1 - a)f_n(a) \rightarrow 0$ as $n \rightarrow \infty$, then $f_n(a) \rightarrow p(a, \alpha)$ as $n \rightarrow \infty$.

Corollary (1)

Let A be a Banach algebra and $a \in A$. Let (f_n) be a sequence of complex valued functions analytic on a neighbourhood of $\sigma(a)$. Suppose that $\alpha \neq 0$ is a pole of order k of the resolvent of a such that $f_n(\alpha) \rightarrow 1$ and $f_n^{(j)}(\alpha) \rightarrow 0$ (j = 1, 2, ..., k - 1) as $n \rightarrow \infty$. If $(\alpha 1 - a)f_n(a) \rightarrow 0$ as $n \rightarrow \infty$, then $f_n(a) \rightarrow p(a, \alpha)$ as $n \rightarrow \infty$.

If α is a simple pole:

Corollary (1)

Let A be a Banach algebra and $a \in A$. Let (f_n) be a sequence of complex valued functions analytic on a neighbourhood of $\sigma(a)$. Suppose that $\alpha \neq 0$ is a pole of order k of the resolvent of a such that $f_n(\alpha) \rightarrow 1$ and $f_n^{(j)}(\alpha) \rightarrow 0$ (j = 1, 2, ..., k - 1) as $n \rightarrow \infty$. If $(\alpha 1 - a)f_n(a) \rightarrow 0$ as $n \rightarrow \infty$, then $f_n(a) \rightarrow p(a, \alpha)$ as $n \rightarrow \infty$.

If α is a simple pole:

Corollary (2)

Let A be a Banach algebra and $a \in A$. Let (f_n) be a sequence of complex valued functions analytic on a neighbourhood of $\sigma(a)$. Suppose that $\alpha \neq 0$ is a simple pole of the resolvent of a such that $f_n(\alpha) \rightarrow 1$ as $n \rightarrow \infty$. If $(\alpha 1 - a)f_n(a) \rightarrow 0$ as $n \rightarrow \infty$, then $f_n(a) \rightarrow p(a, \alpha)$ as $n \rightarrow \infty$.

Corollary (1)

Let A be a Banach algebra and $a \in A$. Let (f_n) be a sequence of complex valued functions analytic on a neighbourhood of $\sigma(a)$. Suppose that $\alpha \neq 0$ is a pole of order k of the resolvent of a such that $f_n(\alpha) \rightarrow 1$ and $f_n^{(j)}(\alpha) \rightarrow 0$ (j = 1, 2, ..., k - 1) as $n \rightarrow \infty$. If $(\alpha 1 - a)f_n(a) \rightarrow 0$ as $n \rightarrow \infty$, then $f_n(a) \rightarrow p(a, \alpha)$ as $n \rightarrow \infty$.

Corollary (1)

Let A be a Banach algebra and $a \in A$. Let (f_n) be a sequence of complex valued functions analytic on a neighbourhood of $\sigma(a)$. Suppose that $\alpha \neq 0$ is a pole of order k of the resolvent of a such that $f_n(\alpha) \rightarrow 1$ and $f_n^{(j)}(\alpha) \rightarrow 0$ (j = 1, 2, ..., k - 1) as $n \rightarrow \infty$. If $(\alpha 1 - a)f_n(a) \rightarrow 0$ as $n \rightarrow \infty$, then $f_n(a) \rightarrow p(a, \alpha)$ as $n \rightarrow \infty$.

The conditions force α to be a simple pole:

Corollary (1)

Let A be a Banach algebra and $a \in A$. Let (f_n) be a sequence of complex valued functions analytic on a neighbourhood of $\sigma(a)$. Suppose that $\alpha \neq 0$ is a pole of order k of the resolvent of a such that $f_n(\alpha) \rightarrow 1$ and $f_n^{(j)}(\alpha) \rightarrow 0$ (j = 1, 2, ..., k - 1) as $n \rightarrow \infty$. If $(\alpha 1 - a)f_n(a) \rightarrow 0$ as $n \rightarrow \infty$, then $f_n(a) \rightarrow p(a, \alpha)$ as $n \rightarrow \infty$.

The conditions force α to be a simple pole:

Corollary (3)

Let A be a Banach algebra and $a \in A$. Let (f_n) be a sequence of complex valued functions analytic on a neighbourhood of $\sigma(a)$. Suppose that $\alpha \neq 0$ is a pole of order at most $k \geq 1$ of the resolvent of a. If $f_n(\alpha) \rightarrow 1$ and $(\alpha 1 - a)f_n(a) \rightarrow 0$ as $n \rightarrow \infty$, then α is a simple pole of the resolvent of a.

Corollary (2)

Let A be a Banach algebra and $a \in A$. Let (f_n) be a sequence of complex valued functions analytic on a neighbourhood of $\sigma(a)$. Suppose that $\alpha \neq 0$ is a simple pole of the resolvent of a such that $f_n(\alpha) \rightarrow 1$ as $n \rightarrow \infty$. If $(\alpha 1 - a)f_n(a) \rightarrow 0$ as $n \rightarrow \infty$, then $f_n(a) \rightarrow p(a, \alpha)$ as $n \rightarrow \infty$.

Corollary (2)

Let A be a Banach algebra and $a \in A$. Let (f_n) be a sequence of complex valued functions analytic on a neighbourhood of $\sigma(a)$. Suppose that $\alpha \neq 0$ is a simple pole of the resolvent of a such that $f_n(\alpha) \rightarrow 1$ as $n \rightarrow \infty$. If $(\alpha 1 - a)f_n(a) \rightarrow 0$ as $n \rightarrow \infty$, then $f_n(a) \rightarrow p(a, \alpha)$ as $n \rightarrow \infty$.

$$\alpha = 1;$$
 $f_n(\lambda) = \sum_{k=0}^{n-1} \frac{\lambda^n}{n}$

Corollary (2)

Let A be a Banach algebra and $a \in A$. Let (f_n) be a sequence of complex valued functions analytic on a neighbourhood of $\sigma(a)$. Suppose that $\alpha \neq 0$ is a simple pole of the resolvent of a such that $f_n(\alpha) \rightarrow 1$ as $n \rightarrow \infty$. If $(\alpha 1 - a)f_n(a) \rightarrow 0$ as $n \rightarrow \infty$, then $f_n(a) \rightarrow p(a, \alpha)$ as $n \rightarrow \infty$.

$$\alpha = 1;$$
 $f_n(\lambda) = \sum_{k=0}^{n-1} \frac{\lambda^n}{n}$

Theorem (The ergodic theorem)

Let A be a Banach algebra, $a \in A$, $f_n(\lambda) = \sum_{k=0}^{n-1} \frac{\lambda^n}{n}$ ($\lambda \in \mathbb{C}$, $n \in \mathbb{N}$) and $1 \in i$ so $\sigma(a)$. Then a is ergodic and $f_n(a) \to p(a, 1)$ if and only if 1 is a (simple) pole of the resolvent of a and $(1-a)f_n(a) \to 0$ as $n \to \infty$.
Theorem (The ergodic theorem)

Let A be a Banach algebra, $a \in A$, $f_n(\lambda) = \sum_{k=0}^{n-1} \frac{\lambda^n}{n}$ ($\lambda \in \mathbb{C}$, $n \in \mathbb{N}$) and $1 \in iso \sigma(a)$. Then a is ergodic and $f_n(a) \to p(a, 1)$ if and only if 1 is a (simple) pole of the resolvent of a and $(1-a)f_n(a) \to 0$ as $n \to \infty$.

Theorem (The ergodic theorem)

Let A be a Banach algebra, $a \in A$, $f_n(\lambda) = \sum_{k=0}^{n-1} \frac{\lambda^n}{n}$ ($\lambda \in \mathbb{C}$, $n \in \mathbb{N}$) and $1 \in iso \sigma(a)$. Then a is ergodic and $f_n(a) \to p(a, 1)$ if and only if 1 is a (simple) pole of the resolvent of a and $(1-a)f_n(a) \to 0$ as $n \to \infty$.

Proved for the bounded linear operators on a complex Banach space by N. Dunford in 1943, using partly operator theoretic methods.

Let (A, C) be a semisimple OBA with C closed and normal and let I be a closed inessential ideal of A such that the spectral radius in $(A/I, \pi C)$ is monotone.

Let (A, C) be a semisimple OBA with C closed and normal and let I be a closed inessential ideal of A such that the spectral radius in $(A/I, \pi C)$ is monotone. Let $a, b \in A$ such that $0 \le a \le b$. If b is ergodic and r(b) is a Riesz point of $\sigma(b)$, then a is ergodic.

Let (A, C) be a semisimple OBA with C closed and normal and let I be a closed inessential ideal of A such that the spectral radius in $(A/I, \pi C)$ is monotone. Let $a, b \in A$ such that $0 \le a \le b$. If b is ergodic and r(b) is a Riesz point of $\sigma(b)$, then a is ergodic.

Let (A, C) be a semisimple OBA with C closed and normal and let I be a closed inessential ideal of A such that the spectral radius in $(A/I, \pi C)$ is monotone. Let $a, b \in A$ such that $0 \le a \le b$. If b is ergodic and r(b) is a Riesz point of $\sigma(b)$, then a is ergodic.

• We have
$$r(a) \leq r(b) \leq 1$$
.

Let (A, C) be a semisimple OBA with C closed and normal and let I be a closed inessential ideal of A such that the spectral radius in $(A/I, \pi C)$ is monotone. Let $a, b \in A$ such that $0 \le a \le b$. If b is ergodic and r(b) is a Riesz point of $\sigma(b)$, then a is ergodic.

- We have $r(a) \leq r(b) \leq 1$.
- Suppose r(a) = r(b) = 1.

Let (A, C) be a semisimple OBA with C closed and normal and let I be a closed inessential ideal of A such that the spectral radius in $(A/I, \pi C)$ is monotone. Let $a, b \in A$ such that $0 \le a \le b$. If b is ergodic and r(b) is a Riesz point of $\sigma(b)$, then a is ergodic.

- We have $r(a) \leq r(b) \leq 1$.
- Suppose r(a) = r(b) = 1.
- r(b) a Riesz point of $\sigma(b) \Rightarrow r(a)$ a Riesz point of $\sigma(a)$.

Let (A, C) be a semisimple OBA with C closed and normal and let I be a closed inessential ideal of A such that the spectral radius in $(A/I, \pi C)$ is monotone. Let $a, b \in A$ such that $0 \le a \le b$. If b is ergodic and r(b) is a Riesz point of $\sigma(b)$, then a is ergodic.

- We have $r(a) \leq r(b) \leq 1$.
- Suppose r(a) = r(b) = 1.
- r(b) a Riesz point of $\sigma(b) \Rightarrow r(a)$ a Riesz point of $\sigma(a)$.
- We also have $0 \leq \frac{a^n}{n} \leq \frac{b^n}{n}$.

Let (A, C) be a semisimple OBA with C closed and normal and let I be a closed inessential ideal of A such that the spectral radius in $(A/I, \pi C)$ is monotone. Let $a, b \in A$ such that $0 \le a \le b$. If b is ergodic and r(b) is a Riesz point of $\sigma(b)$, then a is ergodic.

- We have $r(a) \leq r(b) \leq 1$.
- Suppose r(a) = r(b) = 1.
- r(b) a Riesz point of $\sigma(b) \Rightarrow r(a)$ a Riesz point of $\sigma(a)$.
- We also have $0 \le \frac{a^n}{n} \le \frac{b^n}{n}$.
- *b* ergodic $\Rightarrow \frac{b^n}{n} \to 0$.

Let (A, C) be a semisimple OBA with C closed and normal and let I be a closed inessential ideal of A such that the spectral radius in $(A/I, \pi C)$ is monotone. Let $a, b \in A$ such that $0 \le a \le b$. If b is ergodic and r(b) is a Riesz point of $\sigma(b)$, then a is ergodic.

- We have $r(a) \leq r(b) \leq 1$.
- Suppose r(a) = r(b) = 1.
- r(b) a Riesz point of $\sigma(b) \Rightarrow r(a)$ a Riesz point of $\sigma(a)$.
- We also have $0 \le \frac{a^n}{n} \le \frac{b^n}{n}$.
- *b* ergodic $\Rightarrow \frac{b^n}{n} \to 0$.
- Normality of $C \Rightarrow \frac{a^n}{n} \to 0;$

Let (A, C) be a semisimple OBA with C closed and normal and let I be a closed inessential ideal of A such that the spectral radius in $(A/I, \pi C)$ is monotone. Let $a, b \in A$ such that $0 \le a \le b$. If b is ergodic and r(b) is a Riesz point of $\sigma(b)$, then a is ergodic.

- We have $r(a) \leq r(b) \leq 1$.
- Suppose r(a) = r(b) = 1.
- r(b) a Riesz point of $\sigma(b) \Rightarrow r(a)$ a Riesz point of $\sigma(a)$.
- We also have $0 \le \frac{a^n}{n} \le \frac{b^n}{n}$.
- *b* ergodic $\Rightarrow \frac{b^n}{n} \to 0.$
- Normality of $C \Rightarrow \frac{a^n}{n} \to 0$; hence $(1-a)f_n(a) \to 0$.

Let (A, C) be a semisimple OBA with C closed and normal and let I be a closed inessential ideal of A such that the spectral radius in $(A/I, \pi C)$ is monotone. Let $a, b \in A$ such that $0 \le a \le b$. If b is ergodic and r(b) is a Riesz point of $\sigma(b)$, then a is ergodic.

- We have $r(a) \leq r(b) \leq 1$.
- Suppose r(a) = r(b) = 1.
- r(b) a Riesz point of $\sigma(b) \Rightarrow r(a)$ a Riesz point of $\sigma(a)$.
- We also have $0 \le \frac{a^n}{n} \le \frac{b^n}{n}$.
- *b* ergodic $\Rightarrow \frac{b^n}{n} \to 0.$
- Normality of $C \Rightarrow \frac{a^n}{n} \to 0$; hence $(1-a)f_n(a) \to 0$.
- By the ergodic theorem *a* is ergodic.

Let (A, C) be a semisimple OBA with C closed and normal and let I be a closed inessential ideal of A such that the spectral radius in $(A/I, \pi C)$ is monotone. Let $a, b \in A$ such that $0 \le a \le b$. If b is ergodic and r(b) is a Riesz point of $\sigma(b)$, then a is ergodic.

Let (A, C) be a semisimple OBA with C closed and normal and let I be a closed inessential ideal of A such that the spectral radius in $(A/I, \pi C)$ is monotone. Let $a, b \in A$ such that $0 \le a \le b$. If b is ergodic and r(b) is a Riesz point of $\sigma(b)$, then a is ergodic.

Corollary

Let E be a Dedekind complete Banach lattice and let $S, T \in \mathcal{L}^{r}(E)$ such that $0 \leq S \leq T$. If T is uniformly ergodic with ergodic projection of finite rank, then S is uniformly ergodic.

Let (A, C) be a semisimple OBA with C closed and normal and let I be a closed inessential ideal of A such that the spectral radius in $(A/I, \pi C)$ is monotone. Let $a, b \in A$ such that $0 \le a \le b$. If b is ergodic and r(b) is a Riesz point of $\sigma(b)$, then a is ergodic.

Corollary

Let E be a Dedekind complete Banach lattice and let $S, T \in \mathcal{L}^{r}(E)$ such that $0 \leq S \leq T$. If T is uniformly ergodic with ergodic projection of finite rank, then S is uniformly ergodic.

Proved for the bounded linear operators on a Banach lattice (under a weaker form of domination) by F. Räbiger and M. P. H. Wolff in 1997, using operator theoretic methods.

- 4 同 6 4 日 6 4 日 6

THANK YOU

イロン イロン イヨン イヨン

æ