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Introduction

Let ϕ be a normal state on the algebra B(H) of all bounded
operators on a Hilbert space H, f a strictly positive, continuous
function on (0,∞), and let g be a function on (0,∞) defined by
g(t) = t

f (t) . We will give characterizations of matrix and operator
monotonicity by the following generalized Powers-Størmer
inequality:

ϕ(A + B)− ϕ(|A− B|) ≤ 2ϕ(f (A)
1
2 g(B)f (A)

1
2 ),

whenever A, B are positive invertible operators in B(H).

When dimH < ∞ and ϕ is the canonical trace, and f (t) = t
1
2 ,

Powers and Størmer proved the inequality in 1970.
When f (t) = ts (0 ≤ s ≤ 1), K. M. R.Audenaert, J. Calsamiglia,
LI. Masanes, R. Munoz-Tapia, A. Acin, E. Bagan, F. Verstraete
proved the inequality in 2006.
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Quantam information theory

One of the most basic tasks in quantum statistics is the
discrimination of two different quantum states. In the quantum
hypothesis testing problem, one has to decide between two states
of a system. The state ρ0is the null hypothesis and ρ1 is
alternative hypothesis.

The problem is to decide which hypothesis is true. The decision is
performed by a two-valued measurement {T , I − T}, where
0 ≤ T ≤ I is an observable. T corresponds to the acceptance of ρ0

and I − T corresponds to the acceptance of ρ1. T is called a test.
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Total error probability:

ρ0, ρ1 : hypothetic states on Cd

: density matrix on Cd , that is

ρi ≥ 0, Tr(ρi ) = 1 (i = 0, 1)

T = {T0,T1} : quantum multiple test

: d × d positive matrices T0 + T1 = I

Succi (T ) := Tr(ρiTi ) (i = 0, 1)

: the probability of acceptance of ρi

Erri (T ) := 1− Succi (T ) = Tr(ρi (1− Ti ))

: the probability that hypothesis i is true

but the hypothesis i + 1 is acceptance

Err(T ) :=
1

2
Tr(ρ0T1) +

1

2
Tr(ρ1T0)

=
1

2
{1− Tr(T0(ρ0 − ρ1))} : Total error probability
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Assymptotic error exponent for ρ0 and ρ1

∀n ∈ N T(n) : dn × dnquantum multiple test

Errn(T(n)) :=
1

2
{1− Tr(T(n)(ρ

⊗n
0 − ρ⊗n

1 ))}

If the limit limn→∞−1

n
log Errn(T(n)) exists, we refer to it as the

asymptotic error exponent.
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Theorem (M. Nussbaum and A. Szkola 2006, K. M. R. Audenaert,
et al. 2006)

Let {ρ0, ρ1} be hypothetic states on Cd , T(n) be quantum multiple

test, and Q(n) be a support projections on (ρ⊗n
0 − ρ⊗n

1 ). Then one
has

(i) (M. Nussbaum and A. Szkola)

lim inf
n→∞

1

n
log Errn(T(n)) ≥ inf{log Tr(ρ1−s

0 ρs
1) | 0 ≤ s ≤ 1}

(ii) ( K. M. R. Audenaert, et al.)

lim sup
n→∞

1

n
log Errn(Q(n)) ≤ inf{log Tr(ρ1−s

0 ρs
1) | 0 ≤ s ≤ 1}
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In the proof of Theorem 0.1(ii) the following inequality played a
key role.

Theorem (K. M. R. Audenaert et al. 2011)

For any positive matrices A and B on Cd we have

1

2
(Tr A + Tr B − Tr |A− B|) ≤ Tr(A1−sBs) (s ∈ [0, 1]).

If we consider a function f (t) = t1−s and g(t) = ts =
t

f (t)
, then

both functions f and g are operator monotone.
The inequality, then, can be reformed by

Tr A + Tr B − Tr |A− B| ≤ 2Tr(f (A)
1
2 g(B)f (A)

1
2 ).
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Main result

Theorem

Let ϕ be a normal state on B(H), f be a strictly positive,
continuous function on (0,∞), and let g be a function on (0,∞)
defined by g(t) = t

f (t) . Consider the following inequality : For any

positive invertible A, B ∈ B(H)

ϕ(A + B)− ϕ(|A− B|) ≤ 2ϕ(f (A)
1
2 g(B)f (A)

1
2 ).

1 When dimH = n < ∞, if ϕ is the canonical trace Tr and f is
(n + 1)-concave, then the inequality holds.

2 If the inequality holds true for any positive invertible A, B,
then the functions f and g are operator monotone.
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Double piling structure of matrix
functions

Definition

Let I ⊂ R be an interval. A function f : I → R is said to be matrix
convex of order n or n-convex in short (resp. matrix concave of
order n or n-concave) whenever the inequality

f (λA + (1− λ)B) ≤ λf (A) + (1− λ)f (B), λ ∈ [0, 1]

(resp. f (λA + (1− λ)B) ≥ λf (A) + (1− λ)f (B), λ ∈ [0, 1]) holds
for every pair of selfadjoint matrices A, B ∈ Mn such that all
eigenvalues of A and B are contained in I .
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Definition

A function f : I → R is said to be matrix monotone functions are
similarly defined as the inequality

A ≤ B =⇒ f (A) ≤ f (B)

for any pair of selfadjoint matrices A, B ∈ Mn such that A ≤ B
and all eigenvalues of A and B are contained in I .

We call a function f operator convex (resp. operator concave) if
for each k ∈ N, f is k-convex (resp. k-concave) and operator
monotone if for each k ∈ N f is k-monotone.

Hiroyuki Osaka Matrix monotone functions and a generalized Powers-Størmer inequality



. . . . . .

1 Pn(I ) : the spaces of n-monotone functions

2 P∞(I ) : the space of operator monotone functions

3 Kn(I ) : the space of n-convex functions

4 K∞(I ) : the space of operator convex functions

Then we have

P1(I ) ⊇ · · · ⊇ Pn−1(I ) ⊇ Pn(I ) ⊇ Pn+1(I ) ⊇ · · · ⊇ P∞(I )

K1(I ) ⊇ · · · ⊇ Kn−1(I ) ⊇ Kn(I ) ⊇ Kn+1(I ) ⊇ · · · ⊇ K∞(I )

Pn+1(I ) ( Pn(I ) Kn+1(I ) ( Kn(I )
P∞ = ∩∞n=1Pn(I ) K∞ = ∩∞n=1Kn(I )
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Theorem

Let consider the following three assertions.

(i) f (0) ≤ 0 and f is n-convex in [0, α),

(ii) For each matrix a with its spectrum in [0, α) and a
contraction c in the matrix algebra Mn,

f (c?ac) ≤ c?f (a)c,

(iii) The function f (t)
t is n-monotone in (0, α).

1 (Hansen-Pedersen:1985) Three assertions are equivalent if f is

operator convex. In this case a function f (t)
t is operator

monotone.

2 (O-Tomiyama:2009)
(i)n+1 ≺ (ii)n ∼ (iii)n ≺ (i)[ n

2
].
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Here we denotion (A)m ≺ (B)n means that ”if (A) holds for the
matrix algebra Mm, then (B) holds for the matrix algebra Mn”.

Hiroyuki Osaka Matrix monotone functions and a generalized Powers-Størmer inequality



. . . . . .

The following result is essentially proved in
[Hansen-Pedersen:1982].

Proposition

Let f be a strictly positive, continuous function on [0,∞). If f is
2n-monotone, the function g(t) = t

f (t) is n-monotone.
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Using an idea in [O-Tomiyama: 2009] we can show the following
result.

Proposition (D. T. Hoa-O-J. Tomiyama 2012)

Let n ∈ N and f : [0, α) → R be a continuous function for some
α > 0 such that 0 /∈ f ([0, α)). Let us consider the following
assertions:

(iv) f is n-concave with f (0) ≥ 0.

(v) For each matrix a with its
spectrum in [0, α) and a contraction c in the matrix algebra Mn,

f (c?ac) ≥ c?f (a)c ,

(vi) The function t
f (t) (= g(t)) is n-monotone in (0, α).

We have, then, (iv)n+1 ≺ (v)n ∼ (vi)n ≺ (i)[ n
2
].
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Generalized Powers-Størmer inequality

Theorem (D. T. Hoa-O-H. M. Toan, D. T. Hoa-O-J. Tomiyama
2012)

Let f be a 2n-monotone function (or (n + 1)-concave function) on
[0,∞) such that f ((0,∞)) ⊂ (0,∞). Then for any pair of positive
matrices A, B ∈ Mn(C)

Tr(A) + Tr(B)− Tr(|A− B|) ≤ 2Tr(f (A)
1
2 g(B)f (A)

1
2 ),

where g(t) = t
f (t) .
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Sketch of the proof:
A, B : positive matrices
A− B = (A− B)+ − (A− B)− = P − Q,
|A− B| = P + Q.
We may show that

Tr(A)− Tr(f (A)
1
2 g(B)f (A)

1
2 ) ≤ Tr(P) holds as follows:

Tr(A)− Tr(f (A)
1
2 g(B)f (A)

1
2 )

= Tr(f (A)
1
2 g(A)f (A)

1
2 )− Tr(f (A)

1
2 g(B)f (A)

1
2 )

≤ Tr(f (A)
1
2 g(B + P)f (A)

1
2 )− Tr(f (A)

1
2 g(B)f (A)

1
2 )

≤ Tr(f (B + P)
1
2 (g(B + P)− g(B))f (B + P)

1
2 )

≤ Tr(f (B + P)
1
2 g(B + P)f (B + P)

1
2 )− Tr(f (B)

1
2 g(B)f (B)

1
2 )

= Tr(P)
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Corollary

Let f be an operator monotone function on [0,∞) such that
f ((0,∞)) ⊂ (0,∞). Then for any pair of positive matrices
A, B ∈ Mn(C)

Tr(A) + Tr(B)− Tr(|A− B|) ≤ 2Tr(f (A)
1
2 g(B)f (A)

1
2 ),

where g(t) = t
f (t) .
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Example

Let f (t) = t2 on (0,∞). It is well-known that f is not 2-monotone.
We now show that the function f does not satisfy the inequality in
Theorem. Indeed, let us consider the following matrices

A =

(
1 1
1 1

)
and B =

(
2 1
1 2

)
.

Then we have

AB−1A =
2

3
A.

Set Ã = A⊕ diag(1, · · · , 1︸ ︷︷ ︸
n−2

), B̃ = B ⊕ diag(1, · · · , 1︸ ︷︷ ︸
n−2

) in Mn.
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Example

Then, Ã ≤ B̃ and for any positive linear function ϕ on Mn

ϕ(f (Ã)
1
2 g(B̃)f (Ã)

1
2 ) = ϕ(ÃB̃−1Ã)

= ϕ(
2

3
A⊕ diag(1, · · · , 1︸ ︷︷ ︸

n−2

))

< ϕ(A⊕ diag(1, · · · , 1︸ ︷︷ ︸
n−2

))

= ϕ(Ã).

On the contrary, since Ã ≤ B̃, from the inequality we have

ϕ(Ã) ≤ ϕ(f (Ã)
1
2 g(B̃)f (Ã)

1
2 ), and we have a contradiction.
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Applications

For matrices A, B ∈ M+
n let us denote

Q(A, B) = min
s∈[0,1]

Tr(A(1−s)/2BsA(1−s)/2) (1)

and
QF2n(A, B) = inf

f ∈F2n

Tr(f (A)
1
2 g(B)f (A)

1
2 ), (2)

where F2n is the set of all 2n-monotone functions on [0, +∞)
satisfy condition of the Theorem and
g(t) = tf (t)−1 (t ∈ [0, +∞)).
Note that the function f (t) = ts (t ∈ [0, +∞)) satisfies the
conditions of Theorem. Since the class of 2n-monotone functions
is large enough, we know that QF2n(A, B) ≤ Q(A, B).
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Hence, we hope on finding another 2n-monotone function f on
[0, +∞) such that

Tr(f (A)
1
2 g(B)f (A)

1
2 ) < Q(A, B). (3)

If we can find such a function, then we may get smaller upper
bound than what is used in quantum hypothesis testing. For

example, considering the trace distance T (A,B) =
Tr(|A− B|)

2
,

we might have the following better estimate

1

2
Tr(A+B)−QF2n(A,B) ≤ T (A, B) ≤

√
{1

2
Tr(A + B)}2 − QF2n(A, B)2.
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Theorem

Let τ be a tracial functional on a C ∗-algebra A, f be a strictly
positive, operator monotone function on [0,∞). Then for any pair
of positive elements A, B ∈ A

τ(A) + τ(B)− τ(|A− B|) ≤ 2τ(f (A)
1
2 g(B)f (A)

1
2 ), (4)

where g(t) = tf (t)−1.
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Characterizations of the trace property

Lemma

Let ϕ be a positive linear functional on Mn and f be a continuous
function on [0,∞) such that f (0) = 0 and f ((0,∞)) ⊂ (0,∞). If
the following inequality

ϕ(A + B)− ϕ(|A− B|) ≤ 2ϕ(f (A)
1
2 g(B)f (A)

1
2 ) (5)

holds true for all A,B ∈ M+
n , then ϕ should be a positive scalar

multiple of the canonical trace Tr on Mn, where

g(t) =

{ t
f (t) (t ∈ (0,∞))

0 (t = 0)
.
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Theorem

Let ϕ be a positive linear functional on a C ∗-algebra A and f be a
continuous function on [0,∞) such that f (0) = 0 and
f ((0,∞)) ⊂ (0,∞). If the following inequality

ϕ(A) + ϕ(B)− ϕ(|A− B|) ≤ 2ϕ(f (A)
1
2 g(B)f (A)

1
2 ) (6)

holds true for any pair A, B ∈ A+, then ϕ is a tracial functional,

where g(t) =

{ t
f (t) (t ∈ (0,∞))

0 (t = 0)
.
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Proposition

Let n ∈ N and ϕ be a positive linear functional on Mn(C). Let f
be a strictly positive, continuous function on (0,∞), and let g be
a function on (0,∞) defined by g(t) = t

f (t) , g is differentiable and

strictly increasing on (0,∞). Suppose that for any positive
invertible A, B ∈ Mn(C ) (0 < A ≤ B)

ϕ(A) ≤ ϕ(f (A)
1
2 g(B)f (A)

1
2 ). (7)

Then ϕ has the trace property if g satisfies the condition

inf
λ>µ

√
g ′(λ)g ′(µ)
g(λ)−g(µ)

λ−µ

= 0. (8)

Hiroyuki Osaka Matrix monotone functions and a generalized Powers-Størmer inequality



. . . . . .

Example

For g(x) = t2 (i.e. f (t) = 1/t) on (0,∞) which satisfies the
condition (8), and for any n ∈ N

Tr(A) ≤ Tr(f (A)
1
2 g(B)f (A)

1
2 )

whenever 0 < A ≤ B in Mn.

Example

For g(x) = ex on (0,∞) which satisfies the condition (8), and for
any n ∈ N, we have

Tr(A) ≤ Tr((Ae−A)
1
2 eB(Ae−A)

1
2 )

whenever 0 < A ≤ B in Mn.
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Characterization of operator
monotonicity

Theorem

Let ϕ be a normal state on B(H), f be a strictly positive,
continuous function on (0,∞), and let g be a function on (0,∞)
defined by g(t) = t

f (t) . Suppose that for any positive invertible

A, B ∈ B(H)

ϕ(A + B)− ϕ(|A− B|) ≤ 2ϕ(f (A)
1
2 g(B)f (A)

1
2 ).

Then both the functions f and g on (0,∞) are operator monotone.
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ありがとうございました
Thank You
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