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Let X be a normed space. A convex subset P ⊆ X

is a cone in λP = P for any λ ≥ 0. If moreover
P ∩ (−P ) = {0}, the cone P is pointed (or proper).

Denote X ′ is the algebraic and X∗ topological dual of
X.

A convex subset B of P is a base for P if a strictly
positive linear functional f of X exists such that

B = {x ∈ P | f(x) = 1}.

Then we say that B is defined by f and is denoted
by Bf .
Theorem 1. The base Bf of P defined by f is bounded
if and only if f is uniformly monotonic (i.e f(x) ≥
a∥x∥ for each x ∈ P , where a > 0 is a real constant).

Theorem 2. If f ∈ X∗ is strictly positive we have: The
base Bf is bounded if and only if f is an interior point
of P0.

1



Unbounded, convex subsets of cones

Suppose that ⟨X,Y ⟩ is a dual system X,Y ordered
normed spaces.

For any cone P of X

P0
Y = {y ∈ Y : ⟨x, y⟩ ≥ 0 for each x ∈ P},

is the dual cone of P in Y .

If dual cone of X+ in Y is Y+ and the dual cone of
Y+ in X is X+, ⟨X,Y ⟩ is an ordered dual system.
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For any convex subset K of P and for each ρ ∈ IR+

we denote

Kρ = {x ∈ K | ∥x∥ ≤ ρ} , KS,ρ = {x ∈ K | ∥x∥ = ρ},

whenever these sets are non-empty.

Lemma 3. ([4] Lemma 1) Let ⟨X,Y ⟩ be an ordered
dual system where X,Y are ordered normed spaces
and let K be a norm-unbounded, convex subset of the
positive cone X+ of X.

If the set of quasi-interior positive elements of Y is
non-empty, then the following statements are equiva-
lent:
(i) Kρ ⊆ KS,ρ

σ(X,Y ), for each ρ,
(ii) Kρ ⊆ coσ(X,Y )KS,ρ, for each ρ,
(iii) for each x ∈ K and for each ρ > ∥x∥, there

exists a sequence {xν} of KS,ρ which converges to x

in the σ(X,Y )-topology.
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Theorem 4. ([7] theorem 4.1) An infinite dimensional
Banach lattice X is order isomorphic to ℓ1(Γ) if and
only if X has the Schur property and X∗ has quasi-
interior positive elements.
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A cone P of a normed space X has the 0-Schur
property (or the positive Schur property) if each
weakly convergent to zero sequence of P is norm
convergent.

If P has a bounded base Bf with f ∈ X∗, then P has
the 0-Schur property, but the converse is not always
true.
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Theorem 5. ([4] Theorem 10) Suppose that X is a
normed space ordered by the pointed cone P . Then
the following statements are equivalent:

(i) the cone P has a bounded base Bf with f ∈ X∗.

(ii) The cone P has
(a) the 0-Schur property and
(b) the set of quasi-interior positive elements of
X∗ is non-empty.
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Example 6. ([4] Example 11) The space

X = (
∞∏

n=1

(Rn)∞)1,

is an ordered Banach space with the Schur property.
X∗ = (

∏∞
n=1(R

n)1)∞.

The cone X∗
+ does not have quasi-interior positive el-

ements, therefore X+ does not have a bounded base
defined by a continuous linear functional of X. Also 0

is not a point of continuity of X+.
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A dichotomy result for bases of cones

The cone P is mixed based with respect to the fam-
ily F of linear functionals of X if P has a bounded
and an unbounded base defined (the bases for P ) by
elements of F .

Theorem 7. ([9] theorem 4) Suppose that ⟨X,Y ⟩ is a
dual system. If X is a normed space, P is a σ(X,Y )-
closed cone of X so that the positive part U+ = U ∩
P of the unit ball U of X is σ(X,Y )-compact, then
P is not a mixed based cone with respect to the dual
cone P0

Y of P in Y .
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Corollary 1. Any weak-star closed cone P of the dual
X∗ of a normed space X is not mixed based with re-
spect to the dual cone P0 of P in X.

Corollary 2. Any closed cone P of a reflexive Banach
space X is not mixed based with respect to the dual
cone P0 of P in X∗.
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Theorem 8. (([2] Lemma 3.4)) Let X be a Banach
space ordered by the closed cone P . If any base for P
defined by a vector of P0 is bounded and at least one
such a base exists, then the positive part U+ = U∩P

of the unit ball U of X is weakly compact.
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Definition 9. ([9] ) A normed space X has the prop-
erty (∗) if for each closed cone P of X we have: ei-
ther P has no a bounded base defined by an element
of X∗ or any strictly positive (on P ) linear functional
of X whose restriction on P is continuous in the in-
duced topology of P attains maximum on any base
for P which is defined by an element of X∗.

It is clear that X has the property (∗) if and only if
for any closed cone P of X with a closed, bounded
base, any strictly positive (on P ) linear functional of
X whose restriction on P is continuous in the induced
topology of P attains maximum on any base for P

which is defined by an element of X∗.
Theorem 10. ([4] Theorem 11) A Banach space X is
is reflexive if and only if X has the property (*).

Theorem 11. ([2] Theorem 3.6) A Banach space X

is is reflexive if and only if any closed cone P of X
with a closed, bounded base is not mixed based with
respect to P0.

11



The continuous positive projection property

The continuous positive projection property has been
defined in [5]. Let E be a normed space, P a closed
cone of E and x0 ∈ P an extremal point of P (i.e.
x0 ̸= 0 and x ∈ P, x ≤ x0 implies x = tx0).

If a continuous, order contractive projection

R : E −→ [x0]

of E onto the one-dimensional subspace generated
by x0 exists, such that

0 ≤ R(x) ≤ x for each x ∈ P,

then we say that the point x0 has (admits) a contin-
uous, positive projection.

Then a positive, continuous linear functional r of E
with r(x0) = 1, exists such that

R(x) = r(x)x0 for each x ∈ E.
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If each extremal point x0 ∈ P (whenever such points
exist) admits a continuous positive projection then we
say that E has the continuous projection property.
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Proposition 12. ([5] Proposition 3.2)

Let E be a normed space ordered by the pointed cone
P . If

(i) E is a locally solid lattice, or
(ii) E is a Banach space, the cone P is closed and

generating and E has the Riesz decomposition prop-
erty,

then E has the continuous projection property.
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Therefore, in many cases, the continuous projection
property is weaker than the lattice property and also
than the Riesz decomposition property. Indeed in a
Banach space ordered by a closed generating pointed
cone, the Riesz decomposition property implies the
continuous projection property.
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Recall also that a continuous linear functional f of E
strongly exposes a point x of a subset D of E if
f(x) > f(y) for each y ∈ D and for any sequence
{xn} of D we have: f(xn) −→ f(x), implies that
∥xn − x∥ −→ 0.
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Proposition 13. A point x0 of a base B for P is an
extreme point of B if and only if x0 is an extremal
point of P .

Theorem 14. ([5] proposition 3.4) Suppose that B is
a base for a cone P of a normed space E, defined
(the base) by a continuous linear functional f ∈ E∗.

If x0 is an extreme point of B which admits a continu-
ous positive projection

R(x) = r(x)x0,

we have:
x0 is a strongly exposed point of B if and only if a
uniformly monotonic, continuous linear functional h of
E exists (i.e. a continuous linear functional h of E

exists so that h(x) ≥ a||x|| for any x ∈ P , where a is
a real constant).
Then the functional

g = h(x0)r − h,

strongly exposes x0 in B with g(x0) = 0.
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Corollary 3. Let E be a Banach space ordered by the
closed, generating cone P and suppose that x0 is an
extreme point of a base B for P .

If x0 admits a continuous positive projection, the fol-
lowing statements are equivalent:

(i) x0 is a strongly exposed point of B,

(ii) the cone P has a closed, bounded base.
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Conic isomorphisms and a characterization of ℓ+1 .

Suppose that X, Y are normed spaces and P, Q,
are closed cones of X, Y respectively. We say that
the cone P is isomorphic to the cone Q if there
exits an one-to-one, map T of P onto Q so that

T (λx+ µy) = λT (x) + µT (y),

for each x, y ∈ P and λ, µ ∈ R+ and

T, T−1 are continuous,

in the metric topology of P, Q induced by the norm.
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By the continuity of T and T−1 at zero, there exist real
constants A,B > 0 such that

A||x|| ≤ ||T (x)|| ≤ B||x||,

for any x ∈ P . But this double inequality is not suffi-
cient for the continuity of T, T−1 on the whole cone.
This is sufficient only for the the continuity of T, T−1

at zero.

An old result due to Pelzynski Singer and Milman is
the following:
Theorem 15. (1964) A Banach space X is nonreflex-
ive if and only if X has a closed cone P isomorphic to
positive cone of ℓ1.
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Theorem 16. ([6] Proposition 4.1) Let E be a Ba-
nach space ordered by the infinite dimensional, closed
cone P .
Suppose that E has the continuous projection prop-
erty. If the cone P has the Krein-Milman property,
statements (i), (ii), (iii) and (iv) are equivalent. If
P has the Radon-Nikodým property, all the following
statements are equivalent:
(i) The cone P is isomorphic to ℓ+1 (Γ),
(ii) the cone P has a closed, bounded base,
(iii) a base for P defined (the base) by a continuous
linear functional, has at least one strongly exposed
point,
(iv) the zero is a strongly exposed point of P ,
(v) the cone P has a dentable base, defined by a
continuous linear functional,
(vi) the cone P is dentable,
(vii) each closed and convex subset of P has at least
one strongly exposed point.
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Theorem 17. ([10] theorem 3) In any Banach space
X the following statements are equivalent:
(i) the positive cone c+0 of c0 is embeddable in X,
(ii) the space c0 is embeddable in X.

Problem: Give characterizations of c+0 .
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Reflexive cones

Let X be a Banach space and P a cone of X.
Definition 18. ([3]) The cone P is reflexive if the pos-
itive part

U+ = U ∩ P

of the closed unit ball U of X is weakly compact.

Any reflexive cone is closed.
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Theorem 19. ([3] Theorem 4.5) The cone P is reflex-
ive if and only if ℓ+1 is not embedddable in P .

Theorem 20. ([3] Theorem 3.3) The cone P is reflex-
ive if and only if

P̂ = P00,

where P00 = (P0)0 ⊆ X∗∗ is the second dual of P .

Theorem 21. ([3] Theorem 3.5)

A Banach space X is reflexive if and only if X has a
cone P so that P and P0 are reflexive.
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Strongly reflexive cones

Definition 22. The cone P is strong reflexive, if U+ =

U ∩ P is norm compact.

Theorem 23. ([3] Theorem 5.6) A Banach space X

has the Schur property if and only if any reflexive cone
of X is strongly reflexive.
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Theorem 24. ([3] Theorem 5.7) If X is a Banach lat-
tice with a positive Schauder basis {ei}, then X+ con-
tains a strongly reflexive cone P with a bounded base
and P − P = X.

Example 25. In ([3] Example 5.9) a strongly reflexive
cone P of L1 [0,1] is given so that

P ⊆ L+
1 [0,1] and P − P = L1 [0,1] .
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Reflexive cones and compact operators

Theorem 26. ([3] theorem 5.10) If X is a Banach
space ordered by the strongly reflexive (reflexive) cone
P , then any positive, linear operator from a Banach
lattice E into X is compact (weakly compact).
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Reflexive cones and the lattice property

Theorem 27. ([3] Theorem 7.1) If P is reflexive and
normal cone of a Banach space X then X, ordered
by the cone P , is Dedekind complete.

Theorem 28. ([3] Theorem 7.3) If the cone P is re-
flexive and P has a closed, bounded base B, then P

does not contain an infinite dimensional, closed cone
K with the continuous projection property (hence P

does not contain an infinite dimensional, closed cone
with the Riesz decomposition property).
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The generalized topological dual of a cone and
cone isomorphisms.

In this section we define the notion of generalized topo-
logical dual of a cone and we give same new results
on cone isomorphisms.
Suppose that E is a Banach space P is a closed cone
of X,
X = P −P is the subspace of E generated by P and
that X is dense in E, i.e. E = X.
Definition 29. Denote by P1 the set of f : P −→ R+

which are positively homogeneous and additive on P

and also are continuous in the metric topology of P
defined by the norm of X. We call P ′ the generalized
topological dual (or the auto-dual) of P .
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If we suppose that X is ordered by the cone P we
have

P1 = {f ∈ X ′
+ | f |P is continuous P},

and

X∗
+ = P0 ⊆ P1 ⊆ X ′

+.

30



Denote by F = P1−P1 be the subspace of X ′ gen-
erated by P1, with norm

||f ||F = sup{|f(x)| | x ∈ U+}, f ∈ F.

Suppose also that F is ordered by the cone P1, i.e.
F+ = P1.

U+
F = {f ∈ F | ||f ||P < 1},

is the positive part of the unit ball of F .

Denote by P2 the generalized topological dual of P1,
i.e.

P2 = (P1)1.

Hence P2 is the set ϕ : P1 −→ R+ which are addi-
tive, positively homogeneous and continuous on P1
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Theorem 30. Suppose that Y, Z are normed spaces
and K,Q are closed cones of Y, Z respectively.

If

T : K −→ Q,

is an isomorphism of K onto Q, then

T ′ : Q1 −→ K1,

is an isomorphism of Q1 onto K1.

In the next theorem denote by {ei | i ∈ N} the usual
Schauder basis of ℓ1.
Theorem 31. Suppose that the cone P is separable
and normal. If T is an isomorphism of ℓ+1 onto P1 and
for any infinite subset A of N the image T (KA) of the
closed subcone KA of ℓ+1 generated by the subset
{ei | i ∈ A} is not mixed based with respect to the
cone P , then E contains a copy of c0.
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