POSITIVITY 2013 22-26 July, Leiden, The Netherlands Jointly organized by Leiden University and Delft University of Technology.

Some topics on the theory of cones

by Ioannis A. Polyrakis

Department of Mathematics

National Technical University of Athens

Let X be a normed space. A convex subset $P \subseteq X$ is a **cone** in $\lambda P = P$ for any $\lambda \geq 0$. If moreover $P \cap (-P) = \{0\}$, the cone P is **pointed (or proper)**.

Denote X' is the algebraic and X^* topological dual of X.

A convex subset B of P is a **base for** P if a strictly positive linear functional f of X exists such that

$$B = \{ x \in P \mid f(x) = 1 \}.$$

Then we say that B is defined by f and is denoted by B_f .

Theorem 1. The base B_f of P defined by f is bounded if and only if f is uniformly monotonic (i.e $f(x) \ge a||x||$ for each $x \in P$, where a > 0 is a real constant).

Theorem 2. If $f \in X^*$ is strictly positive we have: The base B_f is bounded if and only if f is an interior point of P^0 .

Unbounded, convex subsets of cones

Suppose that $\langle X, Y \rangle$ is a dual system X, Y ordered normed spaces.

For any cone P of X

$$P_Y^0 = \{y \in Y: \ \langle x,y \rangle \ \geq 0 \ \text{ for each } x \in P\},$$
 is the **dual cone** of P in Y .

If dual cone of X_+ in Y is Y_+ and the dual cone of Y_+ in X is X_+ , $\langle X, Y \rangle$ is an **ordered dual system**.

For any convex subset K of P and for each $\rho \in \mathbb{R}_+$ we denote

$$K_{\rho} = \{x \in K \mid ||x|| \le \rho\}$$
, $K_{S,\rho} = \{x \in K \mid ||x|| = \rho\}$, whenever these sets are non-empty.

Lemma 3. ([4] Lemma 1) Let $\langle X, Y \rangle$ be an ordered dual system where X, Y are ordered normed spaces and let K be a norm-unbounded, convex subset of the positive cone X_+ of X.

If the set of quasi-interior positive elements of Y is non-empty, then the following statements are equivalent:

- (i) $K_{\rho} \subseteq \overline{K_{S,\rho}}^{\sigma(X,Y)}$, for each ρ ,
- (ii) $K_{\rho} \subseteq \overline{\operatorname{co}}^{\sigma(X,Y)}K_{S,\rho}$, for each ρ ,
- (iii) for each $x \in K$ and for each $\rho > ||x||$, there exists a sequence $\{x_{\nu}\}$ of $K_{S,\rho}$ which converges to x in the $\sigma(X,Y)$ -topology.

Theorem 4. ([7] theorem 4.1) An infinite dimensional Banach lattice X is order isomorphic to $\ell_1(\Gamma)$ if and only if X has the Schur property and X^* has quasi-interior positive elements.

A cone P of a normed space X has the **0-Schur** property (or the positive Schur property) if each weakly convergent to zero sequence of P is norm convergent.

If P has a bounded base B_f with $f \in X^*$, then P has the 0-Schur property, but the converse is not always true.

Theorem 5. ([4] Theorem 10) Suppose that X is a normed space ordered by the pointed cone P. Then the following statements are equivalent:

- (i) the cone P has a bounded base B_f with $f \in X^*$.
- (ii) The cone P has
 - (a) the 0-Schur property and
 - (b) the set of quasi-interior positive elements of X^* is non-empty.

Example 6. ([4] Example 11) The space

$$X = (\prod_{n=1}^{\infty} (\mathbb{R}^n)_{\infty})_1,$$

is an ordered Banach space with the Schur property. $X^* = (\prod_{n=1}^{\infty} (\mathbb{R}^n)_1)_{\infty}$.

The cone X_+^* does not have quasi-interior positive elements, therefore X_+ does not have a bounded base defined by a continuous linear functional of X. Also 0 is not a point of continuity of X_+ .

A dichotomy result for bases of cones

The cone P is **mixed based** with respect to the family \mathcal{F} of linear functionals of X if P has a bounded and an unbounded base defined (the bases for P) by elements of \mathcal{F} .

Theorem 7. ([9] theorem 4) Suppose that $\langle X, Y \rangle$ is a dual system. If X is a normed space, P is a $\sigma(X,Y)$ -closed cone of X so that the positive part $U^+ = U \cap P$ of the unit ball U of X is $\sigma(X,Y)$ -compact, then P is not a mixed based cone with respect to the dual cone P_V^0 of P in Y.

Corollary 1. Any weak-star closed cone P of the dual X^* of a normed space X is not mixed based with respect to the dual cone P_0 of P in X.

Corollary 2. Any closed cone P of a reflexive Banach space X is not mixed based with respect to the dual cone P^0 of P in X^* .

Theorem 8. (([2] Lemma 3.4)) Let X be a Banach space ordered by the closed cone P. If any base for P defined by a vector of P^0 is bounded and at least one such a base exists, then the positive part $U^+ = U \cap P$ of the unit ball U of X is weakly compact.

Definition 9. ([9]) A normed space X has the property (*) if for each closed cone P of X we have: either P has no a bounded base defined by an element of X^* or any strictly positive (on P) linear functional of X whose restriction on P is continuous in the induced topology of P attains maximum on any base for P which is defined by an element of X^* .

It is clear that X has the property (*) if and only if for any closed cone P of X with a closed, bounded base, any strictly positive (on P) linear functional of X whose restriction on P is continuous in the induced topology of P attains maximum on any base for P which is defined by an element of X^* .

Theorem 10. ([4] Theorem 11) A Banach space X is is reflexive if and only if X has the property (*).

Theorem 11. ([2] Theorem 3.6) A Banach space X is is reflexive if and only if any closed cone P of X with a closed, bounded base is not mixed based with respect to P^0 .

The continuous positive projection property

The continuous positive projection property has been defined in **[5]**. Let E be a normed space, P a closed cone of E and $x_0 \in P$ an extremal point of P (i.e. $x_0 \neq 0$ and $x \in P, x \leq x_0$ implies $x = tx_0$).

If a continuous, order contractive projection

$$R: E \longrightarrow [x_0]$$

of E onto the one-dimensional subspace generated by x_0 exists, such that

$$0 \le R(x) \le x$$
 for each $x \in P$,

then we say that the point x_0 has (admits) a continuous, positive projection.

Then a positive, continuous linear functional r of E with $r(x_0) = 1$, exists such that

$$R(x) = r(x)x_0$$
 for each $x \in E$.

If each extremal point $x_0 \in P$ (whenever such points exist) admits a continuous positive projection then we say that E has the **continuous projection property**.

Proposition 12. ([5] Proposition 3.2)

Let E be a normed space ordered by the pointed cone P. If

- (i) E is a locally solid lattice, or
- (ii) E is a Banach space, the cone P is closed and generating and E has the Riesz decomposition property,

then E has the continuous projection property.

Therefore, in many cases, the continuous projection property is weaker than the lattice property and also than the Riesz decomposition property. Indeed in a Banach space ordered by a closed generating pointed cone, the Riesz decomposition property implies the continuous projection property.

Recall also that a continuous linear functional f of E strongly exposes a point x of a subset D of E if f(x) > f(y) for each $y \in D$ and for any sequence $\{x_n\}$ of D we have: $f(x_n) \longrightarrow f(x)$, implies that $||x_n - x|| \longrightarrow 0$.

Proposition 13. A point x_0 of a base B for P is an extreme point of B if and only if x_0 is an extremal point of P.

Theorem 14. ([5] proposition 3.4) Suppose that B is a base for a cone P of a normed space E, defined (the base) by a continuous linear functional $f \in E^*$.

If x_0 is an extreme point of B which admits a continuous positive projection

$$R(x) = r(x)x_0,$$

we have:

 x_0 is a strongly exposed point of B if and only if a uniformly monotonic, continuous linear functional h of E exists (i.e. a continuous linear functional h of E exists so that $h(x) \geq a||x||$ for any $x \in P$, where a is a real constant).

Then the functional

$$g = h(x_0)r - h,$$

strongly exposes x_0 in B with $g(x_0) = 0$.

Corollary 3. Let E be a Banach space ordered by the closed, generating cone P and suppose that x_0 is an extreme point of a base B for P.

If x_0 admits a continuous positive projection, the following statements are equivalent:

- (i) x_0 is a strongly exposed point of B,
- (ii) the cone P has a closed, bounded base.

Conic isomorphisms and a characterization of ℓ_1^+ .

Suppose that X, Y are normed spaces and P, Q, are closed cones of X, Y respectively. We say that **the cone** P **is isomorphic to the cone** Q if there exits an one-to-one, map T of P onto Q so that

$$T(\lambda x + \mu y) = \lambda T(x) + \mu T(y),$$

for each $x,\ y\in P$ and $\lambda,\mu\in\mathbb{R}_+$ and

$$T, T^{-1}$$
 are continuous,

in the metric topology of P, Q induced by the norm.

By the continuity of T and T^{-1} at zero, there exist real constants A,B>0 such that

$$A||x|| \le ||T(x)|| \le B||x||,$$

for any $x \in P$. But this double inequality is not sufficient for the continuity of T, T^{-1} on the whole cone. This is sufficient only for the the continuity of T, T^{-1} at zero.

An old result due to Pelzynski Singer and Milman is the following:

Theorem 15. (1964) A Banach space X is nonreflexive if and only if X has a closed cone P isomorphic to positive cone of ℓ_1 .

Theorem 16. ([6] Proposition 4.1) Let E be a Banach space ordered by the infinite dimensional, closed cone P.

Suppose that E has the continuous projection property. If the cone P has the Krein-Milman property, statements (i), (ii), (iii) and (iv) are equivalent. If P has the Radon-Nikodým property, all the following statements are equivalent:

- (i) The cone P is isomorphic to $\ell_1^+(\Gamma)$,
- (ii) the cone P has a closed, bounded base,
- (iii) a base for P defined (the base) by a continuous linear functional, has at least one strongly exposed point,
- (iv) the zero is a strongly exposed point of P,
- (v) the cone P has a dentable base, defined by a continuous linear functional,
- (vi) the cone P is dentable,
- (vii) each closed and convex subset of P has at least one strongly exposed point.

Theorem 17. ([10] theorem 3) In any Banach space *X* the following statements are equivalent:

- (i) the positive cone c_0^+ of c_0 is embeddable in X,
- (ii) the space c_0 is embeddable in X.

Problem: Give characterizations of c_0^+ .

Reflexive cones

Let X be a Banach space and P a cone of X. **Definition 18. ([3])** The cone P is **reflexive** if the positive part

$$U_{+} = U \cap P$$

of the closed unit ball U of X is weakly compact.

Any reflexive cone is closed.

Theorem 19. ([3] Theorem 4.5) The cone P is reflexive if and only if ℓ_1^+ is not embedddable in P.

Theorem 20. ([3] Theorem 3.3) The cone P is reflexive if and only if

$$\widehat{P} = P^{00},$$

where $P^{00} = (P^0)^0 \subseteq X^{**}$ is the second dual of P.

Theorem 21. ([3] Theorem 3.5)

A Banach space X is reflexive if and only if X has a cone P so that P and P^0 are reflexive.

Strongly reflexive cones

Definition 22. The cone P is strong reflexive, if $U_+ = U \cap P$ is norm compact.

Theorem 23. ([3] Theorem 5.6) A Banach space X has the Schur property if and only if any reflexive cone of X is strongly reflexive.

Theorem 24. ([3] Theorem 5.7) If X is a Banach lattice with a positive Schauder basis $\{e_i\}$, then X_+ contains a strongly reflexive cone P with a bounded base and $\overline{P-P}=X$.

Example 25. In ([3] Example 5.9) a strongly reflexive cone P of L_1 [0, 1] is given so that

$$P \subseteq L_1^+[0,1]$$
 and $\overline{P-P} = L_1[0,1]$.

Reflexive cones and compact operators

Theorem 26. ([3] theorem 5.10) If X is a Banach space ordered by the strongly reflexive (reflexive) cone P, then any positive, linear operator from a Banach lattice E into X is compact (weakly compact).

Reflexive cones and the lattice property

Theorem 27. ([3] Theorem 7.1) If P is reflexive and normal cone of a Banach space X then X, ordered by the cone P, is Dedekind complete.

Theorem 28. ([3] **Theorem 7.3**) If the cone P is reflexive and P has a closed, bounded base B, then P does not contain an infinite dimensional, closed cone K with the continuous projection property (hence P does not contain an infinite dimensional, closed cone with the Riesz decomposition property).

The generalized topological dual of a cone and cone isomorphisms.

In this section we define the notion of generalized topological dual of a cone and we give same new results on cone isomorphisms.

Suppose that E is a Banach space P is a closed cone of X,

X = P - P is the subspace of E generated by P and that X is dense in E, i.e. $E = \overline{X}$.

Definition 29. Denote by P^1 the set of $f: P \longrightarrow \mathbb{R}_+$ which are positively homogeneous and additive on P and also are continuous in the metric topology of P defined by the norm of X. We call P' the **generalized topological dual (or the auto-dual)** of P.

If we suppose that X is ordered by the cone P we have

$$P^1 = \{ f \in X'_+ \mid f \mid_P \text{ is continuous } P \},$$
 and

$$X_+^* = P^0 \subseteq P^1 \subseteq X_+'.$$

Denote by $F = P^1 - P^1$ be the subspace of X' generated by P^1 , with norm

$$||f||_F = \sup\{|f(x)| \mid x \in U_+\}, f \in F.$$

Suppose also that F is ordered by the cone P^1 , i.e. $F_+ = P^1$.

$$U_F^+ = \{ f \in F \mid ||f||_P < 1 \},$$

is the positive part of the unit ball of F.

Denote by P^2 the generalized topological dual of P^1 , i.e.

$$P^2 = (P^1)^1$$
.

Hence P^2 is the set $\phi:P^1\longrightarrow \mathbb{R}_+$ which are additive, positively homogeneous and continuous on P^1

Theorem 30. Suppose that Y, Z are normed spaces and K, Q are closed cones of Y, Z respectively.

If

$$T:K\longrightarrow Q$$

is an isomorphism of K onto Q, then

$$T': Q^1 \longrightarrow K^1,$$

is an isomorphism of Q^1 onto K^1 .

In the next theorem denote by $\{e_i \mid i \in \mathbb{N}\}$ the usual Schauder basis of ℓ_1 .

Theorem 31. Suppose that the cone P is separable and normal. If T is an isomorphism of ℓ_1^+ onto P^1 and for any infinite subset A of \mathbb{N} the image $T(K_A)$ of the closed subcone K_A of ℓ_1^+ generated by the subset $\{e_i \mid i \in A\}$ is not mixed based with respect to the cone P, then E contains a copy of c_0 .

Bibliography

- [1] C.D. Aliprantis, R. Tourky, "Cones and Duality" Graduate Studies in Mathematics, vol. 84, American Mathematical Society, Providence, 2007.
- [2] E. Casini, E. Miglierina "Cones with bounded and unbounded bases and reflexivity" Nonlinear Analysis, vol. 72 (2010), 2356-2366.
- [3] E. Casini, E. Miglierina, I.A. Polyrakis and F. Xanthos "Reflexive Cones" "Positivity vol. 17 nr.3 (2013) 911-933.

- [4] C. Kountzakis and I. A. Polyrakis "Geometry of cones and an application to the theory of Parerto efficient points", Journal of Math. Anal and Appl.", vol. 320 (2006) 340-351.
- [5] I. A. Polyrakis, "Strongly exposed points in bases for the positive cone of ordered Banach spaces and characterizations of $\ell_1(\Gamma)$ ", Proc. Edinb. Math. Society ", vol.29 (1986) 271-282.
- [6] I. A. Polyrakis", "Cones locally isomorphic to the positive cone of $\ell_1(\Gamma)$ ", "Linear Algebra and its Applications", vol.84 (1986) 323-334.
- [7] I. A. Polyrakis, "Strongly exposed points and a characterization of $\ell_1(\Gamma)$ by the Schur Property", Proc. Edinb. Math. Society, vol. 30 (1987 397-400.
- [8] I. A. Polyrakis, "The Radon-Nikodým Property in Ordered Banach Spaces", Journal of Math. Analysis and Applications, vol. 192 (1995) 381-391.

[9] I.A. Polyrakis "Demand functions and reflexivity",

Journal of Math. Anal and Appl.", vol. 338 (2008) 695-704.

[10] I.A. Polyrakis and F. Xanthos "Cone characterization of Grothendieck spaces and Banach spaces containing c_0 ", "Positivity vol. 15 (2011) 677-693.