The principal inverse of the gamma function

Mitsuru Uchiyama

Shimane University

2013/7

The gamma function $\Gamma(x)$ is usually defined by the Euler form

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$

for x>0. This is extended to $\Re z>0$. By $\Gamma(z+1)=z\Gamma(z)$ for $z\neq 0,-1,-2,\cdots$ it is defined and holomorphic on $\mathbf{C}\setminus\{0,-1,-2,\cdots\}$

The gamma function $\Gamma(x)$ is usually defined by the Euler form

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$

for x>0. This is extended to $\Re z>0$. By $\Gamma(z+1)=z\Gamma(z)$ for $z\neq 0,-1,-2,\cdots$ it is defined and holomorphic on $\mathbf{C}\setminus\{0,-1,-2,\cdots\}$ The Weierstrass form

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{n=1}^{\infty} (1 + \frac{x}{n})e^{-\frac{x}{n}}$$
 (1)

is useful, where γ is the Euler constant defined by

$$\gamma = \lim_{n \to \infty} (1 + \frac{1}{2} + \dots + \frac{1}{n} - \log n) = 0.57721 \dots$$

From (1) (Weierstrass form) it follows that

$$\log \Gamma(x) = -\log x - \gamma x + \sum_{n=1}^{\infty} \left(\frac{x}{n} - \log(1 + \frac{x}{n}) \right),$$

$$\frac{\Gamma'(x)}{\Gamma(x)} = -\gamma + \sum_{n=0}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+x} \right) \quad (psifunction)$$
 (2)

on **C** \
$$\{0, -1, -2, \cdots\}$$
.

From (1) (Weierstrass form) it follows that

$$\log \Gamma(x) = -\log x - \gamma x + \sum_{n=1}^{\infty} \left(\frac{x}{n} - \log(1 + \frac{x}{n}) \right),$$

$$\frac{\Gamma'(x)}{\Gamma(x)} = -\gamma + \sum_{n=0}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+x} \right) \quad (psifunction)$$
 (2)

on $\mathbf{C} \setminus \{0, -1, -2, \cdots\}$.

By (2), $\frac{\Gamma'(z)}{\Gamma(z)}$ maps the open upper half plane Π_+ into itself, namely $\frac{\Gamma'(z)}{\Gamma(z)}$ is a Pick (Nevanlinna) function.

From (1) (Weierstrass form) it follows that

$$\log \Gamma(x) = -\log x - \gamma x + \sum_{n=1}^{\infty} \left(\frac{x}{n} - \log(1 + \frac{x}{n}) \right),$$

$$\frac{\Gamma'(x)}{\Gamma(x)} = -\gamma + \sum_{n=0}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+x} \right) \quad (psifunction)$$
 (2)

on $\mathbf{C} \setminus \{0, -1, -2, \cdots\}$.

By (2), $\frac{\Gamma'(z)}{\Gamma(z)}$ maps the open upper half plane Π_+ into itself, namely $\frac{\Gamma'(z)}{\Gamma(z)}$ is a Pick (Nevanlinna) function. $\Gamma'(z)$ does not vanish on Π_+ .

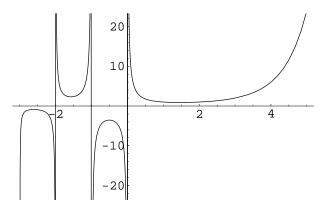


Figure: Gamma function

$$\Gamma(1) = \Gamma(2) = 1, \ \Gamma'(1) = -\gamma, \ \Gamma'(2) = -\gamma + 1.$$

Denote the unique zero in $(0, \infty)$ of $\Gamma'(x)$ by α .

$$\alpha = 1.4616 \cdots$$
, $\Gamma(\alpha) = 0.8856 \cdots$.

$$\Gamma(1) = \Gamma(2) = 1, \ \Gamma'(1) = -\gamma, \ \Gamma'(2) = -\gamma + 1.$$

Denote the unique zero in $(0,\infty)$ of $\Gamma'(x)$ by α .

$$\alpha = 1.4616 \cdots$$
, $\Gamma(\alpha) = 0.8856 \cdots$

We call the inverse function of the restriction of $\Gamma(x)$ to (α, ∞) the principal inverse function and write Γ^{-1} .

 $\Gamma^{-1}(x)$ is an increasing and concave function defined on $(\Gamma(\alpha), \infty)$.

Main Theorem

Theorem 1

The principal inverse $\Gamma^{-1}(x)$ of $\Gamma(x)$ has the holomorphic extension $\Gamma^{-1}(z)$ to $D := \mathbf{C} \setminus (-\infty, \Gamma(\alpha)]$, which satisfies

- (i) $\Gamma^{-1}(\Pi_+) \subset \Pi_+$ and $\Gamma^{-1}(\Pi_-) \subset \Pi_-$,
- (ii) $\Gamma^{-1}(z)$ is univalent,
- (iii) $\Gamma(\Gamma^{-1}(z)) = z$ for $z \in D$.

Let I be an interval in R and K(x,y) a continuous function defined on $I \times I$. Then K(x,y) is said to be a *positive semidefinite* (p.s.d.) kernel function on an interval $I \times I$ (on I for short) if

$$\iint_{I \times I} K(x, y) \phi(x) \overline{\phi(y)} dx dy \ge 0$$
 (3)

for every complex continuous function ϕ with compact support in I.

Let I be an interval in R and K(x,y) a continuous function defined on $I \times I$. Then K(x,y) is said to be a *positive semidefinite* (p.s.d.) kernel function on an interval $I \times I$ (on I for short) if

$$\iint_{I \times I} K(x, y) \phi(x) \overline{\phi(y)} dx dy \ge 0$$
 (3)

for every complex continuous function ϕ with compact support in I.

• K(x,y) is p.s.d. if and only if for each n and for all n points $x_i \in I$,

$$\sum_{i,j=1}^n K(x_i,x_j)z_i\overline{z_j} \ge 0$$

for n complex numbers z_i .

K(x,y) is said to be *conditionally (or almost) positive semidefinite* (c.p.s.d.) on $I \times I$ (on I for short) if (3) holds for every continuous function ϕ on I such that the support of ϕ is compact and $\int_I \phi(x) dx = 0$. K(x,y) is said to be *conditionally negative semidefinite* (c.n.s.d.) on I if -K(x,y) is c.p.s.d.

K(x,y) is said to be *conditionally (or almost) positive semidefinite* (c.p.s.d.) on $I \times I$ (on I for short) if (3) holds for every continuous function ϕ on I such that the support of ϕ is compact and $\int_I \phi(x) dx = 0$. K(x,y) is said to be *conditionally negative semidefinite* (c.n.s.d.) on I if -K(x,y) is c.p.s.d.

• K(x, y) is c.p.s.d. if and only if

$$\sum_{i,j=1}^{n} K(x_i, x_j) z_i \overline{z_j} \ge 0 \tag{4}$$

for each n, for all n points $x_i \in I$ and for n complex numbers z_i with $\sum_{i=1}^{n} z_i = 0$.

Facts

- K(x, y) = f(x)f(y) is p.s.d.
- If K(x,y) is p.s.d. on [a,b] and $h:[c,d]\mapsto [a,b]$ is increasing and (differentiable), then so is K(h(t), h(s)) on [c, d].
- If $K_t(x, y)$ is p.s.d. for each t, then so is $\int K_t(x, y) d\mu(t)$.
- (Schur) If $K_1(x, y)$ and $K_2(x, y)$ are both p.s.d. on I, then so is the product $K_1(x, y)K_2(x, y)$.
- If K(x, y) is p.s.d. on I, then K(x, y) is c.p.s.d. on I.
- K(x,y) = x + y is not p.s.d. but c. p. s. d. and c. n. s. d. on any 1.

Suppose $K(x,y) \ge 0$ for every x,y in I. Then K(x,y) is said to be *infinitely divisible* on $I \times I$ (on I for short) if $K(x,y)^a$ is positive semi-definite for every a > 0.

Suppose $K(x,y) \ge 0$ for every x,y in I. Then K(x,y) is said to be *infinitely divisible* on $I \times I$ (on I for short) if $K(x,y)^a$ is positive semi-definite for every a > 0.

K(x, y) is infinitely divisible if and only if for each n, for all n points $x_i \in I$ and for every a > 0 matrix

$$(K(x_i,x_j)^a)$$

is positive semi-definite.

Cauchy kernel

$$\frac{1}{x+y}$$

is infinitely divisible on $(0, \infty) \times (0, \infty)$.

Cauchy kernel

$$\frac{1}{x+y}$$

is infinitely divisible on $(0, \infty) \times (0, \infty)$.

$$\therefore \frac{1}{(x+y)^a} = \frac{1}{\Gamma(a)} \int_0^\infty e^{-tx} e^{-ty} t^{a-1} dt$$

(Fitzgerald, Horn) Let K(x,y) > 0 for $x,y \in I$ and suppose -K(x,y) is c.p.s.d. on $I \times I$. Then $\exp(-K(x,y))$ and the reciprocal function $\frac{1}{K(x,y)}$ are infinitely divisible there.

(Fitzgerald, Horn) Let K(x,y) > 0 for $x,y \in I$ and suppose -K(x,y) is c.p.s.d. on $I \times I$. Then $\exp(-K(x,y))$ and the reciprocal function $\frac{1}{K(x,y)}$ are infinitely divisible there.

Example K(x, y) := x + y on $(0, \infty) \times (0, \infty)$ K(x,y) > 0 and -K(x,y) is c.p.s.d. on $(0,\infty) \times (0,\infty)$. $(\exp(-K(x,y)))^a = e^{-ax}e^{-ay}$ is p.s.d. for every a > 0. $\frac{1}{K(x,y)} = \frac{1}{x+y}$ is the Cauchy kernel.

The Löwner kernel

Definition 6

Let f(x) be a real C^1 -function on I. Then the Löwner kernel function is defined by

$$K_f(x,y) = \begin{cases} \frac{f(x)-f(y)}{x-y} & (x \neq y) \\ f'(x) & (x = y). \end{cases}$$

The Löwner kernel

Definition 6

Let f(x) be a real C^1 -function on I. Then the Löwner kernel function is defined by

$$K_f(x,y) = \begin{cases} \frac{f(x)-f(y)}{x-y} & (x \neq y) \\ f'(x) & (x = y). \end{cases}$$

Example

- (i) For f(x) = x, $K_f(x, y) = 1$ is p. s. d. on R^2 .
- (ii) For $f(x) = -\frac{1}{x+\lambda}$, $K_f(x,y) = \frac{1}{(x+\lambda)(y+\lambda)}$ is p. s. d. on $(-\lambda, \infty) \times (-\lambda, \infty)$ and on $(-\infty, -\lambda) \times (-\infty, -\lambda)$.
- (iii) For $f(x) = x^2$, $K_f(x, y) = x + y$ is not p. s. d. but c. p. s. d. and c. n. s. d.

(Löwner Theorem) (also Koranyi)

Let f(x) be a real C^1 -function on I. Then the Löwner kernel function $K_f(x,y)$ is p.s.d. on $I \times I$ if and only if f(x) has a holomorphic extension f(z) to Π_+ which is a Pick (Nevanlinna) function.

(Löwner Theorem) (also Koranyi)

Let f(x) be a real C^1 -function on I. Then the Löwner kernel function $K_f(x,y)$ is p.s.d. on $I \times I$ if and only if f(x) has a holomorphic extension f(z) to Π_+ which is a Pick (Nevanlinna) function.

We will show

$$K_{\Gamma^{-1}}(x,y)$$

is p. s. d. on $(\Gamma(\alpha), \infty) \times (\Gamma(\alpha), \infty)$.

(Known result)

$$K_{\log x}(x,y) := \begin{cases}
\frac{\log x - \log y}{x-y} & (x \neq y) \\
\frac{1}{x} & (x = y)
\end{cases}$$

is p.s.d. on $(0,\infty) \times (0,\infty)$

(Known result)

$$K_{\log x}(x,y) := \begin{cases}
\frac{\log x - \log y}{x - y} & (x \neq y) \\
\frac{1}{x} & (x = y)
\end{cases}$$

is p.s.d. on $(0, \infty) \times (0, \infty)$

Proof. By the formula

$$\log x = \int_0^\infty (\frac{-1}{x+t} + \frac{t}{t^2+1}) dt \ (x > 0),$$

(Known result)

$$K_{\log x}(x,y) := \begin{cases} \frac{\log x - \log y}{x - y} & (x \neq y) \\ \frac{1}{x} & (x = y) \end{cases}$$

is p.s.d. on $(0,\infty) \times (0,\infty)$

Proof. By the formula

$$\log x = \int_0^\infty \left(\frac{-1}{x+t} + \frac{t}{t^2+1}\right) dt \ (x > 0),$$

we obtain

$$K_{\log x}(x,y) = \int_0^\infty \frac{1}{(x+t)(y+t)} dt$$

for x, y > 0.

$$K_{\log \Gamma(x)}(x,y) := \begin{cases}
\frac{\log \Gamma(x) - \log \Gamma(y)}{x - y} & (x \neq y) \\
\frac{\Gamma'(x)}{\Gamma(x)} & (x = y).
\end{cases}$$

 $-K_{\log \Gamma(x)}(x,y)$ is c.p.s.d. on $(0,\infty)$.

$$K_{\log \Gamma(x)}(x,y) := \begin{cases} \frac{\log \Gamma(x) - \log \Gamma(y)}{x-y} & (x \neq y) \\ \frac{\Gamma'(x)}{\Gamma(x)} & (x = y). \end{cases}$$

 $-K_{\log \Gamma(x)}(x,y)$ is c.p.s.d. on $(0,\infty)$.

Proof.

$$\log \Gamma(x) = -\log x - \gamma x + \sum_{n=1}^{\infty} \left(\frac{x}{n} - \log(1 + \frac{x}{n}) \right)$$

$$\mathcal{K}_{\log \Gamma(x)}(x,y) := \begin{cases}
\frac{\log \Gamma(x) - \log \Gamma(y)}{x - y} & (x \neq y) \\
\frac{\Gamma'(x)}{\Gamma(x)} & (x = y).
\end{cases}$$

$$-\mathcal{K}_{\log \Gamma(x)}(x,y) \text{ is c.p.s.d. on } (0,\infty).$$

Proof.

$$\log \Gamma(x) = -\log x - \gamma x + \sum_{n=1}^{\infty} \left(\frac{x}{n} - \log(1 + \frac{x}{n}) \right)$$
$$g(x) := \sum_{k=1}^{\infty} \left(\frac{x}{k} - \log(1 + \frac{x}{k}) \right)$$
$$\log \Gamma(x) = -\log x - \gamma x + g(x)$$
$$-K_{\log \Gamma(x)}(x, y) = K_{\log x}(x, y) + \gamma - K_g(x, y).$$

$$-K_{\log \Gamma(x)}(x,y) = K_{\log x}(x,y) + \gamma - K_g(x,y).$$

 $K_{\log x}(x,y)$ is p.s.d. and a constant function γ is c.p.s.d. We will see $-K_{\varrho}(x, y)$ is c.p.s.d.

$$-K_{\log \Gamma(x)}(x,y) = K_{\log x}(x,y) + \gamma - K_g(x,y).$$

We will see $-K_g(x, y)$ is c.p.s.d.

$$g_n(x) := \sum_{k=1}^n \left(\frac{x}{k} - \log(1 + \frac{x}{k})\right).$$

$$-K_{\log \Gamma(x)}(x,y) = K_{\log x}(x,y) + \gamma - K_g(x,y).$$

We will see $-K_g(x, y)$ is c.p.s.d.

$$g_n(x) := \sum_{k=1}^n \left(\frac{x}{k} - \log(1 + \frac{x}{k}) \right).$$

(i) $-K_{g_n}(x, y)$ is c.p.s.d.

$$-K_{\log \Gamma(x)}(x,y) = K_{\log x}(x,y) + \gamma - K_g(x,y).$$

We will see $-K_g(x, y)$ is c.p.s.d.

$$g_n(x) := \sum_{k=1}^n \left(\frac{x}{k} - \log(1 + \frac{x}{k})\right).$$

- (i) $-K_{g_n}(x, y)$ is c.p.s.d.
- (ii) $g'_n(x) = \sum_{k=1}^n \frac{x}{k(k+x)} \Rightarrow \sum_{k=1}^\infty \frac{x}{k(k+x)} = g'(x)$ on any finite interval [0, M].

$$-K_{\log \Gamma(x)}(x,y) = K_{\log x}(x,y) + \gamma - K_g(x,y).$$

We will see $-K_{g}(x, y)$ is c.p.s.d.

$$g_n(x) := \sum_{k=1}^n \left(\frac{x}{k} - \log(1 + \frac{x}{k})\right).$$

- (i) $-K_{\sigma_n}(x,y)$ is c.p.s.d.
- (ii) $g'_n(x) = \sum_{k=1}^n \frac{x}{k(k+x)} \Rightarrow \sum_{k=1}^\infty \frac{x}{k(k+x)} = g'(x)$ on any finite interval [0, M].

(iii)
$$K_{g_n}(x, y) - K_g(x, y) = \begin{cases} \frac{1}{x - y} \int_y^x (g'_n(t) - g'(t)) dt & (x \neq y) \\ g'_n(x) - g'(x) & (x = y) \end{cases}$$
Therefore, $-K_g(x, y)$ is c.p.s.d. on $(0, \infty)$.

$$\frac{1}{K_{\log \Gamma(x)}(x,y)}$$

is infinitely divisible on (α, ∞) .

$$\frac{1}{K_{\log\Gamma(x)}(x,y)}$$

is infinitely divisible on (α, ∞) .

Proof

By the previous lemma

$$K_{\log\Gamma(x)}(x,y) > 0$$

is c.n.s.d. on (α, ∞) . By Fitzgerald and Horn's result, we get the required result.

Let $K_1(x, y)$ be the kernel function defined on $(\alpha, \infty) \times (\alpha, \infty)$ by

$$K_1(x,y) = \begin{cases} \frac{x-y}{\Gamma(x)-\Gamma(y)} & (x \neq y) \\ \frac{1}{\Gamma'(x)} & (x = y). \end{cases}$$

Then $K_1(x, y)$ is p.s.d. on (α, ∞) .

Let $K_1(x,y)$ be the kernel function defined on $(\alpha,\infty)\times(\alpha,\infty)$ by

$$K_1(x,y) = \begin{cases} \frac{x-y}{\Gamma(x)-\Gamma(y)} & (x \neq y) \\ \frac{1}{\Gamma'(x)} & (x = y). \end{cases}$$

Then $K_1(x, y)$ is p.s.d. on (α, ∞) .

Proof.

$$K_{1}(x,y) = \begin{cases} \frac{\log \Gamma(x) - \log \Gamma(y)}{\Gamma(x) - \Gamma(y)} & \frac{x - y}{\log \Gamma(x) - \log \Gamma(y)} & (x \neq y) \\ \frac{1}{\Gamma(x)} & \frac{\Gamma(x)}{\Gamma'(x)} & (x = y) \end{cases}$$
$$= K_{\log x}(\Gamma(x), \Gamma(y)) \cdot \frac{1}{K_{\log \Gamma(x)}(x, y)} \qquad \Box$$

Proof of Theorem

We have shown

$$K_1(x,y) = \begin{cases}
\frac{x-y}{\Gamma(x)-\Gamma(y)} & (x \neq y) \\
\frac{1}{\Gamma'(x)} & (x = y).
\end{cases}$$

is p.s.d. on (α, ∞) . Hence

$$K_{\Gamma^{-1}}(x,y) = \begin{cases} \frac{\Gamma^{-1}(x) - \Gamma^{-1}(y)}{x - y} & (x \neq y) \\ (\Gamma^{-1})'(x) & (x = y) \end{cases} = K_{1}(\Gamma^{-1}(x), \Gamma^{-1}(y))$$

is p.s.d. on $(\Gamma(\alpha), \infty) \times (\Gamma(\alpha), \infty)$.

Thus by the Löwner theorem, $\Gamma^{-1}(x)$ has the holomorphic extension $\Gamma^{-1}(z)$ onto Π_+ , which is a Pick function.

By reflection $\Gamma^{-1}(x)$ has also holomorphic extension to Π_{-} and the range is in it.

 $\Gamma(\Gamma^{-1}(z))$ is thus holomorphic on the simply connected domain $D:=\mathbf{C}\setminus (-\infty,\Gamma(\alpha)]$, and $\Gamma(\Gamma^{-1}(x))=x$ for $\Gamma(\alpha)< x<\infty$. By the unicity theorem, $\Gamma(\Gamma^{-1}(z))=z$ for $z\in D$. It is clear that $\Gamma^{-1}(z)$ is univalent.

 $\Gamma(\Gamma^{-1}(z))$ is thus holomorphic on the simply connected domain $D:=\mathbf{C}\setminus (-\infty,\Gamma(\alpha)]$, and $\Gamma(\Gamma^{-1}(x))=x$ for $\Gamma(\alpha)< x<\infty$. By the unicity theorem, $\Gamma\left(\Gamma^{-1}(z)\right)=z$ for $z\in D$. It is clear that $\Gamma^{-1}(z)$ is univalent.

Corollary 11

There is a Borel measure μ so that

$$\Gamma^{-1}(x) = a + bx + \int_{-\infty}^{\Gamma(\alpha)} \left(\frac{1}{t - x} - \frac{t}{t^2 + 1}\right) d\mu(t), \tag{5}$$

where $\int_{-\infty}^{\Gamma(\alpha)} \frac{1}{t^2+1} d\mu(t) < \infty$, and a, b are real numbers and $b \ge 0$.

Matrix inequality

Theorem 12

The principal inverse $\Gamma^{-1}(x)$ of $\Gamma(x)$ is operator monotone on $[\Gamma(\alpha), \infty)$; i.e., and hence for bounded self-adjoint operators A, B whose spectra are in $[\Gamma(\alpha), \infty)$

$$A \leq B \Rightarrow \Gamma^{-1}(A) \leq \Gamma^{-1}(B).$$

Matrix inequality

Theorem 12

The principal inverse $\Gamma^{-1}(x)$ of $\Gamma(x)$ is operator monotone on $[\Gamma(\alpha), \infty)$; i.e., and hence for bounded self-adjoint operators A, B whose spectra are in $[\Gamma(\alpha), \infty)$

$$A \leq B \Rightarrow \Gamma^{-1}(A) \leq \Gamma^{-1}(B).$$

Proof $A \leq B$ implies that $-(A - tI)^{-1} \leq -(B - tI)^{-1}$ for $t < \Gamma(\alpha)$. From

$$\Gamma^{-1}(x) = a + bx + \int_{-\infty}^{\Gamma(\alpha)} (\frac{-1}{x-t} - \frac{t}{t^2+1}) d\mu(t)$$

we have
$$\Gamma^{-1}(A) \leq \Gamma^{-1}(B)$$
.

$$K_2(x,y) := K_{\log \Gamma(x)}(x,y) = \begin{cases} \frac{\log \Gamma(x) - \log \Gamma(y)}{x-y} & (x \neq y) \\ \frac{\Gamma'(x)}{\Gamma(x)} & (x = y). \end{cases}$$

Then

$$e^{-K_2(x,y)} = \begin{cases} \left(\frac{\Gamma(y)}{\Gamma(x)}\right)^{\frac{1}{x-y}} & (x \neq y) \\ e^{-\frac{\Gamma'(x)}{\Gamma(x)}} & (x = y) \end{cases}$$

is infinitely divisible. Since $\Gamma(x+1) = x\Gamma(x)$,

$$\frac{\Gamma'(1)}{\Gamma(1)} = -\gamma, \ \frac{\Gamma'(m+1)}{\Gamma(m+1)} = \frac{\Gamma'(m)}{\Gamma(m)} + \frac{1}{m}, \ \frac{\Gamma(n)}{\Gamma(m)} = \frac{(n-1)!}{(m-1)!}.$$

matrix

The following $(n+1) \times (n+1)$ matrix is therefore not only p.s.d. but also infinitely divisible.

 $(e^{-K_2(i,j)}) =$

$$=\begin{pmatrix} e^{\gamma} & (\frac{1!}{1!})^{-1} & (2!)^{-\frac{1}{2}} & (3!)^{-\frac{1}{3}} & \cdots & (n!)^{-\frac{1}{n}} \\ (\frac{1!}{1!})^{-1} & e^{\gamma-1} & (\frac{2!}{1!})^{-1} & (\frac{3!}{1!})^{-\frac{1}{2}} & \cdots & (\frac{n!}{1!})^{-\frac{1}{n-1}} \\ (2!)^{-\frac{1}{2}} & (\frac{2!}{1!})^{-1} & e^{\gamma-1-\frac{1}{2}} & (\frac{3!}{2!})^{-1} & \cdots & (\frac{n!}{2!})^{-\frac{1}{n-2}} \\ (3!)^{-\frac{1}{3}} & (\frac{3!}{1!})^{-\frac{1}{2}} & (\frac{3!}{2!})^{-1} & e^{\gamma-1-\frac{1}{2}-\frac{1}{3}} & \cdots & (\frac{n!}{3!})^{-\frac{1}{n-3}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ (n!)^{-\frac{1}{n}} & (\frac{n!}{1!})^{-\frac{1}{n-1}} & (\frac{n!}{2!})^{-\frac{1}{n-2}} & (\frac{n!}{3!})^{-\frac{1}{n-3}} & \cdots & e^{\gamma-1-\frac{1}{2}-\cdots-\frac{1}{n}} \end{pmatrix}$$

R. Bhatia, Infinitely divisible matrices, Amer. Math. Monthly, 113, 221-235(2006).

R. Bahtia and H. Kosaki, Mean matrices and infinite divisibility, Linear Algebra Appl., 424, 36-54(2007).

C. Berg, H. L. Pedersen, Pick functions related to the gamma function, Rocky Mountain J. of Math. 32(2002)507-525.

A, Koranyi, On a theorem of Löwner and its connections with resolvents of selfadjoint transformations, Acta Sci. Math. 17, 63-70(1956).

K. Löwner, Über monotone Matrixfunctionen, Math. Z. 38(1934)177-216.

W. F. Donoghue, Monotone Matrix Functions and Analytic Continuation, Springer-Verlag, 1974.

C. H. Fitzgerald, On analytic continuation to a Schlicht function, Proc. Amer. Math. Soc., 18, 788-792(1967).

R. A. Horn, Schlicht mapping and infinitely divisible kernels, Pacific J. of Math. 38, 423-430(1971).

R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.

M. Uchiyama, Operator monotone functions, positive definite kernels and majorization, Proc. Amer. Math. 138(2010)3985-3996

M. Uchiyama, The principal inverse of the gamma function, PAMS (2012) 1343-1348.