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1 PREFACE 3

1 Preface

There is a construction of the tensor product of Riesz spaces due to B. de Pagter as a quotient
of a free Riesz space over a suitable chosen set. In my master thesis ’Tensor products in Riesz
space theory’ (Leiden University, supervisors: Onno van Gaans and Marcel de Jeu) I give new
constructions for the tensor product of integrally closed directed partially ordered vector spaces
and for the tensor product of Banach lattices as quotients of free Riesz spaces and free Banach
lattices respectively. The main results are in chapters 5 and 6.

2 Preliminaries

Definition 2.1. Let E be a partially ordered vector space. Then E is Archimedean if nx ≤ y for
all n ∈ Z implies that x = 0, for all x, y ∈ E. We say that E is integrally closed if nx ≤ y for all
n ∈ N0 implies that x ≤ 0, for all x, y ∈ E.

Remark 2.2. Every integrally closed partially ordered vector space is Archimedean. The converse
is not true. In a Riesz space the notions are equivalent.

For a non-empty set X ⊂ E we denote by Xu the set of all upper bounds of X and by X l the set
of all lower bounds of X.

Definition 2.3. Let E be a partially ordered vector space. Then E is a pre-Riesz space if E is
directed and (x + X)u ⊂ Xu implies that x ≥ 0 for all x ∈ E and for all non-empty finite sets
X ⊂ E.

Remark 2.4. Every Riesz space is pre-Riesz and every directed integrally closed partially ordered
vector space is pre-Riesz.

Theorem 2.5 (Van Haandel). For every pre-Riesz space E there is an essentially unique Riesz
space Er and a bipositive linear map ϕE : E → Er such that ϕE(E) is order dense in Er and
generates Er as a Riesz space. We say that (Er, ϕE) is the Riesz completion of E. Suppose (L, φ)
and (M,ψ) are Riesz completions of E then there is a unique Riesz homomorphism f : L → M
with ψ = f ◦ φ.

In a Riesz space L, an ideal is a subspace I ⊂ L such that if y ∈ I and x is in L such that |x| ≤ |y|,
then x ∈ I [1, page 25]. A good definition for general partially ordered vector spaces is difficult.
Maybe the best choice is the following definition. It coincides with the definition of an ideal in a
Riesz space. For a comprehensive discussion see [8].

Definition 2.6. Let E be a partially ordered vector space. An ideal I of E is a subspace of E
that is directed and it has the following property: for every y ∈ I and for every x ∈ E such that
{−x, x}u ⊇ {−y, y}u one has that x ∈ I.

Remark 2.7. If E is a Riesz space, then {−x, x}u = {|x|}u ⊇ {−y, y}u = {|y|}u if and only
if |x| ≤ |y|. Clearly every Riesz ideal is directed. Thus Definition 2.6 coincides with the usual
definition of a Riesz ideal.

Proposition 2.8. Let E be a partially ordered vector space and I an ideal of E. For every y ∈ I,
we have that [−y, y] ⊂ I.

Proof. Let E be a partially ordered vector space and let I an ideal of E. Let y ∈ I and suppose
that [−y, y] 6= ∅. Let x ∈ [−y, y]. We have to show that x ∈ I. Note that x ≤ y and that −x ≤ y.
Let z ∈ {−y, y}u, then z ≥ y ≥ {±x}. Thus z ∈ {±x}u. It follows that {±y}u ⊆ {±x}u. Thus
x ∈ I.

Remark 2.9. From Proposition 2.8 follows that our ideal is solid in the sense of [5, Definition 351
I]: a subset A of E is solid if A =

⋃
x∈A[−x, x].
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Definition 2.10. Let E be a partially ordered vector space. A sequence {xn}n≥1 converges
relatively uniformly (ru-converges) to x ∈ E, if there exist a u ∈ E+ and a sequence of positive
real numbers {εn}n≥1 with εn ↓ 0 such that −εnu ≤ xn − x ≤ εnu, for all n ∈ N. A set A ⊂ E
is relatively uniformly closed (ru-closed) if for every sequence {xn}n≥1 ⊂ A that is relatively
uniformly convergent to an x ∈ L, we have that x ∈ A. Clearly, the intersection of an arbitrary
collection of relatively uniformly closed sets if relatively uniformly closed. We define the relatively
uniformly closure (ru-closure) of a set A to be the intersection of all relatively uniformly closed
sets B that contain A. This collection is not empty since it contains E.

Theorem 2.11. Let E be a partially ordered vector space. Let I be an ideal of E. If E/I is
Archimedean, then I is relatively uniformly closed. If E is a Riesz space, then E/I is Archimedean
if and only if I is relatively uniformly closed.

Proof. Let E be a partially ordered vector space and let I be an ideal of E. Let q : E → E/I
be the canonical quotient map. Suppose E/I is Archimedean. Let {xn}n≥1 be a sequence in
I that relative uniform converges to x ∈ E. By definition, there is a sequence of positive real
numbers {εn}n≥1 and a u ∈ E+ such that εn ↓ 0 and −εnu ≤ xn − x ≤ εnu, for all n ∈ N. Thus
−εnq(u) ≤ −q(x) ≤ εnq(u), for all n ∈ N. For every m ∈ N there is an nm ∈ N such that 1

m ≥ εnm
,

so 1
mq(u) ≤ −q(x) ≤ 1

mq(u), for all m ∈ N. It follows that nq(x) ≤ q(u), for all n ∈ Z. Since E/I
is Archimedean we have that q(x) = 0. Thus x ∈ I and I is relatively uniformly closed.
Assume further that E is a Riesz space. Suppose that I is relatively uniformly closed. Let x, y ∈ E
be such that n[x] ≤ [y], for all n ∈ Z, then [y] ≥ 0. Therefore we may assume that y ≥ 0. We have
for all n ∈ N,

− 1
n [y] ≤ [x] ≤ 1

n [y].

Thus there are in, i′n ∈ I such that
x+ in ≤ 1

ny,

and
−x+ i′n ≤ 1

ny,

for all n ∈ N. Thus for xn = (x+ in) ∨ (−x+ i′n) ∨ 0 ∈ |x|+ I ⊂ E we have

− 1
ny ≤ 0 ≤ xn − 0 ≤ 1

ny.

Hence {xn}∞n=1 is a sequence in |x| + I that converges relatively uniformly to 0. We have that
|x|+ I is ru-closed hence 0 ∈ |x|+ I. Thus [x] = 0. We conclude that E/I is Archimedean.

Theorem 2.12. Let E and F be partially ordered vector spaces with F Archimedean. Let φ : E →
F be positive. Then kerφ is ru-closed.

Proof. Let E and F be partially ordered vector spaces with F Archimedean. Let φ : E → F be
positive. Let {xn}∞n=1 be a sequence in kerφ that is ru-convergent to x ∈ E. So there exists a real
sequence {εn}∞n=1, εn ↓ 0 and a u ∈ E+, such that

−εnu ≤ xn − x ≤ εnu,

for all n ∈ N. Thus
−εnφ(u) ≤ φ(x) ≤ εnφ(u),

for all n ∈ N. For every m ∈ N, there is an nm ∈ N, such that εnm
≤ 1

m . Thus

− 1
nφ(u) ≤ φ(x) ≤ 1

nφ(u),

for all n ∈ N. Furthermore φ(u) ≥ 0, so nφ(x) ≤ φ(u), for all n ∈ Z. Since F is Archimedean, we
have that φ(x) = 0, that is x ∈ kerφ. We conclude that kerφ is ru-closed.

Definition 2.13. Let L be a Riesz space. A Riesz norm or lattice norm || · || on L is a norm on L
such that if |x| ≤ |y| then ||x|| ≤ ||y||, for all x, y ∈ L. The pair (L, || · ||) is called a normed Riesz
space. If the induced metric on L through || · || is complete, then we call (L, || · ||) a Banach lattice.



3 FREE SPACES 5

Definition 2.14. Let L,M and N be Riesz spaces. A Riesz bimorphism is a bilinear map φ :
L×M → N such that for all x ∈ L+ : φ(x, ·) is a Riesz homomorphism and for all y ∈M+ : φ(·, y)
is a Riesz homomorphism.

Proposition 2.15. Let L,M and N be Riesz spaces and φ : L×M → N be bilinear. Then φ is a
Riesz bimorphism if and only if for all x ∈ L and y ∈M we have |φ(x, y)| = φ(|x|, |y|).

3 Free spaces

The free vector space over a set A are all linear combinations of elements of A. Thus A is the vector
space basis for the free vector space. Something similar can be done for Riesz spaces, normed Riesz
spaces and Banach lattices. We define and study these objects here. We need the free spaces for
the construction of various tensor products.
Let B be a set and let A ⊂ B. We define rA : RB → RA to be the restriction map, thus for f ∈ RB
we define rA(f) = f |A. It is clear that rA is a surjective Riesz homomorphism. Sometimes we write
ξA = rA(ξ) for ξ ∈ RB . We define jA : RRA → RRB

by jA(f)(ξ) = f(ξA) = f(rA(ξ)) = f(ξ|A),
where f ∈ RRA

and ξ ∈ RB . Then jA is an injective Riesz homomorphism and hence bipositive.

3.1 Free vector spaces and free Riesz spaces

In this subsection we study the free vector space and the free Riesz space and we will show that
the free vector space is a subspace of the free Riesz space.

Definition 3.1. A free vector space over a set A is a pair (V, ι) where ι : A→ V is a map and V
is a real vector space, such that for every real vector space W and for every map φ : A→W there
is a unique linear map φ∗ : V →W such that φ = φ∗ ◦ ι.

V
φ∗ // W

A

ι

OO

φ

>>}}}}}}}}

Lemma 3.2. Let A be a set. Suppose (V, ι) and (W, j) are free vector spaces over A. Then there
is a unique bijective linear map φ : V →W such that j = φ ◦ ι.

Proof. Let A be a set. Suppose that (V, ι) and (W, j) are free vector spaces over A. By definition
there are unique linear maps ι∗ : W → V and j∗ : V → W such that ι = ι∗ ◦ j and j = j∗ ◦ ι.
Thus ι = ι∗ ◦ j∗ ◦ ι. Note that also the identity map idV on V is a linear map such that ι = idV ◦ ι.
From the uniqueness statement it follows that idV = ι∗ ◦ j∗. Similarly, we have that the identity
map idW on W is equal to j∗ ◦ ι∗. Define φ = j∗ : V → W. Then φ is the unique isomorphism
ψ : V →W such that j = ψ ◦ ι.

V

j∗
++
W

ι∗

kk

A

ι

__@@@@@@@ j

>>}}}}}}}}

Definition 3.3. A free Riesz space over a set A is a pair (L, ι) where ι : A → L is a map and L
is a Riesz space such that for every Riesz space M and every map φ : A → M there is a unique
Riesz homomorphism φ∗ : L→M such that φ = φ∗ ◦ ι.

L
φ∗ // M

A

ι

OO

φ

>>}}}}}}}}
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The next lemma can be found in [14, Proposition 3.3].

Lemma 3.4. A free Riesz space is unique if it exists, in the following sense: let (L, ι) and (M, j) be
two free Riesz spaces over a set A, then there is a unique (surjective) Riesz isomorphism T : L→M
such that T ◦ ι = j. In particular T is an order isomorphism.

Proof. Let A be a set and suppose that (L, ι) and (M, j) are two free Riesz spaces over A. There is
a unique Riesz homomorphism j∗ : L→M such that j = j∗ ◦ ι and a unique Riesz homomorphism
ι∗ : M → L such that ι = ι∗ ◦ j. Note that ι = ι∗ ◦ j = ι∗ ◦ j∗ ◦ j and ι∗ ◦ j∗ : L → L is a Riesz
homomorphism. Note that also that the identity map idL on L is a Riesz homomorphism such
that ι = idL ◦ ι. From the uniqueness statement follows that idL = ι∗ ◦ j∗. Likewise is the identity
map idM on M satisfies idM = j∗ ◦ ι∗. Define T = j∗ : L → M, then T is an invertible Riesz
homomorphism and T−1 = ι∗ is a Riesz homomorphism and T ◦ ι = j∗ ◦ ι = j. Moreover T is the
unique Riesz homomorphism with this properties. In particular T is an order isomorphism.

L

j∗
++
M

ι∗

kk

A

ι

__??????? j

>>}}}}}}}}

Theorem 3.5. ([14, Proposition 3.2]). If (L, ι) is a free Riesz space over a set A, then L is
generated as Riesz space by ι(A).

Proof. Let (L, ι) be a free Riesz space over a set A. Let M be the Riesz subspace of L generated
by ι(A). Define the map φ : A→M by φ(a) = ι(a). By definition, there is a Riesz homomorphism
φ∗ : L → M such that φ = φ∗ ◦ ι. Let j : M → L be the inclusion map. Then j ◦ φ∗ : L → L
satisfies j ◦φ∗ ◦ ι = ι. By definition, the identity map on L, idL is the unique Riesz homomorphism
ψ : L → L that satisfies ι = ψ ◦ ι. Thus j ◦ φ∗ = idL. But that implies that j is surjective, so
M = L. We conclude that L is generated as Riesz space by ι(A).

L

φ∗
++
M

j

kk

A

ι

__??????? φ

>>}}}}}}}}

For every set the the free Riesz space exists, see [14, Proposition 3.7]. The case A = ∅ is trivial.

Theorem 3.6. Let A be a set. If A = ∅, then (0, ∅) is the free Riesz space over A. If A 6= ∅ then
(FRS(A), ι) is the free Riesz space over A, where FRS(A) is the Riesz subspace of RRA

generated
by elements ξa ∈ RRA

, defined by ξa(f) = f(a) for a ∈ A and f ∈ RA, and where ι : A→ FRS(A)
is defined by a 7→ ξa. Moreover ι is injective and FRS(A) is Archimedean.

Lemma 3.7. Let A be a set. Let ι be as in Theorem 3.6. Then ι(A) is a linearly independent set.

Proof. The case A = ∅ is trivial, so suppose that A 6= ∅. Let a1, . . . , an ∈ A be finitely many
mutually different elements. Let λ1, . . . , λn ∈ R be such that

∑n
i=1 λiξai = 0. Then, for all f ∈ RA

we have that (
n∑
i=1

λiξai

)
(f) =

n∑
i=1

λif(ai) = 0.

Define fk ∈ RA by f(ak) = 1 and f(a) = 0 for a ∈ A\{ak}, where k ∈ {1, . . . , n}. Then(
n∑
i=1

λiξai

)
(fk) =

n∑
i=1

λifk(ai) = λk = 0.
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Thus λk = 0, for k ∈ {1 . . . , n}. It follows that ξ1, . . . , ξn are linearly independent.

Theorem 3.8. Let A be a set. If A = ∅, then (0, ∅) is the free vector space over A. If A 6= ∅, let
ξa be as in Theorem 3.6 on the previous page, where a ∈ A. Let FVS(A) = Span{ξa : a ∈ A} ⊂
FRS(A) ⊂ RRA

. Define ι : A → FVS(A) by a 7→ ξa, where a ∈ A. Then (FVS(A), ι) is the free
vector space over A.

Proof. Let A be a set. The statement is trivial if A = ∅. So suppose that A has at least one element.
Let FVS(A) and ι be as in the statement of the theorem. By Lemma 3.7 on the preceding page
{ξa : a ∈ A} is a linearly independent set. Let W be an arbitrary vector space and let φ : A→W
be a map. Define a linear map φ∗ : FVS(A) → W on its basis elements ξa by ξa 7→ φ(a), where
a ∈ A. Thus φ = φ∗ ◦ ι. For any other linear map ψ : FVS(A)→W that satisfies φ = ψ ◦ ι, we have
that ψ(ξa) = φ(a) = φ∗(ξa). Since the ξa generate FVS(A) as vector space, we have that ψ = φ∗
thus φ∗ is unique. We conclude that (FVS(A), ι) is the free vector space over A.

Remark 3.9. We view the free vector space as a subspace of the free Riesz space.

Theorem 3.10. Let B be a set and let A ⊂ B be a subset. Let (FRS(B), ιB) be the free Riesz
space over B. Let FRS(A) be the Riesz subspace of FRS(B) generated by the elements ιB(a), where
a ∈ A, and let ιA = ιB |A. Then (FRS(A), ιA) is the free Riesz space over A.

Proof. Let B be a set and let A ⊂ B be a subset. The map jA : RRA → RRB

is an injective Riesz
homomorphism, and hence jA|FRS(A) → FRS(B) is an injective Riesz homomorphism.

Proposition 3.11. Let A be a finite set. Let (FRS(A), ι) be the free Riesz space over A. Then∑
a∈A |ι(a)| is a strong order unit for FRS(A).

Proof. Let A be a finite set with free Riesz space (FRS(A), ι). Then the statement is clear from
the fact that A is finite and that FRS(A) is generated by elements ι(a).

Proposition 3.12. Let A be a non-empty set and let F(A) denote the set of all finite subsets of
A. Then

FRS(A) =
⋃

B∈F(A)

FRS(B),

where we view FRS(B) as a Riesz subspace of FRS(A).

Proof. Let A be a non-empty set with free Riesz space (FRS(A), ι). From Theorem 3.10 it is clear
that ⋃

B∈F(A)

FRS(B) ⊂ FRS(A).

On the other hand every element x ∈ FRS(A) is generated by finitely many elements ιa1 , . . . , ιan
,

so x ∈ FRS({a1, . . . , an}) and hence

FRS(A) =
⋃

B∈F(A)

FRS(B).

Proposition 3.13. Let A be a set.

1. If ξ ∈ RA, then ωξ : FRS(A) → R defined by ωξ(f) = f(ξ), where f ∈ FRS(A), is a Riesz
homomorphism.

2. If ω : FRS(A)→ R is a Riesz homomorphism, then there is a ξ ∈ RA such that ω = ωξ.

Here, we view FRS(A) as a Riesz subspace of RRA

.
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Proof. The first statement is trivial. Suppose ω : FRS(A)→ R is a Riesz homomorphism. Define
ξ ∈ RA by ξ(a) = ω(ι(a)), for a ∈ A. Then for a ∈ A we have ω(ι(a)) = ξ(a) = ι(a)(ξ) = ωξ(ι(a)).
Thus ω and ωξ coincide on the set {ι(a) : a ∈ A} that generates FRS(A) as Riesz space hence
ω = ωξ.

3.2 Free normed Riesz space and free Banach lattice

Something similar to free Riesz space exists for Banach lattices. It is easy to generalize the results
of De Pagter and Wickstead for Banach lattices [14] to normed Riesz spaces. We give an overview
of the main results.

Definition 3.14. Let A be a non-empty set and let X be a normed space. A map φ : A → X
is (norm) bounded, if there exists an M > 0 such that ||φ(a)|| ≤ M, for all a ∈ A. We define the
norm of a (norm) bounded map φ : A→ X to be ||φ|| = sup{||φ(a)|| : a ∈ A}.

Remark 3.15. Note that || · || is norm on the vector space of all norm bounded maps φ : A→ X.

Definition 3.16. Let A be a non-empty set. The free normed Riesz space (free Banach lattice)
over A is a pair (L, ι) where L is a normed Riesz space (Banach lattice) and ι : A → L is a
bounded map such that for any normed Riesz space (Banach lattice) M and for any bounded map
φ : A→M there is a Riesz homomorphism φ∗ : L→M with the property ||φ∗|| = ||φ||. Moreover
φ∗ is the unique Riesz homomorphism ψ : L→M that satisifies φ = ψ ◦ ι.

L
φ∗ // M

A

ι

OO

φ

>>}}}}}}}}

From the fact that ι∗ = idL follows that ||ι|| = ||ι∗|| = 1. But even more is true.

Lemma 3.17. ([14, Proposition 4.2].) Let A be a non-empty set, and suppose that (L, ι) is a free
Banach lattice or free normed Riesz space over A. Then ||ι(a)|| = 1, for every a ∈ A.

Proof. Let A be a non-empty set, and suppose that (L, ι) is a free Banach lattice over A. Define
j : A → R by a 7→ 1, a ∈ A. Then ||j∗|| = ||j|| = 1. Further, 1 = ||j(a)|| = ||j∗(ι(a))|| ≤
||j∗|| ||ι(a)|| = ||ι(a)||, thus ||ι(a)|| ≥ 1, for all a ∈ A. Since ||ι|| = 1 we have ||ι(a)|| ≤ 1, for all
a ∈ A. Therefore ||ι(a)|| = 1, for all a ∈ A.
The case that (L, ι) is a free normed Riesz space over A is proven similarly.

L
j∗ // R

A

ι

OO

j

??�������

L
ι∗ // L

A

ι

OO

ι

??�������

The free Banach lattice or normed Riesz space is unique if it exists, see [14, Proposition 4.3].

Lemma 3.18. Let A be a non-empty set, and suppose that (L, ι) and (M, j) are free Banach lattices
over A (free normed Riesz spaces over A.) Then there exists a unique isometric order isomorphism
φ : L→M, such that φ ◦ ι = j.

Proof. Let A be a non-empty set, and suppose that (L, ι) and (M, j) are free Banach lattices over
A. Let j∗ : L→M be the unique Riesz homomorphism such that j = j∗ ◦ ι. Then by Lemma 3.17,
||j∗|| = ||j|| = 1. Similarly, there is a unique Riesz homomorphism ι∗ : M → L of norm 1, such
that ι = ι∗ ◦ j. So ι∗ ◦ j∗ : L → L is a Riesz homomorphism and ι = ι∗ ◦ j = ι∗ ◦ j∗ ◦ ι. From the
uniqueness statement in the theorem follows that ι∗ ◦ j∗ is the identity map on L. Similarly, j∗ ◦ ι∗
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is the identity map on M. So ι∗ is an isometric order isomorphism.
The case that (L, ι) is a free normed Riesz space over A is proven similarly.

L

j∗
++
M

ι∗

kk

A

ι

__??????? j

>>}}}}}}}}

For an ordered vector space E we denote by E˜ the space of all order bounded linear functionals
on E. According to [1, Theorem 1.18] E˜ is equal to the space of regular linear functionals as soon
as E is an Archimedean Riesz space. De Pagter and Wickstead define in [14] a lattice norm || · ||F
on FRS(A), that turns FRS(A) into the free normed Riesz space over A and its norm completion
is the free Banach lattice over A. We will now review this construction.

Definition 3.19. ([14, Definition 4.4]) For a non-empty set A we define a map || · ||† : FRS(A)˜→
[0,∞] by

||φ||† = sup{|φ|(|ι(a)|) : a ∈ A}.

Let
FRS(A)† = {φ ∈ FRS(A)˜: ||φ||† <∞}.

The following is clear from the definition.

Lemma 3.20. FRS(A)† is a vector lattice ideal in FRS(A) .̃

Lemma 3.21. Let A be a non-empty set. Let ξ ∈ RA. Let ωξ : FRS(A) → R be defined through
ωξ(x) = x(ξ), x ∈ FRS(A) (See Proposition 3.13 on page 7). Then ||ωξ|| < ∞ if and only if ξ is
bounded. Or, equivalently, ωξ ∈ FRS(A)† if and only if ξ is bounded.

Proof. Let ξ ∈ RA. Since |ξ(a)| = |ι(a)(ξ)| = |ωξ(ι(a))| = ωξ(|ι(a)|) = |ωξ|(|ι(a)|), for all a ∈ A, it
follows that ||ωξ||† <∞ if and only if ξ is bounded.

Lemma 3.22. If A is a non-empty set, then || · ||† is a Riesz norm on FRS(A)†.

Proof. Let A be a non-empty set. || · ||† is clearly a Riesz seminorm. Suppose that ||φ||† = 0.
Then |φ|(|ι(a)|) = 0, for all a ∈ A, thus φ(|ι(a)|) = 0, for all a ∈ A. Let x ∈ FRS(A). By
Proposition 3.12 on page 7 there are finitely many a1, . . . , an ∈ A such that x ∈ FRS({a1, . . . , an}).
By Proposition 3.11 on page 7 e =

∑n
i=1 |ι(a)| is a strong order unit for FRS({a1, . . . , an}). Thus

there is an λ ∈ R+ such that |x| ≤ λe. It follows that |φ(x)| ≤ |φ|(|x|) ≤ λ|φ|(e) = 0 and hence
φ(x) = 0. So φ = 0. We conclude that || · ||† is a Riesz norm.

Definition 3.23. For a non-empty set A and for x ∈ FRS(A) we define ||x||F = sup{φ(|x|) : φ ∈
(FRS(A)†)+, ||φ||† ≤ 1}.

Theorem 3.24. If A is a non-empty set, then || · ||F is a lattice norm on FRS(A).

Proof. From the definition it is clear that for x, y ∈ FRS(A) with |x| ≤ |y| we have that ||x||F ≤
||y||F and that || · ||F is positive homogenious and subadditive. First we will show that for all x ∈
FRS(A) we have that ||x||F <∞. Let x ∈ FRS(A). By Proposition 3.12 on page 7 there are finite
a1, . . . , an ∈ A such that x ∈ FRS({a1, . . . , an}). By Proposition 3.11 on page 7 e =

∑n
i=1 |ι(ai)| is

a strong order unit of FRS({a1, . . . , an}). So there is a λ > 0 such that |x| ≤ λe. So ||x||F ≤ λ||e||F .
For φ ∈ (FRS(A)†)+, ||φ||† ≤ 1, we have φ(e) =

∑n
i=1 φ(|ι(ai)|) ≤ n. Thus ||e||F ≤ n and hence

||x||F ≤ λn <∞.
It only remains to show that for all x ∈ FRS(A) we have that ||x||F = 0 implies that x = 0. Let
x ∈ FRS(A) with ||x||F = 0. Clearly, for all φ ∈ (FRS(A)†)+ we have φ(x) = 0. In particular
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ωξ(x) = x(ξ) = 0, for every ξ ∈ RA. By Proposition 3.12 on page 7 there is a finite subset B of
A such that x ∈ FRS(B). In particular for every ξ ∈ RB ⊂ RA we have that x(ξ) = 0. But that
means that x = 0, since x ∈ FRS(B) ⊂ RRB

.

Theorem 3.25. Let A be a non-empty set. Then ((FRS(A), || · ||F ), ι) is the free normed Riesz
space over A.

Proof. Let A be a non-empty set. Consider the free Riesz space over A, (FRS(A), ι). Let M be an
arbitrary normed Riesz space and let φ : A → M a bounded map that maps into M1, the closed
unit ball of M, and suppose that ||φ|| = 1. By the definition of the free Riesz space, there is a
unique Riesz homomorphism φ∗ : FRS(A)→M such that φ = φ∗ ◦ ι. It only remains to prove that
||φ∗|| = ||φ||.
By Lemma 3.17 on page 8 we have for all a ∈ A, ||ι(a)|| = 1. So ||φ∗|| ≥ ||φ∗(ι(a))|| = ||φ(a)||,
thus ||φ∗|| ≥ ||φ||. Suppose that ||φ∗|| > ||φ||. So for some x ∈ FRS(A) with ||x|| = 1 is ||φ∗(x)|| =
||φ∗(|x|)|| > ||φ||. By Hahn-Banach there exists a positive functional ψ on M of norm at most one
and ψ(φ∗|x|) > ||φ||.
We have ||ψ ◦ φ∗||† = sup{|ψ ◦ φ∗|(|ι(a)|) : a ∈ A} = sup{|ψ ◦ φ∗(ι(a))| : a ∈ A} = sup{|ψ(φ(a))| :
a ∈ A} ≤ 1. Thus ||x||F ≥ ||ψ(φ∗(|x|))|| > φ = 1. This is a contradiction. Therefore ||φ∗|| = ||φ||.
Suppose φ : FRS(A) → M is a bounded map and ||φ|| > 0. Then φ̄ = φ/||φ|| is of norm one and
maps into M1. It is clear that φ̄∗ = φ∗/||φ||, so ||φ∗|| = ||φ||. Suppose φ : FRS(A) → M is zero.
Then φ∗ = 0, so ||φ∗|| = ||φ||. This concludes our proof.

Remark 3.26. We denote the free normed Riesz space over a non-empty set A by FNRS(A).

For the next theorem see [1, Theorems 4.1 and 4.2].

Theorem 3.27. Let E be a normed Riesz space and let E′ denote its norm dual space. Then
E′ is a Banach lattice. Consider E as a subspace of its double dual E′′ = (E′)′. Then the norm
completion of E is a Banach lattice.

According to [1, Theorem 4.3] we have.

Theorem 3.28. Let L be a Banach lattice and M a normed Riesz space. Every positive linear
map φ : L→M is continuous.

Theorem 3.29. Let A be a non-empty set. Let FBL(A) be the || · ||F -norm completion of FRS(A).
Then FBL(A) is a Banach lattice and (FBL(A), ι) is the free Banach lattice over A.

Proof. Let A be a non-empty set and let FBL(A) be the || · ||F -norm completion of FRS(A). By
Theorem 3.27, FBL(A) is a Banach lattice. Suppose M is Banach lattice and φ : A→M a bounded
map. By Theorem 3.25 there is a Riesz homomorphism φ∗ : FRS(A) → M such that φ = φ∗ ◦ ι
and ||φ∗|| = ||φ||, moreover φ∗ is the unique Riesz homomorphism ψ that satisfies φ = ψ ◦ ι. The
Riesz homomorphism φ∗ extends by continuity to a Riesz homomorphism φ∗ : FBL(A)→M and
we still have φ = φ∗ ◦ ι and ||φ∗|| = ||φ||. Suppose ψ : FBL(A)→M is also a Riesz homomorphism
that satisfies φ = ψ◦ι. Since FBL(A) and M are Banach lattices, by Theorem 3.28 ψ is continuous.
Note that ψ and φ∗ coincide on FRS(A). Since the continuous extension is unique, we have that
ψ = φ∗. So (FBL(A), ι) is the free Banach lattice over A.

4 The Archimedean Riesz tensor product

Here we study the construction of the tensor product of (Archimedean) Riesz spaces due to B. de
Pagter.
The following definition is taken from [13].
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Definition 4.1. Let L and M be (Archimedean) Riesz spaces. The (Archimedean) Riesz tensor
product of L and M is a pair (T, b) where T is an (Archimedean) Riesz space and b : L×M → T a
Riesz bimorphism, such that for every (Archimedean) Riesz space N and every Riesz bimorphism
φ : L×M → N there is a unique Riesz homomorphism φ∗ : T → N such that φ = φ∗ ◦ b.

L×M b //

φ ##GG
GG

GG
GG

G T

φ∗

��
N

The next theorem can be found in [13]

Theorem 4.2. The (Archimedean) Riesz tensor product is unique if it exists, in the following
sense: let L and M be (Archimedean) Riesz spaces and suppose that (S, b) and (T, c) are two
(Archimedean) Riesz tensor products of L and M, then there is a unique bijective linear map
φ : S → T such that φ and φ−1 are Riesz homomorphisms and φ ◦ b = c. In particular, φ is an
order isomorphism.

Proof. Let L and M be (Archimedean) Riesz spaces and suppose that (S, b) and (T, c) are two
(Archimedean) Riesz tensor products of L and M. By definition there is unique Riesz homomor-
phism c∗ : S → T such that c = c∗ ◦ b and a unique Riesz homomorphism b∗ : T → S such that
b = b∗◦c. So b = b∗◦c = b∗◦c∗◦b. Note that b∗◦c∗ : S → S is a Riesz homomorphism and that also
the identity map idS on S is a Riesz homomorphism such that b = idS ◦ b. From the uniqueness
statement it follows that b∗ ◦ c∗ = idS . Likewise we have that c∗ ◦ b∗ is the identity map on T.
Define φ = c∗ : S → T. Then φ is bijective, φ and φ−1 = b∗ : T → S are Riesz homomorphisms,
c = φ ◦ b and φ is the unique Riesz homomorphism with these properties. In particular φ is an
order isomorphism.

L×M b //

c
##FF

FF
FF

FF
F S

c∗

��
T

b∗

VV

Theorem 4.3. Let L and M be (Archimedean) Riesz spaces. If (T, b) is the (Archimedean) Riesz
tensor product of L and M, then T is generated as Riesz space by elements b(x, y), x ∈ L, y ∈M.

Proof. Let L,M and (T, b) be as in the theorem. Let S be the Riesz subspace of T generated
by the elements b(x, y), x ∈ L, y ∈ M. Let N be an arbitrary (Archimedean) Riesz space and
φ : L ×M → N a Riesz bimorphism. Let φ′∗ : T → N be the unique Riesz homomorphism with
φ = φ′∗◦b. Note that b maps into S. Let φ∗ : S → N be the restriction of φ′∗ to S. Then φ∗ is a Riesz
homomorphism and φ = φ∗ ◦ b. Let ψ : S → N be any Riesz homomorphism with φ = ψ ◦ b. For
all x ∈ L and y ∈M we have that φ∗(b(x, y)) = ψ(b(x, y)). Since S is generated as Riesz space by
elements b(x, y), x ∈ L, y ∈ M, we have that φ∗ = ψ. Thus (S, b) is also the (Archimedean) Riesz
tensor product of L and M. From Theorem 4.2 follows that S = T. This concludes our proof.

With thanks to B. de Pagter [13] we have the following nice representation of the (Archimedean)
Riesz tensor product.

Theorem 4.4. Let L and M be (Archimedean) Riesz spaces. Let J be the ideal in FRS(L ×M)
generated by the elements

ι(αx+ βy, z)− αι(x, z)− βι(y, z), x, y ∈ L, z ∈M,α, β ∈ R,

ι(x, αy + βz)− αι(x, y)− βι(x, z), x ∈ L, y, z ∈M,α, β ∈ R,

|ι(x, y)| − ι(|x|, |y|), x ∈ L, y ∈M.
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Let J1 = J, and in the Archimedean case, let J1 be the uniform closure of J in FRS(L×M). Let
T := FRS(L ×M)/J1 and let q : FRS(L ×M) → T be the quotient map. Let b : L ×M → T be
defined by b(x, y) = q(ι(x, y)). Then b is a Riesz bimorphism and (T, b) is the (Archimedean) Riesz
tensor product of L and M.

Proof. Let L and M be (Archimedean) Riesz spaces and let J, J1, T, q and b be as in the theorem.

Claim 4.5. b is a Riesz bimorphism.

Proof of Claim 4.5. Note that for all x, y ∈ L and z ∈M and for all α, β ∈ R, we have that

b(αx+ βy, z) = q(ι(αx+ βy, z))
= q(αι(x, z) + βι(y, z))
= αq(ι(x, z)) + βq(ι(y, z))
= αb(x, z) + βb(y, z).

Likewise, for all x ∈ L and y, z ∈ M and for all α, β ∈ R we have that b(x, αy + βz) = αb(x, y) +
βb(y, z). Thus b is bilinear.
Note that for all x ∈ L and y ∈M we have

b(|x|, |y|) = q(ι(|x|, |y|))
= q(|ι(x, y)|)
= |q(ι(x, y))|
= |b(x, y)|

Hence b is a Riesz bimorphism.

Let N be an arbitrary (Archimedean) Riesz space. Let φ : L ×M → N be a Riesz bimorphism.
By definition, there is a unique Riesz homomorphism ψ : FRS(L×M)→ N such that φ = ψ ◦ ι.

Claim 4.6. J1 ⊂ kerψ.

Proof of Claim 4.6. Since φ is a Riesz homomorphism, we have that φ(αx + βy, z) − αφ(x, z) −
βφ(y, z) = 0 for all x, y ∈ L, z ∈M and α, β ∈ R. Thus

0 = φ(αx+ βy, z)− αφ(x, z)− βφ(y, z)
= ψ(ι(αx+ βy, z))− αψ(ι(x, z))− βψ(ι(y, z))
= ψ(ι(αx+ βy, z)− αι(x, z)− βι(y, z))

So ι(αx + βy, z) − αι(x, z) − βι(y, z) ∈ kerψ. Likewise, for all x ∈ L and for all y, z ∈ M and for
all α, β ∈ R we have that ι(x, αy+βz)−αι(x, y)−βι(x, z) ∈ kerψ. Since φ is a Riesz bimorphism,
we have

0 = |φ(x, y)| − φ(|x|, |y|)
= |ψ(ι(x, y))| − ψ(ι(|x|, |y|))
= ψ(|ι(x, y)|)− ψ(ι(|x|, |y|))
= ψ(|ι(x, y)| − ι(|x|, |y|)),

for all x ∈ L and y ∈ M. Thus |ι(x, y)| − ι(|x|, |y|) ∈ kerψ. We have that kerψ is an ideal
and it contains the set that generates J = J1, so J1 ⊂ kerψ, and in the Archimedean case by
Proposition 2.12 on page 4, we have that kerψ is relatively uniformly closed too, thus J1 ⊂
kerψ.
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Define φ∗ : T → N by φ∗(q(x)) = ψ(x), x ∈ FRS(L ×M). Suppose that q(x) = q(y), for x, y ∈
FRS(L×M), then x− y ∈ J1 ⊂ kerψ, so ψ(x) = ψ(q). Thus φ∗ is well defined and clearly a Riesz
homomorphism.
Suppose χ : T → N is a Riesz homomorphism that satisfies φ = χ ◦ b. Then, for all x ∈ L, y ∈M,
we have χ(b(x, y)) = χ(q(ι(x, y)) = φ(x, y) = φ∗(q(ι(x, y)) = ψ(ι(x, y)). By Theorem 3.5 on
page 6, FRS(L × M) is generated as Riesz space, by {ι(x, y) : x ∈ L, y ∈ M} and χ ◦ q is a
Riesz homomorphism. Thus we have that χ ◦ q = ψ. Thus χ = φ∗. It follows that (T, b) is the
(Archimedean) Riesz tensor product of L and M.

L×M
φ //

� _

ι

��

N

FRS(L×M)

ψ

55kkkkkkkkkkkkkkkkk

q
// T = FRS(L×M)/J1

φ∗

OO

Remark 4.7. 1. If L and M are Archimedean Riesz spaces, then both the Riesz tensor product
and the Archimedean Riesz tensor product exists, but are in general not isomorphic, see [13].

2. For (Archimedean) Riesz spaces L and M we denote the Riesz tensor product by L⊗̃M and
the Archimedean Riesz tensor product by L⊗̄M. The constructed Riesz bimorphism b in the
previous theorem is denoted by ⊗. For x ∈ L and y ∈M we define x⊗ y = b(x, y).

3. From the construction follows that L⊗̃M is Riesz isomorphic to M⊗̃L and that L⊗̄M is
Riesz isomorphic to M⊗̄L.

Theorem 4.8. Suppose L and M are Riesz spaces, L′ is a Riesz subspace of L and M ′ is a Riesz
subspace of M. Let (T, b) be the (Archimedean) Riesz tensor product of L and M. Let S be the
Riesz subspace of T generated by elements b(x, y), x ∈ L′, y ∈ M ′. Let c = b|L′×M ′ . Then (S, c) is
the (Archimedean) Riesz tensor product of L′ and M ′.

Proof. Let L and M be (Archimedean) Riesz spaces. Let L′ a Riesz subspace of L and M ′ a Riesz
subspace of M. Let (T ′, b′) the (Archimedean) Riesz tensor product of L′ and M ′ and let (T, b) be
the (Archimedean) Riesz tensor product of L and M. Note that c = b|L′×M ′ : L′ ×M ′ → T is a
Riesz bimorphism. By definition there is a Riesz homomorphism c∗ : T ′ → T such that c∗ ◦ b′ = c.
Thus b(x, y) = c∗(b′(x, y)), for all x ∈ L′, y ∈M ′. Thus c∗ : T ′ → T is injective. It follows that we
can view T ′ via c∗ as a Riesz subspace of T generated by elements b(x, y), x ∈ L′, y ∈M ′.

L′ ×M ′ b
′

//
� _

��
c

##HHHHHHHHH T ′

c∗

��
L×M

b
// T

5 The positive tensor product

In this section we define the positive tensor product, prove some elementary properties and give two
constructions of the positive tensor product. One construction is due to Van Gaans and Kalauch
and the other construction is new.
Positive bimorphisms are just what one thinks they are.

Definition 5.1. Let E,F and G be partially ordered vector spaces and let b : E × F → G be
bilinear. Then we call b a positive bimorphism or positive bilinear map, if b(x, ·) is positive, for
all x ∈ E+, and b(·, y) is positive, for all y ∈ F+. This is equivalent to b(x, y) ≥ 0 for all x ∈ E+

and y ∈ F+.
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Definition 5.2. Let E and F be integrally closed pre-Riesz spaces. A pair (T, b), where T is
an integrally closed pre-Riesz space and b : E × F → T is a positive bimorphism, is a positive
tensor product of E and F if for all integrally closed pre-Riesz spaces G and positive bimorphisms
φ : E × F → G there is a unique positive linear map φ∗ : T → G such that φ = φ∗ ◦ b.

E × F b //

φ ##FF
FF

FF
FF

F T

φ∗

��
G

(1)

The positive tensor product is unique, if it exists. In the following sense.

Theorem 5.3. Let E and F be integrally closed pre-Riesz spaces and suppose that (S, b) and (T, c)
are positive tensor products of E and F. Then there is a unique order isomorphism φ : S → T such
that φ ◦ b = c.

Proof. The proof is similar to the proof of Theorem 4.2 on page 11.

Theorem 5.4. Let E and F be integrally closed pre-Riesz spaces. If (T, b) is the positive tensor
product of E and F, then T is generated as vector space by elements b(x, y), x ∈ E, y ∈ F.

Proof. Let E,F and (T, b) as in the theorem. Let S be the subspace of T generated by the
elements b(x, y), x ∈ E, y ∈ F. Clearly, S is integrally closed and generated by positive elements
b(x, y), x ∈ E+, y ∈ F+ and hence directed. Thus S is an integrally closed pre-Riesz space. Let
G be an arbitrary integrally closed pre-Riesz space and φ : E × F → G a positive bimorphism.
Let φ′∗ : T → G be the unique positive linear map with φ = φ′∗ ◦ b. Note that b maps into S. Let
φ∗ : S → G be the restriction of φ′∗ to S. Then φ∗ is a positive linear map and φ = φ∗ ◦ b. Let
ψ : S → G be any positive linear map with φ = ψ ◦ b. For all x ∈ E and y ∈ F we have that
φ∗(b(x, y)) = ψ(b(x, y)). Since S is generated as vector space by elements b(x, y), x ∈ E, y ∈ F, we
have that φ∗ = ψ. Thus (S, b) is also the positive tensor product of L and M. From Theorem 5.3
follows that S = T. This concludes our proof.

Example 5.5. Let E be an integrally closed pre-Riesz space. We calculate the positive tensor
product of R and E. Define b : R× E → E through b(r, x) = rx. Let F be an arbitrary integrally
closed pre-Riesz space and let φ : R×E → F be a positive bimorphism. Note that φ(r, x) = φ(1, rx),
for all r ∈ R and x ∈ E. Define φ∗ : E → F through φ∗(x) = φ(1, x). Then φ∗ is a positive linear
map and for all r ∈ R and x ∈ E we have φ(r, x) = φ(1, rx) = φ∗(rx) = φ∗(b(r, x)). Thus φ = φ∗◦b.
Let ψ : E → F be any positive linear map with φ = ψ◦b, then ψ(x) = ψ(b(1, x)) = φ(1, x) = φ∗(x),
for all x ∈ E. Thus φ∗ = ψ. It follows that (E, b) is the positive tensor product of R and E.

5.1 Tensor cones

In this section, we give a short overview of the results of Van Gaans and Kalauch [7]. We skip
most of the proofs.

Definition 5.6. Let E and F be partially ordered vector spaces and let E⊗F be the usual vector
space tensor product of E and F. We define the projective tensor cone KT to be

KT =

{
n∑
i=1

λixi ⊗ yi : n ∈ N and λi ∈ R+, xi ∈ E+, yi ∈ F+, for i ∈ {1, . . . , n}

}
.

It is just the wedge generated by positive elements x ⊗ y. But it is in fact a cone and generates
E ⊗ F according to the following lemma.

Lemma 5.7. (See [7, Theorem 2.5].) Let E and F be partially ordered vector spaces, then the
projective cone KT is a cone and (E ⊗ F,KT ) is directed.
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Definition 5.8. (See [7, Definition 4.1].) Let E and F be integrally closed pre-Riesz spaces. A
cone KI in E ⊗ F is called an integrally closed tensor cone if the projective cone KT is contained
in KI , (E ⊗ F,KI) is an integrally closed pre-Riesz space and the following universal mapping
is satisfied. For every integrally closed pre-Riesz space G and for every positive bilinear map
φ : E × F → G the unique linear map φ∗ : (E ⊗ F,K)→ G, with φ = φ∗ ◦ ⊗, is positive.

Remark 5.9. Van Gaans and Kalauch call the integrally closed tensor cone the Archimedean
tensor cone.

Theorem 5.10. Let E and F be integrally closed pre-Riesz spaces. Suppose K1 and K2 are
integrally closed tensor cones of E ⊗ F, then K1 = K2.

Proof. Let E and F be integrally closed pre-Riesz spaces. Suppose K1 and K2 are integrally closed
tensor cones of E ⊗ F. Note that φ : E × F → E ⊗ F defined by φ(x, y) = x ⊗ y is positive with
cones K1 and K2, since both contain KT .
By definition there is a unique positive linear map φ1 : (E ⊗ F,K1) → (E ⊗ F,K2) such that
φ1(x⊗y) = φ(x, y) = x⊗y, for all x ∈ E, y ∈ F, and a unique positive linear map φ2 : (E⊗F,K2)→
(E ⊗ F,K1) such that φ2(x ⊗ y) = φ(x, y) = x ⊗ y, for all x ∈ E, y ∈ F. Thus φ1 = φ2 is the
identity map on E ⊗ F , and the identity map is bipositive hence K1 = K2.

Definition 5.11. Let E and F be integrally closed pre-Riesz spaces. Let (Er, ιE) and (F r, ιF ) be
the Riesz completions of E and F respectively. Consider the Archimedean Riesz tensor product
Er⊗̄F r of Er and F r. We can view the usual vector space tensor product Er⊗F r as a subspace of
Er⊗̄F r with the induced ordering. Define ρ : E×F → Er ⊗F r by ρ(x, y) = (⊗◦ (ιE , ιF ))(x, y) =
ιE(x)⊗ ιF (y). Then ρ is positive bilinear and induces a unique linear map ρ∗ : E ⊗ F → Er ⊗ F r
with ρ(x, y) = ρ∗(x⊗ y) for all x ∈ E and y ∈ F. By [7, Lemma 2.4] ρ∗ is injective. We define the
Fremlin tensor cone to be

KF = {x ∈ E ⊗ F : ρ∗(x) ≥ 0}.

Er × F r

⊗

%%LLLLLLLLLLLLLLLLLLLLLLLL E × F
⊗ //_?

ιE×ιFoo

ρ
%%LLLLLLLLLL E ⊗ F

ρ∗

��
Er ⊗ F r

_�

��
Er⊗̄F r

Proposition 5.12. (See [7, Lemmas 4.2 and 4.3].) The Fremlin tensor cone is a generating
integrally closed cone. Moreover KT ⊂ KF and KF is relatively uniformly closed in (E ⊗ F,KT ).

Theorem 5.13. (See [7, Theorem 4.4].) Let E and F be integrally closed pre-Riesz spaces. For a
cone K in E ⊗ F the following four statements are equivalent.

(i) K is the integrally closed tensor cone.

(ii) For all integrally closed pre-Riesz spaces (S,KS) and for any linear map φ : E⊗F → S with
φ(x) ∈ KS for all x ∈ KT , we also have that φ(x) ∈ KS for all x ∈ K.

(iii) K is the intersection of all integrally closed cones in E ⊗ F that contain KT .

(iv) K is the relatively uniformly closure of KT in (E ⊗ F,KT ).

Proposition 5.12 and Theorem 5.13 yield the following.

Theorem 5.14. For any pair of integrally closed pre-Riesz spaces E and F, the relatively uniformly
closure KI of KT in (E ⊗ F,KT ) is a cone. That is, KI is the integrally closed tensor cone in
E ⊗ F and (E ⊗ F,KI) is the positive tensor product of E and F.
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Proof. Let E and F be integrally closed pre-Riesz spaces and let KI be the relatively uniformly
closure of KT in (E ⊗ F,KT ). By Proposition 5.12 on the preceding page we have that KT ⊂ KF

and that KF is a relatively uniformly closed cone in (E⊗F,KT ). Since KI is the relatively uniformly
closure of KT in (E⊗F,KT ), it follows that KI ⊂ KF . Thus KI is a cone. From Theorem 5.13 on
the previous page follows that KI is the integrally closed tensor cone in E ⊗ F thus (E ⊗ F,KI)
is the positive tensor product of E and F.

Remark 5.15. We denote the positive tensor product by E ⊗ F.

From the construction follows clearly the following two theorems.

Theorem 5.16. Let E′, E, F ′ and F be integrally closed pre-Riesz spaces, such that E′ ⊂ E,F ′ ⊂
F then there exists a bipositive linear map φ : E′ ⊗ F ′ → E ⊗ F with φ(x⊗ y) = x⊗ y.

Theorem 5.17. Let E and F be integrally closed pre-Riesz spaces. Then there is an order iso-
morphism φ : E ⊗ F → F ⊗ E, φ(x⊗ y) = y ⊗ x, x ∈ E, y ∈ F.

5.2 Construction of the positive tensor product via a free Riesz space

Now we give another construction of the positive tensor product of two arbitrary integrally closed
pre-Riesz spaces. This construction does not make use of the results of Fremlin.
Let E and F be two arbitrary integrally closed pre-Riesz spaces. We construct the positive tensor
product (T, b) of E and F out the free Riesz space (FRS(E×F ), ι) over E×F, by choosing a suitable
ideal J in FRS(E × F ) and by choosing a vector subspace T of T ′ = FRS(E × F )/J generated
by elements q(ι(x, y)), x ∈ E, y ∈ F, where q is the quotient map. The positive bimorphism b is
chosen to be q ◦ ι restricted to T.

Theorem 5.18. Let E and F be integrally closed pre-Riesz spaces. Consider the free Riesz space
over E × F (seen as a set), (FRS(E × F ), ι). Let J be the intersection of all relatively uniformly
closed ideals that contain the following set.

ι(αx+ βy, z)− αι(x, z)− βι(y, z), x, y ∈ E, z ∈ F, α, β ∈ R,

ι(x, αy + βz)− αι(x, y)− βι(x, z), x ∈ E, y, z ∈ F, α, β ∈ R,

ι(x, y)− |ι(x, y)| x ∈ E+, y ∈ F+.

(2)

Let T ′ = FRS(E × F )/J and let q : FRS(E × F ) → T ′ be the quotient Riesz homomorphism.
Define b′ : E×F → T ′ by b′(x, y) = q(ι(x, y)) = (q ◦ ι)(x, y). Let T = Span{b′(x, y) : x ∈ E, y ∈ F}
and let b : E × F → T be the restriction of b′. Then T is an integrally closed pre-Riesz space, b is
a positive bilinear map and (T, b) is the positive tensor product of E and F.

Proof. Let E,F, J, T ′, T, b′, b and q be as in the theorem. Since FRS(E × F ) is a Riesz space, J is
a relatively uniformly closed ideal, by Theorem 2.11 on page 4 we have that T ′ is an Archimedean
Riesz space.

Claim 5.19. b′ is a positive bimorphism.

Proof of Claim 5.19. Let x, y ∈ E and z ∈ F. Let α, β ∈ R. Then 0 = q(ι(αx+ βy, z)− αι(x, z)−
βι(y, z)) = q(ι(αx+ βy, z)) − αq(ι(x, z)) − βq(ι(y, z)) = b′(αx + βy, z) − αb′(x, z) − βb′(y, z).
Therefore b′(αx + βy, z) = αb′(x, z) + βb′(y, z). Likewise, we have for all x ∈ E, y, z ∈ F and
α, β ∈ R : b′(x, αy + βz) = αb′(x, y) + βb′(x, z). Thus b′ is bilinear. Let x ∈ E+, y ∈ F+.
Then b′(x, y) = q(ι(x, y)) = q(|ι(x, y)|) = |q(ι(x, y))| = |b′(x, y)| ≥ 0. Hence b′ is a positive
bimorphism.

Note that T is generated as subspace of T ′ by positive elements b′(x, y), x ∈ E+, y ∈ F+, thus T is
a directed integrally closed partially ordered vector space and hence an integrally closed pre-Riesz
space. Since b′(E×F ) ⊂ T, we have that b is well defined and clearly a positive bilinear map. Let
G be an arbitrary integrally closed pre-Riesz space and let φ : E×F → G be an arbitrary positive
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bimorphism. Let Gr be the Riesz completion of G and we may assume that G ⊂ Gr. We view
φ as a positive bimorphism from E × F to Gr. Let ψ : FRS(E × F ) → Gr be the unique Riesz
bimorphism that satisfies φ = ψ ◦ ι.

FRS(E × F )
ψ // Gr

E × F

ι

OO

φ

99sssssssssss

(3)

Note that ker(ψ) is a relatively uniformly closed ideal of FRS(L×M). We will show that J ⊂ ker(ψ).
To do that, it is sufficient to show that the set that generates J is contained in ker(ψ). Note
that for all α, β ∈ R and x, y ∈ E and z ∈ F we have ψ(ι(αx+ βy, z) − αι(x, z) − βι(y, z)) =
ψ(ι(αx+ βy, z)) − αψ(ι(x, z)) − βψ(ι(y, z)) = φ(αx + βy, z) − αφ(x, z) − βφ(y, z) = 0. So
ι(αx+ βy, z) − αι(x, z) − βι(y, z) ∈ ker(ψ). Likewise ι(x, αy + βz) − αι(x, y) − βι(x, z) ∈ ker(ψ),
for all x ∈ E, y, z ∈ F and α, β ∈ R. Let x ∈ E+, y ∈ F+. Since φ(x, y) ≥ 0, we have that
ψ(ι(x, y) − |ι(x, y)|) = ψ(ι(x, y)) − |ψ(ι(x, y))| = φ(x, y) − |φ(x, y)| = 0. Thus ι(x, y) − |ι(x, y)| ∈
ker(ψ) for all x ∈ E+, y ∈ F+. We conclude that J ⊂ ker(ψ). Now define φ′∗ : T ′ → Gr by
φ′∗(q(x)) = ψ(x). Suppose q(x) = q(y) for x, y ∈ FRS(E × F ). Then y − x ∈ J ⊂ ker(ψ). Thus
φ∗(q(x)) = ψ(x) = ψ(x+y−x) = ψ(y) = φ∗(q(y)). It follows that φ′∗ is well defined. Clearly, φ′∗ is
linear. Let x ∈ FRS(E × F ). Then φ′∗(|q(x)|) = φ′∗(q(|x|)) = ψ(|x|) = |ψ(x)| = |φ′∗(q(x))|, since ψ
is a Riesz homomorphism. Hence φ′∗ is a Riesz homomorphism and in particular a positive linear
map and φ′∗(b

′(x, y)) = φ′∗(q(ι(x, y)) = ψ(ι(x, y)) = φ(x, y).
It is clear that φ = φ∗ ◦ b and that b is positive. It remains to show that φ∗ is the unique
positive linear map with this property. Let χ : T → G be a positive linear map that satisfies
φ = χ ◦ b. Let t ∈ T. Then there are x1, . . . , xn ∈ E, y1, . . . , yn ∈ F such that t =

∑n
i=1 b(xi, yi).

So χ(t) =
∑n
i=1 χ(b(xi, yi)) =

∑n
i=1 φ(xi, yi) =

∑n
i=1 φ∗(b(xi, yi)) = φ∗(t). In fact, we proved that

φ∗ is the unique linear map χ with the property that φ = χ ◦ b. Hence (T, b) is the positive tensor
product of E and F.

We have shown something stronger. Remark that we only use the fact that E and F are partially
ordered vector spaces, that G is pre-Riesz, but not that it is integrally closed. Note that T is
directed if E and F are directed. Therefore we have the following.

Theorem 5.20. Let E and F be partially ordered vector spaces. Then there exists a pair (T, b)
where T is an integrally closed partially ordered vector space and b : E × F → T is a positive
bimorphism, such that for any pre-Riesz space G (either integrally closed or not integrally closed)
and for any positive bimorphism φ : E × F → G there exist a unique linear map φ∗ : T → G, such
that φ = φ∗ ◦ b. Moreover φ∗ is positive. If E and F are directed, then T is an integrally closed
pre-Riesz space.

E × F b //

φ ##FF
FF

FF
FF

F T

φ∗

��
G

(4)

6 The normed Riesz space tensor product and Banach lat-
tice tensor product

If Riesz spaces L and M have a Riesz norm, then it will be natural if the Archimedean Riesz
tensor product also has a Riesz norm, likewise the tensor product of Banach lattices should be a
Banach lattice. In this section we define and study the Banach lattice tensor product. We give a
construction of the Banach lattice tensor product as a quotient of a free Banach lattice.
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6.1 Definitions and properties

Definition 6.1. Let L and M be normed Riesz spaces (Banach lattices). The normed Riesz space
(Banach lattice) tensor product of L and M is a pair (T, b), where T is a normed Riesz space
(Banach lattice) and b : L ×M → T is a continuous Riesz bimorphism with ||b|| ≤ 1 and the
property that for every normed Riesz space (Banach lattice) N and for every continuous Riesz
bimorphism φ : L ×M → N there is a continuous Riesz homomorphism φ∗ : T → N such that
φ = φ∗ ◦ b and ||φ∗|| ≤ ||φ||. Moreover, we require that φ∗ is the unique Riesz homomorphism
χ : T → N with the property that φ = χ ◦ b.

L×M b //

φ ##GG
GG

GG
GG

G T

φ∗

��
N

Remark 6.2. Later on we will see that ||φ∗|| = ||φ|| and when the spaces are non-trivial, that
||b|| = 1.

If the normed Riesz space (Banach lattice) tensor product exists, then it is unique as Riesz space
and as normed space.

Theorem 6.3. Let L and M be normed Riesz spaces (Banach lattices). Suppose (S, b) and (T, c)
are normed Riesz space (Banach lattice) tensor products of L and M. Then there is a unique Riesz
homomorphism φ : S → T such that φ ◦ b = c. Moreover φ is invertible, φ−1 : T → S is a Riesz
homomorphism and φ is isometric. In particular, φ is an order isomorphism.

Proof. The proof is similar to the proof of Theorem 4.2 on page 11.

Theorem 6.4. Let L and M be normed Riesz spaces (Banach lattices). If (T, b) is the normed
Riesz space (Banach lattice) tensor product of L and M, then T is generated as Riesz space (Banach
lattice) by elements b(x, y).

Proof. Let L and M be normed Riesz spaces (Banach lattices). Suppose (T, b) is the normed Riesz
space (Banach lattice) tensor product of L and M. Let S be the Riesz subspace (Banach sublattice)
of T generated by elements b(x, y). Note that b maps into S. Let N be an arbitrary normed Riesz
space (Banach lattice) and let φ : L×M → N be a continuous Riesz homomorphism. Let φ′∗ : T →
N be the unique continuous Riesz homomorphism with φ = φ′∗ ◦ b. Note that ||φ∗|| ≤ ||φ′∗|| ≤ ||φ||.
Let φ∗ : S → N be the restriction of φ′∗ to S. Then φ∗ is a Riesz homomorphism and φ = φ∗ ◦ b.
Let ψ : S → N be any Riesz homomorphism such that φ = ψ ◦ b. Then φ∗(b(x, y)) = ψ(b(x, y)), for
all x ∈ L and y ∈M. Thus φ∗ and ψ coincide on S. Hence φ∗ = ψ. We conclude that (S, b) is also
the normed Riesz space (Banach lattice) tensor product of L and M. From Theorem 6.3 follows
that S = T. This concludes our proof.

Theorem 6.5. Let L and M be Banach lattices. Suppose (T ′, b) is the normed Riesz space tensor
product of L and M. Let T be the norm completion of T ′. Then (T, b) is the Banach lattice tensor
product of L and M.

Proof. Let L and M be Banach lattices. Suppose (T ′, b) is the normed Riesz space tensor product
of L and M. Let T be the norm completion of T ′. Then by Theorem 3.27 on page 10 T is a Banach
lattice. Note that b : L×M → T is a continuous Riesz bimorphism. Let N be any Banach lattice
and φ : L×M → N a continuous Riesz bimorphism. Then there exist a unique continuous Riesz
homomorphism ψ : T ′ → N such that φ = ψ◦b. Let φ∗ be the continuous extension of ψ to T. Then
φ∗ is a Riesz homomorphism and φ = φ∗ ◦ b. Let χ : T → N be an arbitrary Riesz homomorphism
such that φ = χ ◦ b. Since b maps into T ′, we have that φ = χ|T ′ ◦ b. From the uniqueness of ψ
follows that χ|T ′ = ψ. The continuous extensions of χ|T ′ and ψ coincide thus χ = ψ∗. Note that
||φ∗|| = ||ψ|| ≤ ||φ|| and ||b|| ≤ 1. We conclude that (T, b) is the Banach lattice tensor product of
L and M.
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6.2 Construction of the normed Riesz space and Banach lattice tensor
product via a free normed Riesz space.

Theorem 6.6. Let L1 and L2 be normed Riesz spaces (Banach lattices). If L1 = 0 or L2 = 0,
then (0, 0) is the normed Riesz space (Banach lattice) tensor product of L1 and L2. Suppose L1

and L2 are non-zero, let Si = {x ∈ Li : ||x|| = 1}, for i ∈ {1, 2}. Consider the free normed Riesz
space (FNRS(S1 × S2), ι) (free Banach lattice FBL(S1 × S2)) with Riesz norm || · ||F . Let J be the
intersection of all || · ||F -norm closed ideals that contain

||x+ y|| ||z||ι
(

x+y
||x+y|| ,

z
||z||

)
− ||x|| ||z||ι

(
x
||x|| ,

z
||z||

)
− ||y|| ||z||ι

(
y
||y|| ,

z
||z||

)
,

x, y ∈ L1\{0}, z ∈ L2\{0}, and x+ y 6= 0,

||αx|| ||y||ι
(

αx
||αx|| ,

y
||y||

)
− α||x|| ||y||ι

(
x
||x|| ,

y
||y||

)
,

x ∈ L1\{0}, y ∈ L2\{0}, α ∈ R\{0},

||x|| ||y + z||ι
(

x
||x|| ,

y+z
||y+z||

)
− ||x|| ||y||ι

(
x
||x|| ,

y
||y||

)
− ||x|| ||z||ι

(
x
||x|| ,

z
||z||

)
,

x ∈ L1\{0}, y, z ∈ L2\{0}, and y + z 6= 0,

||x|| ||αy||ι
(

x
||x|| ,

αy
||αy||

)
− α||x|| ||y||ι

(
x
||x|| ,

y
||y||

)
,

x ∈ L1\{0}, y ∈ L2\{0}, α ∈ R\{0},

||x|| ||y||
∣∣∣ι( x
||x|| ,

y
||y||

)∣∣∣− ||x|| ||y||ι( |x|||x|| , |y|||y||) ,
x ∈ L1\{0}, y ∈ L2\{0}.

(5)

Let T = FNRS(S1×S2)/J, and let q : FNRS(S1×S2)→ T be the quotient homomorphism, define
b : L1 × L2 → T through

b(x, y) =

{
0 if x = 0, or y = 0,
q
(
||x|| ||y||ι

(
x
||x|| ,

y
||y||

))
otherwise. (6)

Then b is a continuous Riesz bimorphism and (T, b) is the normed Riesz space (Banach lattice)
tensor product of L1 and L2. Moreover for any normed Riesz space (Banach lattice) M and any
continuous Riesz bimorphism φ : L1 × L2 → M, the induced continuous Riesz homomorphism
φ∗ : T → M that satisfies φ = φ∗ ◦ b also satisfies ||φ∗|| = ||φ||. Furthermore if L1 and L2 are
non-trivial then ||b|| = 1.

Proof. Since the proof of the Banach lattice case is similar to the proof of the normed Riesz space
case, we only do the latter. Let L1 and L2 be normed Riesz spaces. The case that L1 or L2 is
0 is trivial, so suppose that both L1 and L2 are non-trivial. Let S1, S2, J, T, q and b be as in the
theorem. We will show that b is a Riesz bimorphism and that (T, b) is the normed Riesz space
tensor product of L1 and L2.

Claim 6.7. b is a continuous Riesz bimorphism.

Proof of Claim 6.7. Note that b(x, y) = 0, if x = 0 or y = 0. Let α ∈ R. If α = 0, then b(αx, y) =
b(0, y) = 0 = αb(x, y). Suppose α 6= 0. Clearly, if x = 0 or y = 0 or both, then b(αx, y) = αb(x, y).
If x 6= 0, y 6= 0 and α 6= 0, then

b(αx, y) = q
(
||αx|| ||y||ι

(
αx
||αx|| ,

y
||y||

))
= q

(
α||x|| ||y||ι

(
x
||x|| ,

y
||y||

))
= αq

(
||x|| ||y||ι

(
x
||x|| ,

y
||y||

))
= αb(x, y).

Let x, y ∈ L1, z ∈ L2. If z = 0, then b(x+ y, z) = 0 = b(x, z) + b(y, z). If z 6= 0, and x = 0 or y = 0
or both are 0, then, clearly, b(x+ y, z) = b(x, z) + b(y, z). If z 6= 0, x 6= 0 and y 6= 0 but x+ y = 0,
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then x = −y. Thus b(x, z) = b(−y, z) = −b(y, z). Hence b(x+ y, z) = 0 = b(x, z) + b(y, z). Finally,
if x 6= 0, y 6= 0, z 6= 0 and x+ y 6= 0, then

b(x+ y, z) = q
(
||x+ y|| ||z||ι

(
x+y
||x+y|| ,

z
||z||

))
= q

(
||x|| ||z||ι

(
x
||x|| ,

z
||z||

)
+ ||y|| ||z||ι

(
y
||y|| ,

z
||z||

))
= q

(
||x|| ||z||ι

(
x
||x|| ,

z
||z||

))
+ q

(
||y|| ||z||ι

(
y
||y|| ,

z
||z||

))
= b(x, z) + b(y, z).

Hence b(·, z) is linear, for all z ∈ L2. Likewise b(x, ·) is linear, for all x ∈ L1. Thus b is bilinear.
Let x ∈ L1, y ∈ L2. Suppose x = 0 or y = 0 or both, then |b(x, y)| = 0 = b(|x|, |y|). Suppose x 6= 0
and y 6= 0. Then

|b(x, y)| =
∣∣∣q (||x|| ||y||ι( x

||x|| ,
y
||y||

))∣∣∣
= q

(
||x|| ||y||

∣∣∣ι( x
||x|| ,

y
||y||

)∣∣∣)
= q

(
||x|| ||y||ι

(
|x|
||x|| ,

|y|
||y||

))
= b(|x|, |y|).

Thus b is a Riesz bimorphism. Clearly b is continuous.

Let N be an arbitrary normed Riesz space and let φ : L1 × L2 → N be a continuous Riesz
bimorphism. Let φ1 : S1 × S2 → N be the restriction of φ to S1 × S2. Note that φ1 is a bounded
map. Let ψ : FBL(S1×S2)→ N be the unique Riesz homomorphism that satisfies φ1 = ψ ◦ ι with
the property ||ψ|| = ||φ1|| = ||φ||. We will prove that J ⊂ ker(ψ). Since ker(ψ) is a || · ||F -norm
closed ideal, we only have to prove that the set that generates J is contained in ker(ψ).
Let α ∈ R\{0}, x ∈ L1\{0}, y ∈ L2\{0}. Then

ψ
(
||αx|| ||y||ι

(
αx
||αx|| ,

y
||y||

)
− α||x|| ||y||ι

(
x
||x|| ,

y
||y||

))
= ||αx|| ||y||ψ

(
ι
(

αx
||αx|| ,

y
||y||

))
− α||x|| ||y||ψ

(
ι
(

x
||x|| ,

y
||y||

))
= ||αx|| ||y||φ1

(
αx
||αx|| ,

y
||y||

)
− α||x|| ||y||φ1

(
x
||x|| ,

y
||y||

)
= φ(αx, y)− αφ(x, y)
= 0.

Thus ||αx|| ||y||ι
(

αx
||αx|| ,

y
||y||

)
− α||x|| ||y||ι

(
x
||x|| ,

y
||y||

)
∈ ker(ψ), for all x ∈ L1\{0}, y ∈ L2\{0}

and α ∈ R\{0}. Likewise ||x|| ||αy||ι
(

x
||x|| ,

αy
||αy||

)
− α||x|| ||y||ι

(
x
||x|| ,

y
||y||

)
∈ ker(ψ), for all x ∈

L1\{0}, y ∈ L2\{0} and α ∈ R\{0}.
For all x, y ∈ L1\{0} and z ∈ L2\{0} with x+ y 6= 0 we have

ψ
(
||x+ y|| ||z||ι

(
x+y
||x+y|| ,

z
||z||

)
− ||x|| ||z||ι

(
x
||x|| ,

z
||z||

)
− ||y|| ||z||ι

(
y
||y|| ,

z
||z||

))
= ||x+ y|| ||z||ψ

(
ι
(

x+y
||x+y|| ,

z
||z||

))
− ||x|| ||z||ψ

(
ι
(

x
||x|| ,

z
||z||

))
− ||y|| ||z||ψ

(
ι
(

y
||y|| ,

z
||z||

))
= ||x+ y|| ||z||φ1

(
x+y
||x+y|| ,

z
||z||

)
− ||x|| ||z||φ1

(
x
||x|| ,

z
||z||

)
− ||y|| ||z||φ1

(
y
||y|| ,

z
||z||

)
= φ(x+ y, z)− φ(x, z)− φ(y, z)
= 0.

Thus ||x+ y|| ||z||ι
(

x+y
||x+y|| ,

z
||z||

)
− ||x|| ||z||ι

(
x
||x|| ,

z
||z||

)
− ||y|| ||z||ι

(
y
||y|| ,

z
||z||

)
∈ ker(ψ). Likewise,

for all x ∈ L1\{0} and y, z ∈ L2\{0} with y + z 6= 0, we have that ||x|| ||y + z||ι
(

x
||x|| ,

y+z
||y+z||

)
−
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||x|| ||y||ι
(

x
||x|| ,

y
||y||

)
− ||x|| ||z||ι

(
x
||x|| ,

z
||z||

)
∈ ker(ψ).

For all x ∈ L1\{0} and y ∈ L2\{0} we have

ψ
(
||x|| ||y||

∣∣∣ι( x
||x|| ,

y
||y||

)∣∣∣− ||x|| ||y||ι( |x|||x|| , |y|||y||))
= ||x|| ||y||

∣∣∣ψ (ι( x
||x|| ,

y
||y||

))∣∣∣− ||x|| ||y||ψ (ι( |x|||x|| , |y|||y||))
= ||x|| ||y||

∣∣∣φ1

(
x
||x|| ,

y
||y||

)∣∣∣− ||x|| ||y||φ1

(
|x|
||x|| ,

|y|
||y||

)
= |φ(x, y)| − φ(|x|, |y|)
= 0.

Thus ||x|| ||y||
∣∣∣ι( x
||x|| ,

y
||y||

)∣∣∣− ||x|| ||y||ι( |x|||x|| , |y|||y||) ∈ ker(ψ). It follows that J ⊂ ker(ψ).
Define φ∗ : T → N through φ∗(q(x)) = ψ(x), for x ∈ FBL(S1 × S2). Then φ∗ is a well defined
Riesz homomorphism. We have

φ∗(b(x, y)) = φ∗

(
q
(
||x|| ||y||ι

(
x
||x|| ,

y
||y||

)))
= ||x|| ||y||ψ

(
ι
(

x
||x|| ,

y
||y||

))
= ||x|| ||y||φ1

(
x
||x|| ,

y
||y||

)
= φ(x, y),

for all x ∈ L1\{0} and y ∈ L2\{0}. If x ∈ L1, y ∈ L2 and x = 0 or y = 0 or both, then
φ∗(b(x, y)) = φ∗(q(0)) = ψ(0) = 0 = φ(x, y). So φ = φ∗ ◦ b.
Suppose χ : T → N is a Riesz homomorphism that satisfies φ = χ ◦ b. In particular φ1 = χ ◦ q ◦ ι.
From the uniqueness statement in the definition of a free normed Riesz space follows that χ ◦ q :
FNRS(S1 × S2) → N is equal to ψ. Thus χ(q(x)) = ψ(x) = φ∗(q(x)), for all x ∈ FBL(S1 × S2).
Hence χ = φ∗.
Note that ||b(x, y)|| = ||q(ι(x, y))|| ≤ ||ι(x, y)|| = 1 = ||x|| ||y||, for all x ∈ S1, y ∈ S2. Thus ||b|| ≤ 1.
For all x ∈ FBL(S1 × S2) of norm one, we have ||φ∗(q(x))|| = ||ψ(x)|| thus ||φ∗|| = ||ψ|| = ||φ1|| =
||φ||. This concludes our proof that (T, b) is the normed Riesz space tensor product of L1 and L2.
Note that b is non-trivial. Thus ||b|| > 0. We have already seen that ||b|| ≤ 1. Suppose ||b|| =
1− ε < 1 for some 0 < ε < 1. Then for all x ∈ S1, y ∈ S2 we have that ||b(x, y)|| = ||b∗(b(x, y))|| ≤
||b∗|| ||b(x, y)|| ≤ (1− ε)||b∗|| = (1− ε)||b||, and that is a contradiction. We conclude that ||b|| = 1.
This concludes the proof of the theorem.

FNRS(S1 × S2)
q //

ψ
&&MMMMMMMMMMM T

φ∗

��
S1 × S2

� ?

ι

OO

φ1

// N

Remark 6.8. D.H. Fremlin proved also the following fact for Banach lattices [4, Theorem 1E(iii)]:
let L,M and N be Banach lattices and let (T, b) be the Banach lattice tensor product of L and
M. Then there is a one-to-one norm preserving correspondence between the continuous positive
bimorphisms φ : L ×M → N and the continuous positive linear maps φ∗ : T → N such that
φ = φ∗ ◦ b. Moreover φ is a continuous Riesz bimorphism if and only if φ∗ is a continuous Riesz
homomorphism. We could not find a proof for this fact with the new construction.

Theorem 6.9. Let L′, L,M ′ and M be normed Riesz spaces (Banach lattices) with L′ ⊂ L and
M ′ ⊂M. Let (T ′, b′) be the normed Riesz space (Banach lattice) tensor product of L′ and M ′ and
let (T, b) be the normed Riesz space (Banach lattice) tensor product of L and M. Then there is an
injective continuous Riesz homomorphism ι : T ′ → T such that ι(b′(x, y)) = b(x, y), for all x ∈ L′
and y ∈M ′. In particular ι is bipositive.
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Proof. The proof is similar to the proof of Theorem 4.8 on page 13. Note that ||ι|| ≤ ||b|| ≤ 1.
Hence ι is continuous.

Remark 6.10. 1. For Banach lattices L and M we denote the Banach lattice tensor product
T by L⊗̂M and the bimorphism b by ⊗.

2. From the construction follows clearly that L⊗̂M is isomorphic as Banach lattice to M⊗̂L.
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Banach lattice, 4
Banach lattice tensor product, 17
bounded map, 8

free Banach lattice, 8
free normed Riesz space, 8
free Riesz space, 5
free vector space, 5
Fremlin tensor cone, 15

integrally closed tensor cone, 14

lattice norm, see Riesz norm

norm bounded map, 8
normed Riesz space, 4
normed Riesz space tensor product, 17

positive bilinear map, 13
positive bimorphism, 13
positive tensor product, 13
projective tensor cone, 14

relatively uniformly closed, 3
relatively uniformly closure, 4
relatively uniformly convergent sequence, 3
Riesz norm, 4
Riesz tensor product, 10

Archimedean, 10
ru-closed, see relatively uniformly closed
ru-closure, see relatively uniformly closure
ru-convergent sequence, see relatively uniformly

convergent sequence
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