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Introduction

I Mixingales are stochastic processes which combine the
concepts of martingales and mixing sequences.

I McLeish introduced the term mixingale at the 4th

Conference of Stochastic Processes and Applications, at
York University, Toronto in 1974.

I We generalize the concept of a mixingale to the
measure-free Riesz space setting. This generalizes all of
the Lp, 1 ≤ p ≤ ∞ variants.

I We also generalize the concept of uniform integrability to
the Riesz space setting and prove that a weak law of large
numbers holds for Riesz space mixingales.



Background - McLeish

I McLeish defines mixingales using the L2-norm.
I In McLeish2 proves invariance principles under strong

mixing conditions.
I McLeish3 also proves a strong law for large numbers for

dependent sequences under various conditions.

2D.L. MCLEISH, Invariance Principles for Dependent Variables, Z.
Wahrscheinlichkeitstheorie vew. Gebiete., 32 (1975), 165 - 178.

3D.L. MCLEISH, A maximal inequality and dependent strong laws, The
Annals of Probability, 3 (1975), 829-839.



Background - Andrews and de Jong

I In 1988, Donald W. K. Andrews4 defined an L1 analogue of
McLeish’s mixingales and presented a weak laws of large
number for L1-mixingales.

I The L1-mixingale condition of Andrews is weaker than
McLeish’s mixingale condition.

I Andrews makes no restriction on the decay rate of the
mixingale numbers, as was assumed by McLeish.

I Mixingales have also been considered in a general
Lp, 1 ≤ p <∞, by de Jong5 6.

4D.W. ANDREWS, Laws of large numbers for dependent non-identically
distributed random variables, Econometric Theory, 4 (1988), 458-467.

5R.M. DE JONG, Weak laws of large numbers for dependent random
variables, Annals of Economics and Statistics, 51 (1998), 209-225.

6R.M. DE JONG, Laws of large numbers for dependent heterogeneous
processes, Econometic Theory, 11 (1995), 347-358.



Outline
I We define mixingales in a Riesz space and present a weak

law of large numbers for mixingales in this setting.
I This order approach highlights the underlying mechanisms

of the theory.
I This develops on the work of Kuo, Labuschagne, Vardy

and Watson 7 8 9 on formulating the theory of stochastic
processes in Riesz spaces.

I Other closely related generalizations were given by Stoica
10 and Troitsky 11.

7W.-C. KUO, C.C.A. LABUSCHAGNE, B.A. WATSON, Discrete time
stochastic processes on Riesz spaces, Indag. Math. N.S., 15 (2004),
435-451.

8W.-C. KUO, C.C.A. LABUSCHAGNE, B.A. WATSON, Conditional
expectations on Riesz spaces, J. Math. Anal. Appl., 303 (2005), 509-521.

9J.J. VARDY, B.A. WATSON, Markov process in Riesz spaces, Positivity,
16 (2012), 373-391.

10G. STOICA, Martingales in vector lattices, Bull. Math. Soc. Sci. Math.
Roumanie. (N.S.), 34(82) (1990), 357-362.

11V. TROITSKY, Martingales in Banach lattices, Positivity, 9 (2005),
437-456.



Preliminaries - Bands and Principal Bands

I A non-empty linear subspace B of the Riesz space E is a
band if:

(i) the order interval [−|f |, |f |] is in B for each
f ∈ B;

(ii) for each D ⊂ B with sup D ∈ E we have
sup D ∈ B.

I A principal band is a band generated by a single element.
I If e ∈ E+ and the band generated by e is E, then e is called

a weak order unit of E and we denote the space of e
bounded elements of E by

Ee = {f ∈ E : |f | ≤ ke for some k ∈ R+}.



Preliminaries - Band Projections

I In a Dedekind complete Riesz space with weak order unit
every band is a principal band and, for each band B and
u ∈ E+,

PBu := sup{v : 0 ≤ v ≤ u, v ∈ B}

exists.
I The above map PB can be extended to E by setting

PBu = PBu+ − PBu− for u ∈ E.
I With this extension, PB is a positive linear projection which

commutes with the operations of supremum and infimum in
that P(u ∨ v) = Pu ∨ Pv and P(u ∧ v) = Pu ∧ Pv.

I Moreover 0 ≤ PBu ≤ u for all u ∈ E+ and the range of PB is
B.



Preliminaries - Order Continuity

Let T : E → F be an operator where E and F are Riesz spaces.
I We say that T is a positive operator if T maps the positive

cone of E to the positive cone of F, denoted T ≥ 0.
I Here a set D in E is said to be downwards directed if for

f , g ∈ D there exists h ∈ D with h ≤ f ∧ g. In this case we
write D ↓ or f ↓f∈D. If, in addition, g = inf D in E, we write
D ↓ g or f ↓f∈D g.

I Let T be a positive operator between E and F. We say that
T is order continuous if for each directed set D ⊂ E with
f ↓f∈D 0 in E we have that Tf ↓f∈D 0.

I Band projections are order continuous.



Riesz space Conditional Expectation Operators

I Let E be a Dedekind complete Riesz space with weak
order unit, e. We say that T is a conditional expectation
operator in E if T is all of the following

I positive
I order continuous
I a projection
I maps weak order units to weak order units
I has range, R(T), a Dedekind complete Riesz subspace of

E.
I If T is a conditional expectation operator on E, as T is a

projection it is easy to verify that at least one of the weak
order units of E is invariant under T.



f -algebras
I To access the averaging properties of conditional

expectation operators a multiplicative structure is needed.
I In the Riesz space setting the most natural multiplicative

structure is that of an f -algebra. This gives a multiplicative
structure that is compatible with the order and additive
structures on the space.

I The space Ee, where e is a weak order unit of E and E is
Dedekind complete, has a natural f -algebra structure
generated by setting (Pe) · (Qe) = PQe = (Qe) · (Pe) for
band projections P and Q.

I Using Freudenthal’s Theorem this multilpication can be
extended to the whole of Ee and in fact to the universal
completion Eu.

I Here e becomes the multiplicative unit.
I This multiplication is associative, distributive and is positive

in the sense that if x, y ∈ E+ then xy ≥ 0.



Averaging Operators
I If T is a conditional expectation operator on the Dedekind

complete Riesz space E with weak order unit e = Te, then
restricting our attention to the f -algebra Ee T is an
averaging operator, i.e. T(fg) = fTg for f , g ∈ Ee and
f ∈ R(T).

I In fact E is an Ee module which allows the extension of the
averaging property, above, to f , g ∈ E with at least one of
them in Ee.

I f -algebras and the averaging properties of conditional
expecation operators have been well studied. 12 13 14 15

12K. BOULABIAR, G. BUSKES, A. TRIKI, Results in f -algebras, Positivity,
Trends in Mathematics (2007), 73-96.

13G. BUSKES, A. VAN ROOIJ, Almost f -algebras: Commutativity and the
Cuachy-Schwartz inequality, Positivity, 4 (2000), 227-231.

14P.G. DODDS, C.B. HUIJSMANS, B. DE PAGTER, Characterizations of
conditional expectation-type operators, Pacific J. Math., 141 (1990), 55-77.

15J.J. GROBLER, B. DE PAGTER, Operators representable as
multiplication-conditional expectation operators, J. Operator Theory, 48
(2002), 15-40.



T-universal completeness
I Let E be a Dedekind complete Riesz space with weak

order unit and T be a strictly positive conditional
expectation on E. The space E is universally complete with
respect to T, i.e. T-universally complete, if for each
increasing net (fα) in E+ with (Tfα) order bounded in Eu, we
have that (fα) is order convergent in E.

I If E is a Dedekind complete Riesz space and T is a strictly
positive conditional expectation operator on E, then E has
a T-universal completion which is the natural domain of T,
denoted dom(T) in the universal completion, Eu, of E.

I Here dom(T) = D− D and Tx := Tx+ − Tx− for x ∈ dom(T)
where

D = {x ∈ Eu
+|∃(xα) ⊂ E+, xα ↑ x, (Txα) order bounded in Eu},

and Tx := supα Txα, for x ∈ D, where (xα) is an increasing
net in E+ with (xα) ⊂ E+, (Txα) order bounded in Eu.



Martingales in Riesz spaces
I Let (Ti) be a sequence of conditional expectations on E

indexed by either N or Z, we say that (Ti) is a filtration on E
if

TiTj = Ti = TjTi, for all i ≤ j.

I If (Ti) is a filtration and T is a conditional expectation with
TiT = T = TTi for all i, then we say that the filtration is
compatible with T.

I Given a conditional expectation T, the sequence (Ti) of
conditional expectations in E compatible with T being a
filtration is equivalent to R(Ti) ⊂ R(Tj) for i ≤ j.

I If (Ti) is a filtration on E and (fi) is a sequence in E, we say
that (fi) is adapted to the filtration (Ti) if fi ∈ R(Ti) for all i in
the index set.

I The double sequence (fi,Ti) is called a martingale if (fi) is
adapted to the filtration (Ti) and in addition

fi = Tifj, for i ≤ j.



Martingale difference sequences in Riesz spaces

I The double sequence (gi,Ti) is called a martingale
difference sequence if (gi) is adapted to the filtration (Ti)
and

Tigi+1 = 0.

I We observe that if (fi) is adapted to the filtration (Ti) then
(fi − Ti−1fi,Ti) is a martingale difference sequence.

I Conversely, if (gi,Ti) is a martingale difference sequence,
then (sn,Tn) is a martingale, where

sn =

n∑
i=1

gi, n ≥ 1,

and the martingale difference sequence generated from
(sn,Tn) is precisely (gn,Tn).



Conditional Independence

Let E be a Dedekind complete Riesz space with conditional
expectation T and weak order unit e = Te.

I Let P and Q be band projections on E. We say that P and Q
are T-conditionally independent if

TPTQe = TPQe = TQTPe. (1)

I We say that two Riesz subspaces E1 and E2 of E
containing R(T), are T-conditionally independent if all
band projections Pi, i = 1, 2, in E with Pie ∈ Ei, i = 1, 2, are
T-conditionally independent.

I Let Pi, i = 1, 2, be band projections on E. Then Pi, i = 1, 2,
are T-conditionally independent if and only if the closed
Riesz subspaces Ei = 〈Pie,R(T)〉 , i = 1, 2, are
T-conditionally independent.



Uniform Integrability in L1

I If (Ω,A, µ) is a probability space and fα, α ∈ Λ, is a family
in L1(Ω,A, µ), indexed by Λ, the family is said to be
uniformly integrable if for each ε > 0 there is c > 0 so that∫

Ωα(c)
|fα| dµ ≤ ε, for all α ∈ Λ,

where
Ωα(c) = {x ∈ Ω : |fα(x)| > c}.

I This concept can be extended to the Riesz space setting
as T-uniformity, see the definition below, where T is a
conditional expectation operator.



T-Uniformity

I Let E be a Dedekind complete Riesz space with
conditional expectation operator T and weak order unit
e = Te. Let fα, α ∈ Λ, be a family in E, where Λ is some
index set. We say that fα, α ∈ Λ, is T-uniform if

sup{TP(|fα|−ce)+ |fα| : α ∈ Λ} → 0 as c→∞. (2)

I In the case of the Riesz space being L1(Ω,A, µ) and T
being the expectation operator, the two concepts coincide.



T-uniform families

Lemma
Let E be a Dedekind complete Riesz space with conditional
expectation T and let e be a weak order unit which is invariant
under T. If fα ∈ E, α ∈ Λ, is a T-uniform family, then the set
{T|fα| : α ∈ Λ} is bounded in E.



Proof
Proof:As the sequence fα, α ∈ Λ, is T-uniform

Jc := sup{TP(|fα|−ce)+ |fi| : α ∈ Λ} → 0 as c→∞.

In particular this implies that Jc exists for c > 0 large and that,
for sufficiently large K > 0, the set {Jc : c ≥ K} is bounded in E.
Hence there is g ∈ E+ so that

TP(|fα|−ce)+ |fα| ≤ g, for all α ∈ Λ, c ≥ K,

By the definition of P(|fα|−ce)+ ,

(I − P(|fα|−ce)+)|fα| ≤ ce, for α ∈ Λ, c > 0.

Combining the above for c = K gives

T|fα| = TP(|fα|−Ke)+ |fα|+ T(I − P(|fα|−Ke)+)|fα| ≤ g + Ke,

for all α ∈ Λ.



Mixingales in L1

In classical probability theory ((fi)i∈N, (Ai)i∈Z) is a mixingale in
the probability space (Ω,A, µ) if the following hold:

I (Ai)i∈Z is an increasing sequence of sub-σ-algebras of A
(i.e. (Ai)i∈Z is a filtration);

I (fi)i∈N is a sequence in L1(Ω,A, µ);
I there are sequences (ci), (Φi) ⊂ R+ with Φi → 0 as i→∞

so that
E[|E[fi|Ai−m]|] ≤ ciΦm

and
E[|fi − E[fi|Ai+m]|] ≤ ciΦm+1.



Mixingales in Riesz Spaces

Definition
I Let E be a Dedekind complete Riesz space with conditional

expectation operator, T, and weak order unit e = Te.
I Let (Ti)i∈Z be a filtration on E compatible with T.
I Let (fi)i∈N be a sequence in E.
I We say that (fi,Ti) is a mixingale in E compatible with T if

there exist (ci)i∈N ⊂ E+ and (Φm)m∈N ⊂ R+ such that
Φm → 0 as m→∞ and for all i,m ∈ N we have

(i) T|Ti−mfi| ≤ Φmci,
(ii) T|fi − Ti+mfi| ≤ Φm+1ci.



Mixingales

I The numbers Φm,m ∈ N, are referred to as the mixingale
numbers. These numbers give a measure of the temporal
dependence of the sequence (fi).

I The constants (ci) are chosen to index the ‘magnitude’ of
the the random variables (fi).

I In many applications the sequence (fi) is adapted to the
filtration (Ti).



Means of mixingales

Lemma
Let E be a Dedekind complete Riesz space with conditional
expectation operator, T, and weak order unit e = Te. Let
(fi,Ti)i∈N be a mixingale in E compatible with T.
(a) The sequence (fi) has T-mean zero, i.e. Tfi = 0 for all

i ∈ N.
(b) If in addition (fi)i∈N is T-conditionally independent and
R(Ti) = 〈f1, . . . , fi−1,R(T)〉 then the mixingale numbers
may be taken as zero, where 〈f1, . . . , fi−1,R(T)〉 is the
order closed Riesz subspace of E generated by f1, . . . , fi−1
and R(T).



Proof
Proof:(a) Here we observe that the index set for the filtration
(Ti) is Z, thus

|Tfi| = |TTi−mfi|
≤ T|Ti−mfi|
≤ ciΦm

→ 0 as m→∞

giving Tfi = 0 for all i ≥ 0.
(b) As (fi) is adapted to the filtration (Ti), fi ∈ R(Ti) for all i ∈ N
it follows that

fi − Ti+mfi = 0, for all i,m ∈ N.

As (fi) is T-conditionally independent and as (fi) has T-mean
zero (from (a)), we have that

Ti−mfi = Tfi = 0,

for i,m ∈ N. Thus we can choose Φm = 0 for all m ∈ N.



Lemma to the Weak Law of Large Numbers

Lemma
Let E be a Dedekind complete Riesz space with conditional
expectation operator T, weak order unit e = Te and filtration
(Ti)i∈N compatible with T. Let (fi) be an e-uniformly bounded
sequence adapted to the filtration (Ti), and gi := fi − Ti−1fi, then
(gi,Ti) is a martingale difference sequence with

T|gn| → 0 as n→∞,

where

gn :=
1
n

n∑
i=1

gi.



Weak law of large numbers

Theorem
[Weak Law of Large Numbers] Let E be a Dedekind complete
Riesz space with conditional expectation operator T, weak
order unit e = Te and filtration (Ti)i∈Z. Let (fi,Ti)i∈N be a
T-uniform mixingale with ci and Φi as defined previously.

(a) If

(
1
n

n∑
i=1

ci

)
n∈N

is bounded in E then

T|f n| = T

∣∣∣∣∣1n
n∑

i=1

fi

∣∣∣∣∣→ 0 as n→∞.

(b) If ci = T|fi| for each i ≥ 1 then

T|f n| = T

∣∣∣∣∣1n
n∑

i=1

fi

∣∣∣∣∣→ 0 as n→∞.



END
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