Mixingales on Riesz spaces¹

Positivity 2013

Bruce A Watson joint work with Wen-Chi Kuo and Jessica Vardy

School of Mathematics
University of the Witwatersrand
Johannesburg
South Africa

¹Research conducted while visiting University of Calgary. Supported in part by the Centre for Applicable Analysis and Number Theory and by NRF grant number IFR2011032400120.

Introduction

- Mixingales are stochastic processes which combine the concepts of martingales and mixing sequences.
- McLeish introduced the term mixingale at the 4th Conference of Stochastic Processes and Applications, at York University, Toronto in 1974.
- ▶ We generalize the concept of a mixingale to the measure-free Riesz space setting. This generalizes all of the L^p , $1 \le p \le \infty$ variants.
- We also generalize the concept of uniform integrability to the Riesz space setting and prove that a weak law of large numbers holds for Riesz space mixingales.

Background - McLeish

- ▶ McLeish defines mixingales using the L^2 -norm.
- In McLeish² proves invariance principles under strong mixing conditions.
- McLeish³ also proves a strong law for large numbers for dependent sequences under various conditions.

²D.L. McLeish, Invariance Principles for Dependent Variables, *Z. Wahrscheinlichkeitstheorie vew. Gebiete.*, **32** (1975), 165 - 178.

³D.L. McLeish, A maximal inequality and dependent strong laws, *The Annals of Probability*, **3** (1975), 829-839.

Background - Andrews and de Jong

- ▶ In 1988, Donald W. K. Andrews⁴ defined an L¹ analogue of McLeish's mixingales and presented a weak laws of large number for L^1 -mixingales.
- ▶ The L^1 -mixingale condition of Andrews is weaker than McLeish's mixingale condition.
- Andrews makes no restriction on the decay rate of the mixingale numbers, as was assumed by McLeish.
- Mixingales have also been considered in a general L^p , $1 \le p < \infty$, by de Jong⁵ 6.

⁶R.M. DE JONG, Laws of large numbers for dependent heterogeneous processes, Econometic Theory, 11 (1995), 347-358.

⁴D.W. ANDREWS, Laws of large numbers for dependent non-identically distributed random variables, Econometric Theory, 4 (1988), 458-467.

⁵R.M. DE JONG, Weak laws of large numbers for dependent random variables, Annals of Economics and Statistics, 51 (1998), 209-225.

Outline

- We define mixingales in a Riesz space and present a weak law of large numbers for mixingales in this setting.
- This order approach highlights the underlying mechanisms of the theory.
- ► This develops on the work of Kuo, Labuschagne, Vardy and Watson ^{7 8 9} on formulating the theory of stochastic processes in Riesz spaces.
- Other closely related generalizations were given by Stoica
 and Troitsky ¹¹.

⁷W.-C. Kuo, C.C.A. LABUSCHAGNE, B.A. WATSON, Discrete time stochastic processes on Riesz spaces, *Indag. Math. N.S.*, **15** (2004), 435-451.

⁸W.-C. Kuo, C.C.A. Labuschagne, B.A. Watson, Conditional expectations on Riesz spaces, *J. Math. Anal. Appl.*, **303** (2005), 509-521.

⁹J.J. VARDY, B.A. WATSON, Markov process in Riesz spaces, *Positivity*, **16** (2012), 373-391.

¹⁰G. STOICA, Martingales in vector lattices, *Bull. Math. Soc. Sci. Math. Roumanie. (N.S.)*, **34(82)** (1990), 357-362.

¹¹ V. TROITSKY, Martingales in Banach lattices, *Positivity*, **9** (2005), 437-456.

Preliminaries - Bands and Principal Bands

- ▶ A non-empty linear subspace B of the Riesz space E is a band if:
 - (i) the order interval [-|f|, |f|] is in B for each $f \in B$;
 - (ii) for each $D \subset B$ with $\sup D \in E$ we have $\sup D \in B$.
- A principal band is a band generated by a single element.
- ▶ If $e \in E_+$ and the band generated by e is E, then e is called a weak order unit of E and we denote the space of e bounded elements of E by

$$E^e = \{ f \in E : |f| \le ke \text{ for some } k \in \mathbb{R}_+ \}.$$

Preliminaries - Band Projections

In a Dedekind complete Riesz space with weak order unit every band is a principal band and, for each band B and u ∈ E₊,

$$P_B u := \sup\{v : 0 \le v \le u, v \in B\}$$

exists.

- ▶ The above map P_B can be extended to E by setting $P_B u = P_B u^+ P_B u^-$ for $u \in E$.
- ▶ With this extension, P_B is a positive linear projection which commutes with the operations of supremum and infimum in that $P(u \lor v) = Pu \lor Pv$ and $P(u \land v) = Pu \land Pv$.
- ▶ Moreover $0 \le P_B u \le u$ for all $u \in E_+$ and the range of P_B is B.

Preliminaries - Order Continuity

Let $T: E \to F$ be an operator where E and F are Riesz spaces.

- ▶ We say that T is a positive operator if T maps the positive cone of E to the positive cone of F, denoted $T \ge 0$.
- ▶ Here a set D in E is said to be downwards directed if for $f,g\in D$ there exists $h\in D$ with $h\leq f\wedge g$. In this case we write $D\downarrow$ or $f\downarrow_{f\in D}$. If, in addition, $g=\inf D$ in E, we write $D\downarrow g$ or $f\downarrow_{f\in D} g$.
- ▶ Let T be a positive operator between E and F. We say that T is order continuous if for each directed set $D \subset E$ with $f \downarrow_{f \in D} 0$ in E we have that $Tf \downarrow_{f \in D} 0$.
- Band projections are order continuous.

Riesz space Conditional Expectation Operators

- ▶ Let E be a Dedekind complete Riesz space with weak order unit, e. We say that T is a conditional expectation operator in E if T is all of the following
 - positive
 - order continuous
 - a projection
 - maps weak order units to weak order units
 - has range, R(T), a Dedekind complete Riesz subspace of E.
- ▶ If *T* is a conditional expectation operator on *E*, as *T* is a projection it is easy to verify that at least one of the weak order units of *E* is invariant under *T*.

f-algebras

- To access the averaging properties of conditional expectation operators a multiplicative structure is needed.
- ► In the Riesz space setting the most natural multiplicative structure is that of an f-algebra. This gives a multiplicative structure that is compatible with the order and additive structures on the space.
- ▶ The space E^e , where e is a weak order unit of E and E is Dedekind complete, has a natural f-algebra structure generated by setting $(Pe) \cdot (Qe) = PQe = (Qe) \cdot (Pe)$ for band projections P and Q.
- ▶ Using Freudenthal's Theorem this multilpication can be extended to the whole of E^e and in fact to the universal completion E^u .
- Here e becomes the multiplicative unit.
- ▶ This multiplication is associative, distributive and is positive in the sense that if $x, y \in E_+$ then $xy \ge 0$.

Averaging Operators

- ▶ If T is a conditional expectation operator on the Dedekind complete Riesz space E with weak order unit e = Te, then restricting our attention to the f-algebra E^e T is an averaging operator, i.e. T(fg) = fTg for $f, g \in E^e$ and $f \in R(T)$.
- ▶ In fact E is an E^e module which allows the extension of the averaging property, above, to $f, g \in E$ with at least one of them in E^e .
- f-algebras and the averaging properties of conditional expecation operators have been well studied. 12 13 14 15

¹²K. BOULABIAR, G. BUSKES, A. TRIKI, Results in *f*-algebras, *Positivity, Trends in Mathematics* (2007), 73-96.

 $^{^{13}\}mathrm{G.~Buskes,~A.~van~Rooij,~Almost}{\it f}\text{-algebras:~Commutativity}$ and the Cuachy-Schwartz inequality, *Positivity,* **4** (2000), 227-231.

¹⁴P.G. DODDS, C.B. HUIJSMANS, B. DE PAGTER, Characterizations of conditional expectation-type operators, *Pacific J. Math.*, **141** (1990), 55-77.

¹⁵ J.J. GROBLER, B. DE PAGTER, Operators representable as multiplication-conditional expectation operators, *J. Operator Theory,* **48** (2002), 15-40.

T-universal completeness

- Let E be a Dedekind complete Riesz space with weak order unit and T be a strictly positive conditional expectation on E. The space E is universally complete with respect to T, i.e. T-universally complete, if for each increasing net (f_{α}) in E_+ with (Tf_{α}) order bounded in E^u , we have that (f_{α}) is order convergent in E.
- If E is a Dedekind complete Riesz space and T is a strictly positive conditional expectation operator on E, then E has a T-universal completion which is the natural domain of T, denoted dom(T) in the universal completion, E^u, of E.
- ▶ Here dom(T) = D D and $Tx := Tx^+ Tx^-$ for $x \in dom(T)$ where

$$D = \{x \in E_+^u | \exists (x_\alpha) \subset E_+, x_\alpha \uparrow x, (Tx_\alpha) \text{ order bounded in } E^u \},$$

and $Tx := \sup_{\alpha} Tx_{\alpha}$, for $x \in D$, where (x_{α}) is an increasing net in E_+ with $(x_{\alpha}) \subset E_+$, (Tx_{α}) order bounded in E^u .

Martingales in Riesz spaces

▶ Let (T_i) be a sequence of conditional expectations on E indexed by either $\mathbb N$ or $\mathbb Z$, we say that (T_i) is a filtration on E if

$$T_iT_j = T_i = T_jT_i$$
, for all $i \le j$.

- ▶ If (T_i) is a filtration and T is a conditional expectation with $T_iT = T = TT_i$ for all i, then we say that the filtration is compatible with T.
- ▶ Given a conditional expectation T, the sequence (T_i) of conditional expectations in E compatible with T being a filtration is equivalent to $\mathcal{R}(T_i) \subset \mathcal{R}(T_j)$ for $i \leq j$.
- ▶ If (T_i) is a filtration on E and (f_i) is a sequence in E, we say that (f_i) is adapted to the filtration (T_i) if $f_i \in \mathcal{R}(T_i)$ for all i in the index set.
- ▶ The double sequence (f_i, T_i) is called a martingale if (f_i) is adapted to the filtration (T_i) and in addition

$$f_i = T_i f_j$$
, for $i \leq j$.

Martingale difference sequences in Riesz spaces

▶ The double sequence (g_i, T_i) is called a martingale difference sequence if (g_i) is adapted to the filtration (T_i) and

$$T_i g_{i+1} = 0.$$

- ▶ We observe that if (f_i) is adapted to the filtration (T_i) then $(f_i T_{i-1}f_i, T_i)$ is a martingale difference sequence.
- ▶ Conversely, if (g_i, T_i) is a martingale difference sequence, then (s_n, T_n) is a martingale, where

$$s_n = \sum_{i=1}^n g_i, \quad n \ge 1,$$

and the martingale difference sequence generated from (s_n, T_n) is precisely (g_n, T_n) .

Conditional Independence

Let E be a Dedekind complete Riesz space with conditional expectation T and weak order unit e = Te.

► Let *P* and *Q* be band projections on *E*. We say that *P* and *Q* are *T*-conditionally independent if

$$TPTQe = TPQe = TQTPe.$$
 (1)

- ▶ We say that two Riesz subspaces E_1 and E_2 of E containing $\mathcal{R}(T)$, are T-conditionally independent if all band projections P_i , i=1,2, in E with P_ie ∈ E_i , i=1,2, are T-conditionally independent.
- ▶ Let P_i , i = 1, 2, be band projections on E. Then P_i , i = 1, 2, are T-conditionally independent if and only if the closed Riesz subspaces $E_i = \langle P_i e, \mathcal{R}(T) \rangle$, i = 1, 2, are T-conditionally independent.

Uniform Integrability in L^1

▶ If $(\Omega, \mathcal{A}, \mu)$ is a probability space and $f_{\alpha}, \alpha \in \Lambda$, is a family in $L^1(\Omega, \mathcal{A}, \mu)$, indexed by Λ , the family is said to be uniformly integrable if for each $\epsilon > 0$ there is c > 0 so that

$$\int_{\Omega_{\alpha}(c)} |f_{\alpha}| \, d\mu \le \epsilon, \quad \text{for all} \quad \alpha \in \Lambda,$$

where

$$\Omega_{\alpha}(c) = \{ x \in \Omega : |f_{\alpha}(x)| > c \}.$$

► This concept can be extended to the Riesz space setting as *T*-uniformity, see the definition below, where *T* is a conditional expectation operator.

T-Uniformity

Let E be a Dedekind complete Riesz space with conditional expectation operator T and weak order unit e=Te. Let $f_{\alpha}, \alpha \in \Lambda$, be a family in E, where Λ is some index set. We say that $f_{\alpha}, \alpha \in \Lambda$, is T-uniform if

$$\sup\{TP_{(|f_{\alpha}|-ce)^{+}}|f_{\alpha}|:\alpha\in\Lambda\}\to0\quad\text{as}\quad c\to\infty. \tag{2}$$

▶ In the case of the Riesz space being $L^1(\Omega, \mathcal{A}, \mu)$ and T being the expectation operator, the two concepts coincide.

T-uniform families

Lemma

Let E be a Dedekind complete Riesz space with conditional expectation T and let e be a weak order unit which is invariant under T. If $f_{\alpha} \in E$, $\alpha \in \Lambda$, is a T-uniform family, then the set $\{T|f_{\alpha}|: \alpha \in \Lambda\}$ is bounded in E.

Proof

*Proof:*As the sequence f_{α} , $\alpha \in \Lambda$, is T-uniform

$$J_c := \sup\{TP_{(|f_{\alpha}|-ce)^+}|f_i| : \alpha \in \Lambda\} \to 0 \quad \text{ as } \quad c \to \infty.$$

In particular this implies that J_c exists for c>0 large and that, for sufficiently large K>0, the set $\{J_c:c\geq K\}$ is bounded in E. Hence there is $g\in E_+$ so that

$$TP_{(|f_{\alpha}|-ce)^{+}}|f_{\alpha}| \leq g, \quad \text{for all} \quad \alpha \in \Lambda, c \geq K,$$

By the definition of $P_{(|f_{\alpha}|-ce)^+}$,

$$(I - P_{(|f_{\alpha}| - ce)^+})|f_{\alpha}| \le ce$$
, for $\alpha \in \Lambda, c > 0$.

Combining the above for c = K gives

$$T|f_{\alpha}| = TP_{(|f_{\alpha}|-Ke)^{+}}|f_{\alpha}| + T(I-P_{(|f_{\alpha}|-Ke)^{+}})|f_{\alpha}| \le g + Ke,$$

for all $\alpha \in \Lambda$.

Mixingales in L^1

In classical probability theory $((f_i)_{i\in\mathbb{N}}, (\mathcal{A}_i)_{i\in\mathbb{Z}})$ is a mixingale in the probability space $(\Omega, \mathcal{A}, \mu)$ if the following hold:

- $(A_i)_{i \in \mathbb{Z}}$ is an increasing sequence of sub- σ -algebras of A (i.e. $(A_i)_{i \in \mathbb{Z}}$ is a filtration);
- $(f_i)_{i\in\mathbb{N}}$ is a sequence in $L^1(\Omega, \mathcal{A}, \mu)$;
- ▶ there are sequences $(c_i), (\Phi_i) \subset \mathbb{R}_+$ with $\Phi_i \to 0$ as $i \to \infty$ so that

$$\mathbb{E}[|\mathbb{E}[f_i|\mathcal{A}_{i-m}]|] \le c_i \Phi_m$$

and

$$\mathbb{E}[|f_i - \mathbb{E}[f_i|\mathcal{A}_{i+m}]|] \le c_i \Phi_{m+1}.$$

Mixingales in Riesz Spaces

Definition

- Let E be a Dedekind complete Riesz space with conditional expectation operator, T, and weak order unit e = Te.
- ▶ Let $(T_i)_{i \in \mathbb{Z}}$ be a filtration on E compatible with T.
- ▶ Let $(f_i)_{i \in \mathbb{N}}$ be a sequence in E.
- ▶ We say that (f_i, T_i) is a mixingale in E compatible with T if there exist $(c_i)_{i \in \mathbb{N}} \subset E_+$ and $(\Phi_m)_{m \in \mathbb{N}} \subset \mathbb{R}_+$ such that $\Phi_m \to 0$ as $m \to \infty$ and for all $i, m \in \mathbb{N}$ we have
 - (i) $T|T_{i-m}f_i| \leq \Phi_m c_i$,
 - (ii) $T|f_i-T_{i+m}f_i|\leq \Phi_{m+1}c_i.$

Mixingales

- ▶ The numbers Φ_m , $m \in \mathbb{N}$, are referred to as the mixingale numbers. These numbers give a measure of the temporal dependence of the sequence (f_i) .
- ▶ The constants (c_i) are chosen to index the 'magnitude' of the the random variables (f_i) .
- ▶ In many applications the sequence (f_i) is adapted to the filtration (T_i) .

Means of mixingales

Lemma

Let E be a Dedekind complete Riesz space with conditional expectation operator, T, and weak order unit e = Te. Let $(f_i, T_i)_{i \in \mathbb{N}}$ be a mixingale in E compatible with T.

- (a) The sequence (f_i) has T-mean zero, i.e. $Tf_i = 0$ for all $i \in \mathbb{N}$.
- (b) If in addition $(f_i)_{i \in \mathbb{N}}$ is T-conditionally independent and $\mathcal{R}(T_i) = \langle f_1, \ldots, f_{i-1}, \mathcal{R}(T) \rangle$ then the mixingale numbers may be taken as zero, where $\langle f_1, \ldots, f_{i-1}, \mathcal{R}(T) \rangle$ is the order closed Riesz subspace of E generated by f_1, \ldots, f_{i-1} and $\mathcal{R}(T)$.

Proof

Proof:(a) Here we observe that the index set for the filtration (T_i) is \mathbb{Z} , thus

$$egin{array}{lll} |Tf_i| &=& |TT_{i-m}f_i| \ &\leq& T|T_{i-m}f_i| \ &\leq& c_i\Phi_m \ &
ightarrow&0& ext{as}~m
ightarrow\infty \end{array}$$

giving $Tf_i = 0$ for all i > 0.

(b) As (f_i) is adapted to the filtration $(T_i), f_i \in \mathcal{R}(T_i)$ for all $i \in \mathbb{N}$ it follows that

$$f_i - T_{i+m}f_i = 0$$
, for all $i, m \in \mathbb{N}$.

As (f_i) is T-conditionally independent and as (f_i) has T-mean zero (from (a)), we have that

$$T_{i-m}f_i=Tf_i=0,$$

for $i, m \in \mathbb{N}$. Thus we can choose $\Phi_m = 0$ for all $m \in \mathbb{N}$.

Lemma to the Weak Law of Large Numbers

Lemma

Let E be a Dedekind complete Riesz space with conditional expectation operator T, weak order unit e = Te and filtration $(T_i)_{i \in \mathbb{N}}$ compatible with T. Let (f_i) be an e-uniformly bounded sequence adapted to the filtration (T_i) , and $g_i := f_i - T_{i-1}f_i$, then (g_i, T_i) is a martingale difference sequence with

$$T|\overline{g}_n| \to 0$$
 as $n \to \infty$,

where

$$\overline{g}_n := \frac{1}{n} \sum_{i=1}^n g_i.$$

Weak law of large numbers

Theorem

[Weak Law of Large Numbers] Let E be a Dedekind complete Riesz space with conditional expectation operator T, weak order unit e = Te and filtration $(T_i)_{i \in \mathbb{Z}}$. Let $(f_i, T_i)_{i \in \mathbb{N}}$ be a T-uniform mixingale with c_i and Φ_i as defined previously.

(a) If
$$\left(\frac{1}{n}\sum_{i=1}^{n}c_{i}\right)_{n\in\mathbb{N}}$$
 is bounded in E then

$$T|\overline{f}_n| = T\left|\frac{1}{n}\sum_{i=1}^n f_i\right| o 0 \quad \text{ as } n o \infty.$$

(b) If $c_i = T|f_i|$ for each $i \ge 1$ then

$$T|\overline{f}_n| = T\left|\frac{1}{n}\sum_{i=1}^n f_i\right| o 0 \quad \text{ as } n o \infty.$$

Thank you