next up previous
Next: Stabilization of pulses by Up: Diophantine Equations and Diophantine Previous: Diophantine geometry

References

[1] F. BEUKERS, H.P. SCHLICKEWEI, The equation $ x+y=1$ in finitely generated groups, Acta Arith. 78 (1996) 189-199.

[2] B. EDIXHOVEN, J.-H. EVERTSE (EDS.), Diophantine Approximation and Abelian Varieties, Introductory Lectures, LNM 1566, Springer Verlag, 1993.

[3] P. ERD\html{\H{S\/}}\kern.05emOS, C.L. STEWART, R. TIJDEMAN, Some Diophantine equations with many solutions, Compos. Math. 36 (1988), 37-56.

[4] J.-H. EVERTSE, On equations in $ S$-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561-584.

[5] J.-H. EVERTSE, P. MOREE, C.L. STEWART, R. TIJDEMAN, Multivariate Diophantine equations with many solutions, Report no. MI 2001-20, September 2001, Mathematical Institute, Leiden.

[6] J.-H. EVERTSE, H.P. SCHLICKEWEI, The Absolute Subspace Theorem and linear equations with unknowns from a multiplicative group, In: Number Theory in Progress, Proc. conf. number theory in honor of the 60th birthday of Prof. Andrzej Schinzel, K. Gy\html{\H{o\/}}\kern.05emry, H. Iwaniec, J. Urbanowicz (eds.), 121-142. Walter de Gruyter, 1999.

[7] J.-H. EVERTSE, H.P. SCHLICKEWEI, A quantitative version of the Absolute Subspace Theorem, J. reine angew. Math. 548 (2002), 21-127.

[8] J.-H. EVERTSE, H.P. SCHLICKEWEI, W.M. SCHMIDT, Linear equations in variables which lie in a multiplicative group, Ann. Math. 155 (2002), 1-30.

[9] G. FALTINGS, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366.

[10] G. FALTINGS, Diophantine approximation on abelian varieties, Ann. Math. 133 (1991), 549-576.

[11] G. FALTINGS, The general case of S. Lang's conjecture, in: Barsotti symposium in algebraic geometry, V. Christante, W. Messing (eds.), pp. 175-182. Perspectives in Mathematics, vol. 15, Academic press, 1994.

[12] M. HINDRY, J.H. SILVERMAN, Diophantine Geometry, An Introduction, Springer Verlag 2000.

[13] S. LANG, Integral points on curves, Pub. Math. IHES, 1960.

[14] S. LANG, Fundamentals of Diophantine Geometry, Springer Verlag, 1983.

[15] M. LAURENT, Equations diophantiènnes exponentielles, Invent. Math. 78 (1984), 299-327.

[16] C. LECH, A note on recurring series, Ark. Math. 2 (1953), 417-421.

[17] K. MAHLER, Zur Approximation algebraischer Zahlen, I. (Über den grössten Primteiler binärer Formen), Math. Ann. 107 (1933), 691-730.

[18] M. MCQUILLAN, Division points on semi-abelian varieties, Invent. Math. 120 (1995), 143-159.

[19] G. R\html{\'{S\/}}EMOND, Inegalité de Vojta en dimension supérieure, Ann. Scuola Norm. Sup. Pisa, Ser. IV 29(2000), 101-151.

[20] G. R\html{\'{S\/}}EMOND, Décompte dans une conjecture de Lang, Invent. Math. 142 (2000), 513-545.

[21] G. R\html{\'{S\/}}EMOND, Sur les sous-variétés des tores, Compos. Math., to appear.

[22] K.F. ROTH, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20.

[23] H.P. SCHLICKEWEI, The $ \wp$-adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math. 29 (1977), 267-270.

[24] H.P. SCHLICKEWEI, $ S$-unit equations over number fields, Invent. math. 102 (1990), 95-107.

[25] W.M. SCHMIDT, Diophantine Approximation, LNM 785, Springer Verlag 1980.

[26] W.M. SCHMIDT, The Subspace Theorem in Diophantine approximations, Compos. Math. 69 (1989), 121-173.

[27] W.M. SCHMIDT, The zero multiplicity of linear recurrence sequences, Acta Math. 182 (1999), 243-282.

[28] A. THUE, Über Annäherungswerte algebraischer Zahlen, J. reine angew. Math. 135 (1909), 284-305.

[29] P.A. VOJTA, Siegel's theorem in the compact case, Ann. Math. 133 (1991), 509-548.

[30] B.M.M. DE WEGER, Algorithms for Diophantine equations, Ph.D.-thesis, Leiden, 1988.


next up previous
Next: Stabilization of pulses by Up: Diophantine Equations and Diophantine Previous: Diophantine geometry