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Forward Kolmogorov equation

The concentration of diffusing particles in Rd is described by the
forward Kolmogorov equation

Dtv(t, x) =
1

2

d∑
i , j=1

DiDj(aij(x)v(t, x))−
d∑

i=1

Di (bi (x)v(t, x)).

Here
a : Rd → Sd (d × d real symmetric matrices)

b : Rd → Rd

are the diffusion and drift parameters.

To solve this equation, aij and bj must be sufficiently smooth.
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I: PDE approach

I: PDE approach

Consider the adjoint backward Kolmogorov equation

Dtu(t, x) =
1

2

d∑
i , j=1

aij(x)DiDju(t, x) +
d∑

i=1

bi (x)Diu(t, x).

Theorem. Suppose a and b are bounded and Hölder continuous,
and a satisfies the nondegeneracy condition

〈a(x)y , y〉 > λ|y |2 (y ∈ Rd).

Then the above problem admits a fundamental solution p such
that for any terminal value u(t, x) = f (x) with f ∈ Cb(Rd), the
solution is given by

u(s, x) =

∫
Rd

pt−s(x , y)f (y) dy (0 6 s < t).
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The associated Feller semigroup

Define the operators Pt : Bb(Rd) → Bb(Rd) by

Pt f (x) =

∫
Rd

pt(x , y)f (y) dy .

Then Pt is a Feller semigroup on C0(Rd), i.e.,

P0 = I , Pt ◦ Ps = Pt+s

0 6 f 6 1 =⇒ 0 6 Pt f 6 1

f ∈ C0(Rd) =⇒ Pt f ∈ C0(Rd)

limt↓0 Pt f = f for all f ∈ C0(Rd)

Pt is conservative, i.e., Pt1 = 1.
Its generator extends the operator L, i.e., C 2

c (Rd) ⊆ D(L) and

Pt f = f +

∫ t

0
PrLf dr (f ∈ C 2

c (Rd)).
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The associated Markov process

Let Pt be a conservative Feller semigroup with local generator L:

f ≡ 0 on U =⇒ Lf ≡ 0 on U.

For each x ∈ Rd there exists a unique probability measure Px on

Ω := C ([0,∞); Rd)

such that the coordinate process

Xt(ω) := ωt (ω ∈ Ω)

is a Markov process starting at x with transition semigroup Pt , i.e.,
Px -a.s. one has X0 = x and

Ex(f (Xt+s)|Fs) = Pt f (Xs).
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Martingale property

For all x ∈ X and f ∈ C 2
c (Rd),

Mx
t := f (Xt)−

∫ t

0
Lf (Xr ) dr

is a martingale with respect to Px , i.e.,

Ex(Mx
t |Fs) = Mx

s (t > s).

Indeed,

Ex(f (Xt)− f (Xs)|Fs)−
∫ t

s
Ex(Lf (Xr )|Fs) dr

= Pt−s f (Xs)− f (Xs)−
∫ t

s
Pr−sLf (Xs) dr

= Pt−s f (Xs)− f (Xs)−
∫ t−s

0
PrLf (Xs) dr

= 0.
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II: SDE approach

II: SDE approach

Let Bt be a Brownian motion in Rd .

Suppose that
a(x) = σ(x)σ∗(x)

and consider the stochastic differential equation{
dUt = b(Ut) dt + σ(Ut) dBt

U0 = x

A solution is a continuous adapted process Ux
t in Rd such that

Ux
t = x +

∫ t

0
b(Ux

r ) dr +

∫ t

0
σ(Ux

r ) dBr
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Stochastic differential equations

Theorem. (Itô) Assume

b : Rd → Rd is bounded and Lipschitz continuous

σ : Rd → L (Rd) is bounded and Lipschitz continuous

x ∈ Rd .

Then the stochastic differential equation

{
dUt = b(Ut) dt + σ(Ut) dBt

U0 = x

admits a unique continuous solution Ux
t .

Proof: Picard iteration.
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Martingale property

By Itô’s formula, for f ∈ C 2
c (Rd) one has

df (Ux
t ) = Df (Ux

t ) dUx
t +

1

2

d∑
i , j=1

D2f (Ux
t ) d [Ux ]t

= Df (Ux
t )σ(Ux

t ) dBt + Lf (Xt) dt

since [Ux ]t = σ(Ux
t )σ∗(Ux

t ) dt = a(Ux
t ) dt.

It follows that

f (Ux
t )−

∫ t

0
Lf (Ux

r ) dr = f (x) +

∫ t

0
Df (Ux

r )σ(Ux
r ) dBr

is a martingale.
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III: Martingale approach

III: Martingale approach

Let

Lf =
1

2

d∑
i , j=1

aijDiDj f +
d∑

j=1

bjDj f

for f ∈ C 2
c (Rd), with a : Rd → Sd and b : Rd → Rd as before.

A probability measure P on Ω solves the martingale problem for L
starting at x if

X0 = x P-a.s.

For all f ∈ C 2
c (Rd)

f (Xt)−
∫ t

0
Lf (Xr ) dr

is a martingale with respect to P.
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Example: Brownian motion

The martingale problem is well-posed if for every x ∈ Rd there is a
unique solution Px .

Example. Take aij = δij and bj = 0, so

L = 1
2∆.

If Bx
t is a Brownian motion starting at x , then by Itô’s formula, for

f ∈ C 2
c (Rd)

f (Bx
t )−

∫ t

0

1
2∆f (Bx

r ) dr = f (x) +

∫ t

0
Df (Bx

r ) dBr

is a martingale.

Hence the law of Bx
t solves the martingale problem.
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Example: Brownian motion

Conversely, suppose that Px solves the martingale problem for
L = 1

2∆.

By a stopping time argument, for all f ∈ C 2(Rd)

f (Xt)−
∫ t

0

1
2∆f (Xr ) dr

is a continuous local martingale.

Taking fj(x) = xj and gj(x) = x2
j ,

X j
t and (X j

t )
2 − t

are continuous local martingales with respect to Px .

Theorem (Lévy) With respect to Px , Xt is a Brownian motion
starting at x.
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Stroock-Varadhan theorem

Theorem. (Stroock-Varadhan) Consider

Lf =
1

2

d∑
i , j=1

aijDiDj f +
d∑

j=1

bjDj f .

Assume

a : Rd → Sd is bounded and continuous and satisfies

〈a(x)y , y〉 > λ|y |2

b : Rd → Rd is bounded and measurable.

Then:

The martingale problem for L is well-posed.

The process Xt has the strong Markov property with respect
to the measures Px .

If b is continuous, there exists a unique Feller semigroup Pt

on C0(Rd) whose generator extends L.
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Sketch of the proof

Sketch of the proof

Existence:

Discretization

Weak compactness of families of probability measures on Ω.

Uniqueness:

By a Cameron-Martin-Girsanov transformation:

WLOG b ≡ 0.

By localisation arguments:

WLOG |aij(x)− δij | < η.
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Sketch of the proof

To deal with this case, note that

Px = P̃x ⇐⇒ Rx(λ)f = R̃x(λ)f (λ > 0, f ∈ C 2
c (Rd))

where

Rx(λ)f = Ex

∫ ∞

0
e−λt f (Xt) dt.

By the martingale property and integration by parts,

Rx(λ)(λ− L)f = f (x).

Formally,

(λ− L)−1︸ ︷︷ ︸
R(λ)

= (λ− 1
2∆)−1︸ ︷︷ ︸

RBM(λ)

(
I − (L− 1

2∆)︸ ︷︷ ︸
1
2
(a−δ)

(λ− 1
2∆)−1︸ ︷︷ ︸

RBM(λ)

)−1

where, for Brownian motion,

Rx
BM(λ)f = Ex

BM

∫ ∞

0
e−λt f (Xt) dt.
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Proof - continued

Rewriting, this gives

Rx
BM(λ)f = Rx(λ)f − Rx(λ)

(1

2

d∑
i , j=1

(aij − δij)DiDj

)
Uλf .

Subtracting these identities for Px and P̃x gives

‖Rx(λ)− R̃x(λ)‖ 6
η

2

(
max

16i , j6d
‖DiDjUλ‖

)
‖Rx(λ)− R̃x(λ)‖.

For p > d/2, Rx(λ) and R̃x(λ) are bounded on Lp.

Lp-Boundedness of Riesz transforms → Lp-boundedness of DiDjUλ

For η > 0 small this gives

Rx(λ) = R̃x(λ).
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Invariance principles

Invariance principles

Let Xn : A → Rd be i.i.d. standard normal random variables.

Given x ∈ Rd and h > 0, define Φx ,h : A → Ω by

Φx ,h = x +
√

h
( bt/hc∑

n=1

Xn +
(
t − hbt/hc

)
Xbt/hc+1

)
.

Let Px ,h be its law.

Theorem. (Donsker) lim
h↓0, y→x

Py ,h = Px
BM weakly.

Stroock-Varadhan theory implies, more generally, convergence of
Markov chains to diffusions.
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