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_ Forward Kolmogorov equation

The concentration of diffusing particles in RY is described by the
forward Kolmogorov equation

D:v(t, x) Z D;Dj(aj(x)v(t,x)) = > Di(bi(x)v(t,x)).

IJ 1 i=1

Here
a:RY - S9 (dx d real symmetric matrices)

b:RY — R
are the diffusion and drift parameters.

To solve this equation, a;; and b; must be sufficiently smooth.
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. l: PDE approach

I: PDE approach

Consider the adjoint backward Kolmogorov equation

d

Dtu(t,x):%Z BT x)+2b )Diut, x).

i,j=1 i=1

Theorem. Suppose a and b are bounded and Holder continuous,
and a satisfies the nondegeneracy condition

(a(x)y,y) = Aly]* (v € RY).

Then the above problem admits a fundamental solution p such
that for any terminal value u(t,x) = f(x) with f € G,(RY), the
solution is given by

u(s,x) = / sy (0<s <),
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_ The associated Feller semigroup

Define the operators P; : By(RY) — B, (RY) by
Pif() = [ pelco)f(y) dy.

Then Py is a Feller semigroup on Co(]Rd), i.e.,
e Po=1,PioPs =Py,
e 01 = 0 PrFfK1
o € G(RY) = P:f € Go(RY)
e limgjo Pef = f for all f € Go(RY)

P; is conservative, i.e., P;1 = 1.
lts generator extends the operator L, i.e., C2(RY) C 2(L) and

t
P.f = f+/ P Lfdr (f € C(RY)).
0
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_ The associated Markov process

Let P; be a conservative Feller semigroup with local generator L:

f=0 onU — Lf=0 onU.

For each x € R? there exists a unique probability measure PX on
Q = C([0, ); RY)
such that the coordinate process
Xe(w) =wr (weQ)

is a Markov process starting at x with transition semigroup P, i.e.,
P*-a.s. one has Xy = x and

Ex(f(XtJrs)L?s) — Ptf(Xs).
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. Martingale property

For all x € X and f € C2(RY),

t
MX = F(X,) — / LF(X,) dr
0
is a martingale with respect to P*, i.e.,
EX(M;|.%s) = MY (t > s).
Indeed,

EX(F(Xe) = £(Xs)[Fs) — / EX(Lf(X:)|.Fs) dr
= Py_sf(Xs) / P,_sLf(X) dr

— Pr_f(Xs TP LA(X

c\

=0.
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. Il: SDE approach

Il: SDE approach

Let B; be a Brownian motion in RY.

Suppose that
a(x) = o(x)o™(x)

and consider the stochastic differential equation

Uy = x

A solution is a continuous adapted process U in RY such that

t

t
UtX:x+/ b(U,X)dr+/ o(U¥) dB,
(0] (0]
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_ Stochastic differential equations

Theorem. (Itd) Assume
e b:RY — RY js bounded and Lipschitz continuous
« 0:RY — Z(R?) is bounded and Lipschitz continuous
* x€RY,

Then the stochastic differential equation

dUt = b(Ut) dt+U(Ut) dBt
Uy = x

admits a unique continuous solution UF.

Proof: Picard iteration.
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. Martingale property

By It&'s formula, for f € C2(R9) one has

d
1
df (Uy) = DF(UY) dU + = > D*F(U) d[U”]:
2 ij=1
= DF(UX)o(UX) dBy + LF(X;) dt

since [UX]t = J(U?)J*(U?) dt = a(U?) dt.

It follows that

f(UtX)—/Oth(U,X)dr: f(x)—i—/ot DF(UX)o(U¥) dB,

is a martingale.
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_ [1l: Martingale approach

I1l: Martingale approach

Let

ZaUDDerZbDf
I_[].

for f € C2(RY), with a: R? — S and b: RY — R as before.

A probability measure IP on Q2 solves the martingale problem for L
starting at x if

e Xop=x P-as.
« Forall f € C2(RY)

t
f(Xe) — / Lf(X;)dr
0
is a martingale with respect to IP.
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_ Example: Brownian motion

The martingale problem is well-posed if for every x € R there is a
unique solution PX.

Example. Take a; = d;; and b; =0, so

1

If B is a Brownian motion starting at x, then by [td's formula, for
f € C3(RY)

t t
f(B;‘)—/ TAF(BY)dr = f(x)+/ Df (B)) dB,
0 0
is a martingale.

Hence the law of B} solves the martingale problem.
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_ Example: Brownian motion

Conversely, suppose that P* solves the martingale problem for
L=1A.
p)

By a stopping time argument, for all f € C2(RY)

F(X) — /t LAF(X,) dr
(0]

is a continuous local martingale.

Taking fi(x) = x; and gj(x) = XJ-2,

X and (X{)? -t
are continuous local martingales with respect to P*.

Theorem (Lévy) With respect to P*, X; is a Brownian motion
starting at x.
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_ Stroock-Varadhan theorem

Theorem. (Stroock-Varadhan) Consider

d d
1
Lf =3 'Zl a;D;iD;f + Z; b;Djf .
= J=

Assume
e a:R? — S? js bounded and continuous and satisfies

(a(x)y,y) = Aly[?

e b:RY — R? js bounded and measurable.
Then:
* The martingale problem for L is well-posed.
* The process X; has the strong Markov property with respect
to the measures IPX.
» If b is continuous, there exists a unique Feller semigroup P;
on Co(R?) whose generator extends L.
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_ Sketch of the proof

Sketch of the proof

Existence:

» Discretization

* Weak compactness of families of probability measures on 2.
Uniqueness:

+ By a Cameron-Martin-Girsanov transformation:

WLOG b= 0.

* By localisation arguments:

WLOG |ajj(x) — d;| < n.
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IRIEECh of the proof

To deal with this case, note that

PX =P* <« RX(\)f = RX(\)f (A>0, f e C3(RY))
where -

RX(\)f = E~ / e Mf(Xe) dt.
By the martingale property and i?1tegration by parts,
RX(A\)(A = L)f = f(x).

Formally,

e e (VN[N

v N, s’ e, e’
R()) Rem()) 1(a-0) Rem(X)

where, for Brownian motion,
XN = ESy / e MF(X,y) dt.
]
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. Proof - continued

Rewriting, this gives

d
X X X 1
Ry (M\)f = RX(\)f — R (A)(5 3 (a5 - 5U)D,-Dj) INZ
i.j=1

Subtracting these identities for P* and P~ gives

X DX n X DX
IR*) = ROl < 5 (,max DU} [R*(A) = R

For p > d/2, R*()\) and RX(A) are bounded on LP.
LP-Boundedness of Riesz transforms — LP-boundedness of D;D;U,

For n > 0 small this gives

RX(A) = RX(\).
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. Invariance principles

Invariance principles

Let X, : A — RY be i.i.d. standard normal random variables.

Given x € RY and h > 0, define &7 : A — Q by
/]

dh — aF \/E< Z Xn + (t = th/hJ)XLt/hJ—i-l)'
n=1
Let PXN be its law.
Theorem. (Donsker) hléim PYh = P%,, weakly.
7.qu

Stroock-Varadhan theory implies, more generally, convergence of
Markov chains to diffusions.
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