Martingale methods in stochastic differential equations Jan van Neerven (TUD)

Stieltjes Day, VU Amsterdam (March 5, 2009)

S. Varadhan, Abel Prize recipient 2007

The concentration of diffusing particles in \mathbb{R}^d is described by the forward Kolmogorov equation

$$D_t v(t,x) = \frac{1}{2} \sum_{i,j=1}^d D_i D_j (a_{ij}(x) v(t,x)) - \sum_{i=1}^d D_i (b_i(x) v(t,x)).$$

Here

$$a: \mathbb{R}^d o \mathbb{S}^d \quad (d imes d ext{ real symmetric matrices})$$

 $b: \mathbb{R}^d o \mathbb{R}^d$

are the diffusion and drift parameters.

To solve this equation, a_{ii} and b_i must be sufficiently smooth.

I: PDE approach

Consider the adjoint backward Kolmogorov equation

$$D_t u(t,x) = \frac{1}{2} \sum_{i,j=1}^d a_{ij}(x) D_i D_j u(t,x) + \sum_{i=1}^d b_i(x) D_i u(t,x).$$

Theorem. Suppose a and b are bounded and Hölder continuous, and a satisfies the nondegeneracy condition

$$\langle a(x)y,y\rangle \geqslant \lambda |y|^2 \quad (y\in \mathbb{R}^d).$$

Then the above problem admits a fundamental solution p such that for any terminal value u(t,x)=f(x) with $f\in C_{\rm b}(\mathbb{R}^d)$, the solution is given by

$$u(s,x) = \int_{\mathbb{R}^d} p_{t-s}(x,y) f(y) dy \quad (0 \leqslant s < t).$$

Define the operators $P_t: B_{\mathrm{b}}(\mathbb{R}^d) o B_{\mathrm{b}}(\mathbb{R}^d)$ by

$$P_t f(x) = \int_{\mathbb{R}^d} p_t(x, y) f(y) \, dy.$$

Then P_t is a Feller semigroup on $C_0(\mathbb{R}^d)$, i.e.,

- $P_0 = I$, $P_t \circ P_s = P_{t+s}$
- $0 \leqslant f \leqslant 1 \implies 0 \leqslant P_t f \leqslant 1$
- $f \in C_0(\mathbb{R}^d) \Longrightarrow P_t f \in C_0(\mathbb{R}^d)$
- $\lim_{t\downarrow 0} P_t f = f$ for all $f \in C_0(\mathbb{R}^d)$

 P_t is conservative, i.e., $P_t 1 = 1$.

Its generator extends the operator L, i.e., $\mathcal{C}^2_{\mathrm{c}}(\mathbb{R}^d)\subseteq \mathscr{D}(L)$ and

$$P_t f = f + \int_0^t P_r L f dr \quad (f \in C_c^2(\mathbb{R}^d)).$$

Let P_t be a conservative Feller semigroup with local generator L:

$$f \equiv 0$$
 on $U \implies Lf \equiv 0$ on U .

For each $x \in \mathbb{R}^d$ there exists a unique probability measure \mathbb{P}^x on

$$\Omega := C([0,\infty); \mathbb{R}^d)$$

such that the coordinate process

$$X_t(\omega) := \omega_t \quad (\omega \in \Omega)$$

is a Markov process starting at x with transition semigroup P_t , i.e., \mathbb{P}^x -a.s. one has $X_0 = x$ and

$$\mathbb{E}^{\mathsf{x}}(f(X_{t+s})|\mathscr{F}_{\mathsf{s}}) = P_t f(X_{\mathsf{s}}).$$

For all $x \in X$ and $f \in C^2_c(\mathbb{R}^d)$,

$$M_t^{\times} := f(X_t) - \int_0^t Lf(X_r) dr$$

is a martingale with respect to \mathbb{P}^x , i.e.,

$$\mathbb{E}^{\times}(M_t^{\times}|\mathscr{F}_s)=M_s^{\times}\quad (t\geqslant s).$$

Indeed,

$$\mathbb{E}^{\times}(f(X_t) - f(X_s)|\mathscr{F}_s) - \int_s^t \mathbb{E}^{\times}(Lf(X_r)|\mathscr{F}_s) dr$$

$$= P_{t-s}f(X_s) - f(X_s) - \int_s^t P_{r-s}Lf(X_s) dr$$

$$= P_{t-s}f(X_s) - f(X_s) - \int_0^{t-s} P_rLf(X_s) dr$$

$$= 0.$$

II: SDE approach

Let B_t be a Brownian motion in \mathbb{R}^d .

Suppose that

$$a(x) = \sigma(x)\sigma^*(x)$$

and consider the stochastic differential equation

$$\begin{cases} dU_t = b(U_t) dt + \sigma(U_t) dB_t \\ U_0 = x \end{cases}$$

A solution is a continuous adapted process U_t^{x} in \mathbb{R}^d such that

$$U_t^{\times} = x + \int_0^t b(U_r^{\times}) dr + \int_0^t \sigma(U_r^{\times}) dB_r$$

Theorem. (Itô) Assume

- ullet $b:\mathbb{R}^d o\mathbb{R}^d$ is bounded and Lipschitz continuous
- ullet $\sigma: \mathbb{R}^d o \mathscr{L}(\mathbb{R}^d)$ is bounded and Lipschitz continuous
- $\circ x \in \mathbb{R}^d$.

Then the stochastic differential equation

$$\begin{cases} dU_t = b(U_t) dt + \sigma(U_t) dB_t \\ U_0 = x \end{cases}$$

admits a unique continuous solution U_t^x .

Proof: Picard iteration.

By Itô's formula, for $f \in \mathcal{C}^2_c(\mathbb{R}^d)$ one has

$$df(U_t^{\mathsf{x}}) = Df(U_t^{\mathsf{x}}) dU_t^{\mathsf{x}} + \frac{1}{2} \sum_{i,j=1}^{d} D^2 f(U_t^{\mathsf{x}}) d[U^{\mathsf{x}}]_t$$
$$= Df(U_t^{\mathsf{x}}) \sigma(U_t^{\mathsf{x}}) dB_t + Lf(X_t) dt$$

since
$$[U^x]_t = \sigma(U_t^x)\sigma^*(U_t^x) dt = a(U_t^x) dt$$
.

It follows that

$$f(U_t^{\mathsf{x}}) - \int_0^t Lf(U_r^{\mathsf{x}}) \, dr = f(x) + \int_0^t Df(U_r^{\mathsf{x}}) \sigma(U_r^{\mathsf{x}}) \, dB_r$$

is a martingale.

III: Martingale approach

Let

$$Lf = \frac{1}{2} \sum_{i,j=1}^{d} a_{ij} D_i D_j f + \sum_{j=1}^{d} b_j D_j f$$

for $f \in C^2_c(\mathbb{R}^d)$, with $a : \mathbb{R}^d \to \mathbb{S}^d$ and $b : \mathbb{R}^d \to \mathbb{R}^d$ as before.

A probability measure \mathbb{P} on Ω solves the martingale problem for L starting at x if

- $X_0 = x$ \mathbb{P} -a.s.
- For all $f \in C^2_{\mathrm{c}}(\mathbb{R}^d)$

$$f(X_t) - \int_0^t Lf(X_r) \, dr$$

is a martingale with respect to \mathbb{P} .

The martingale problem is well-posed if for every $x \in \mathbb{R}^d$ there is a unique solution \mathbb{P}^x .

Example. Take $a_{ij} = \delta_{ij}$ and $b_j = 0$, so

$$L = \frac{1}{2}\Delta$$
.

If B_t^x is a Brownian motion starting at x, then by Itô's formula, for $f \in C_c^2(\mathbb{R}^d)$

$$f(B_t^{\times}) - \int_0^t \frac{1}{2} \Delta f(B_r^{\times}) dr = f(x) + \int_0^t Df(B_r^{\times}) dB_r$$

is a martingale.

Hence the law of B_t^{\times} solves the martingale problem.

Conversely, suppose that \mathbb{P}^{x} solves the martingale problem for $L=\frac{1}{2}\Delta.$

By a stopping time argument, for all $f \in C^2(\mathbb{R}^d)$

$$f(X_t) - \int_0^t \frac{1}{2} \Delta f(X_r) \, dr$$

is a continuous local martingale.

Taking $f_j(x) = x_j$ and $g_j(x) = x_j^2$,

$$X_t^j$$
 and $(X_t^j)^2 - t$

are continuous local martingales with respect to \mathbb{P}^x .

Theorem (Lévy) With respect to \mathbb{P}^x , X_t is a Brownian motion starting at x.

Theorem. (Stroock-Varadhan) Consider

$$Lf = \frac{1}{2} \sum_{i,j=1}^{d} a_{ij} D_i D_j f + \sum_{j=1}^{d} b_j D_j f.$$

Assume

• $a: \mathbb{R}^d \to \mathbb{S}^d$ is bounded and continuous and satisfies

$$\langle a(x)y,y\rangle \geqslant \lambda |y|^2$$

• $b: \mathbb{R}^d \to \mathbb{R}^d$ is bounded and measurable.

Then:

- The martingale problem for L is well-posed.
- The process X_t has the strong Markov property with respect to the measures \mathbb{P}^x .
- If b is continuous, there exists a unique Feller semigroup P_t on $C_0(\mathbb{R}^d)$ whose generator extends L.

Sketch of the proof

Existence:

- Discretization
- Weak compactness of families of probability measures on Ω .

Uniqueness:

• By a Cameron-Martin-Girsanov transformation:

WLOG
$$b \equiv 0$$
.

By localisation arguments:

WLOG
$$|a_{ii}(x) - \delta_{ii}| < \eta$$
.

Sketch of the proof

To deal with this case, note that

$$\mathbb{P}^{x} = \widetilde{\mathbb{P}}^{x} \iff R^{x}(\lambda)f = \widetilde{R}^{x}(\lambda)f \quad (\lambda > 0, \ f \in C_{c}^{2}(\mathbb{R}^{d}))$$

where

$$R^{\mathsf{x}}(\lambda)f = \mathbb{E}^{\mathsf{x}} \int_0^\infty e^{-\lambda t} f(X_t) dt.$$

By the martingale property and integration by parts,

$$R^{x}(\lambda)(\lambda-L)f=f(x).$$

Formally,

$$\underbrace{(\lambda - L)^{-1}}_{R(\lambda)} = \underbrace{(\lambda - \frac{1}{2}\Delta)^{-1}}_{R_{BM}(\lambda)} \left(I - \underbrace{(L - \frac{1}{2}\Delta)}_{\frac{1}{2}(a - \delta)} \underbrace{(\lambda - \frac{1}{2}\Delta)^{-1}}_{R_{BM}(\lambda)}\right)^{-1}$$

where, for Brownian motion,

$$R_{BM}^{\times}(\lambda)f = \mathbb{E}_{BM}^{\times} \int_{0}^{\infty} e^{-\lambda t} f(X_{t}) dt.$$

Rewriting, this gives

$$R_{BM}^{\mathsf{x}}(\lambda)f = R^{\mathsf{x}}(\lambda)f - R^{\mathsf{x}}(\lambda)\Big(rac{1}{2}\sum_{i,j=1}^d(\mathsf{a}_{ij}-\delta_{ij})D_iD_j\Big)U_\lambda f.$$

Subtracting these identities for \mathbb{P}^{x} and $\widetilde{\mathbb{P}}^{x}$ gives

$$\|R^{x}(\lambda) - \widetilde{R}^{x}(\lambda)\| \leqslant \frac{\eta}{2} \Big(\max_{1 \leqslant i, j \leqslant d} \|D_{i}D_{j}U_{\lambda}\| \Big) \|R^{x}(\lambda) - \widetilde{R}^{x}(\lambda)\|.$$

For p > d/2, $R^{\times}(\lambda)$ and $\widetilde{R}^{\times}(\lambda)$ are bounded on L^{p} .

 L^p -Boundedness of Riesz transforms $o L^p$ -boundedness of $D_i D_j U_\lambda$

For $\eta > 0$ small this gives

$$R^{\times}(\lambda) = \widetilde{R}^{\times}(\lambda).$$

Invariance principles

Let $X_n : A \to \mathbb{R}^d$ be i.i.d. standard normal random variables.

Given $x \in \mathbb{R}^d$ and h > 0, define $\Phi^{x,h} : A \longrightarrow \Omega$ by

$$\Phi^{\times,h} = x + \sqrt{h} \Big(\sum_{n=1}^{\lfloor t/h \rfloor} X_n + \big(t - h \lfloor t/h \rfloor\big) X_{\lfloor t/h \rfloor + 1} \Big).$$

Let $P^{x,h}$ be its law.

Theorem. (Donsker)
$$\lim_{h\downarrow 0, y\to x} \mathbb{P}^{y,h} = \mathbb{P}^{x}_{BM}$$
 weakly.

Stroock-Varadhan theory implies, more generally, convergence of Markov chains to diffusions.

References

- D.W. STROOCK AND S.R.S. VARADHAN, Diffusion processes with continuous coefficients, Part I: Comm. Pure Appl. Math. 22 (1969), 345–400; Part II: Comm. Pure Appl. Math. 22 (1969), 479–530.
- [2] D.W. STROOCK AND S.R.S. VARADHAN, "Multidimensional Diffusion Processes", Grundlehren Math. Wiss. 233, Springer-Verlag (1979).
- [3] C. DOLÉANS, C. DELLACHERIE, M.G. LETTA, P.A. MEYER, Diffusions à coefficients continus, Séminaire de Probabilités (Strasbourg), 4 (1970), 240-282; also published in Springer LNM 124.