Tentamen Algebra 3, 19 juni 2014, 13:00–17:00 ## Bas Edixhoven During this exam electronic equipment is not allowed. Allowed are: books, syllabi and notes. An indicative weighting of the exercises is given at the bottom of page 2. There are 4 exercises. The exam wil be graded on June 21. Success! **Opgave 1.** Let $f = X^4 - 9$ in $\mathbb{Q}[X]$. - (a) Determine the set N of zeros of f in \mathbb{C} . - (b) Determine the splitting field $\Omega^f_{\mathbb{Q}} \subset \mathbb{C}$: give a basis over \mathbb{Q} . - (c) Determine $\operatorname{Gal}(\Omega^f_{\mathbb{Q}}/\mathbb{Q})$, and give the corresponding permutations of N. - (d) Give a primitive element α of $\Omega^f_{\mathbb{Q}}$ over \mathbb{Q} , and the minimal polynomial $f^{\alpha}_{\mathbb{Q}}$. - (e) Write α^{-1} in the basis of powers of α . **Opgave 2.** Let $\mathbb{F} := \mathbb{F}_{64}$. Note that $64 = 2^6$. - (a) How many subfields does \mathbb{F} have, how many elements does each of them have, and how many of those generate the subfield? - (b) Determine the number of irreducible polynomials of degree 6 in $\mathbb{F}_2[X]$. - (c) Show that \mathbb{F} is a splitting field of the polynomial Φ_9 in $\mathbb{F}_2[X]$. - (d) Let $\zeta \in \mathbb{F}$ be a zero of Φ_9 . Give all zeros of Φ_9 in \mathbb{F} , expressed in ζ . - (e) Show that Φ_9 is irreducible in $\mathbb{F}_2[X]$. **Opgave 3.** Let $\zeta = e^{2\pi i/7}$ in \mathbb{C} . For subsets T of \mathbb{F}_7^* we define $$z_T := \sum_{a \in T} \zeta^a.$$ - (a) Give the list of subfields of $\mathbb{Q}(\zeta)$, and for each subfield a generator. - (b) Give a subset T of \mathbb{F}_7^* with #T=3 for which z_T is constructible with straight-edge and compass from $\{0,1\}$. - (c) Determine all subsets T of \mathbb{F}_7^* for which z_T is constructible with straight-edge and compass from $\{0,1\}$. ## Opgave 4. - (a) Do there exist a field K and an *irreducible* separable polynomial f over K of degree 7 with $Gal(\Omega_K^f/K)$ isomorphic to the symmetric group S_6 ? - (b) Determine the Galois group $\operatorname{Gal}(\Omega^f_{\mathbb{Q}}/\mathbb{Q})$ of $f=X^5-6$ as subgroup of S_5 by giving its order and generators for it. - (c) Show that for every $n \in \mathbb{Z}_{>0}$ and every transitive subgroup G of S_n there exist a field K and an *irreducible* separable polynomial f over K of degree n, such that $\operatorname{Gal}(\Omega_K^f/K)$ is isomorphic to G. Hint: first make a Galois extension $K \subset L$ with group S_n . - (d) Do there exist a field K and an *irreducible* separable polynomial f over K of degree 6 with Gal(f) isomorphic to the symmetric group S_5 ?