Commutative Algebra, June 20, 2013

Each problem is worth some number of points, as indicated.
Your highest four scores (out of five) count.

1. (2 points)

The tensor product $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ is a vector space over \mathbb{Q} by multiplication in the left factor, i.e., $\lambda(x \otimes y)=(\lambda x) \otimes y$ for $\lambda, x, y \in \mathbb{Q}$. What is the dimension of $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ as vector space over \mathbb{Q} ?
2. (2.5 points)

Let A be a local ring with maximal ideal \mathfrak{m} and residue field $k=A / \mathfrak{m}$. Let

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

be a short exact sequence of finitely generated A-modules.
(a) Set $r=\operatorname{dim}_{k}\left(M^{\prime} \otimes_{A} k\right)$ and $s=\operatorname{dim}_{k}\left(M^{\prime \prime} \otimes_{A} k\right)$. Prove that M can be generated as A-module by $r+s$ elements.
(b) Suppose that the multiplication map $\mathfrak{m} \otimes_{A} M^{\prime \prime} \rightarrow M^{\prime \prime}$ sending $t \otimes x$ to $t x$ is injective. Prove that the induced sequence

$$
0 \rightarrow M^{\prime} \otimes_{A} k \rightarrow M \otimes_{A} k \rightarrow M^{\prime \prime} \otimes_{A} k \rightarrow 0
$$

is exact.
3. (2 points)

Give an example of the following.
(a) A local ring A with maximal ideal \mathfrak{m} and a nonzero A-module M such that $M=\mathfrak{m} M$.
(b) A reduced ring R for which the zero ideal $(0) \subset R$ has exactly three associated primes $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \mathfrak{p}_{3}$, such that for each $i \in\{1,2,3\}$, the dimension of the ring R / \mathfrak{p}_{i} equals i.
4. (2.5 points)

Set $R=\mathbb{Q}[x]$ and let $\mathfrak{m} \subset R$ be the ideal generated by x. Let \hat{R} be the completion of R at \mathfrak{m}.
(a) Show that \hat{R} contains an element f that satisfies $f \equiv 1(\bmod \mathfrak{m} \hat{R})$ and $f^{2}=1-x^{2}$.
(b) Set $S=\mathbb{Q}[x, y]$ and $T=S / I$ with $I=\left(x^{2}+y^{2}-1\right) \subset S$. Let $\mathfrak{n} \subset T$ be the ideal generated by x and $y-1$. Let \hat{T} be the completion of T at \mathfrak{n}. Show that the inclusion $R \hookrightarrow T$ induces an isomorphism $\hat{R} \rightarrow \hat{T}$.
5. (3 points)

Recall that a Dedekind domain is an integral domain that is Noetherian, integrally closed, of dimension 1 . Note that a domain R has dimension 1 if and only if R is not a field and every nonzero prime ideal of R is maximal.
(a) Let R be a Dedekind domain. Let $I \subset R$ be an ideal and suppose that $0 \neq a \in I$. Prove that there exists $b \in I$ such that I is generated by a and b. In particular, every ideal in a Dedekind domain can be generated by 2 elements.
Let R be $\mathbb{Z}[\sqrt[3]{2}]$. Let S be the ring $\mathbb{Z}+2 R$, and let $I \subset S$ be the ideal $2 R$.
(b) Prove that I is a maximal ideal of S.
(c) Prove that I / I^{2} has dimension 3 as a vector space over S / I.
(d) Conclude that S is not a Dedekind domain.

