State every theorem (including the conditions under which the theorem holds) and result that you use.
I. Let G be the region $\{z \in \mathbf{C}:|z+1|<\sqrt{2},|z-1|<\sqrt{2}\}$. Give an analytic isomorphism $k: G \rightarrow H$ between G and the upper half plane H. (20p)
II. Consider the function $f(z)=\sqrt{-1+\sqrt{z}}$.
a. Give the branch points of f in the (finite) complex plane. (4p)

Let $f_{1}(z)$ be an analytic function in a neighbourhood G of $z=4$ such that $f_{1}(z)$ coincides with the branch of $f(z)$ for which $f(4)=i \sqrt{3}$. f_{1} can be defined by a power series about the point $z=4$.
b. What is the radius of this power series? Explain. (5p)
c. Indicate a region G_{1} such that f_{1} can be analytically continued to a (one-valued) analytic function on G_{1} and such that G_{1} is as large as possible. (4p)
d. Let γ be the the circle $\{z \in \mathbf{C}:|z|=4\}$, taken in the counterclockwise direction, with beginning and end point $z=4$. Continue f_{1} analytically along γ. What is the value of the analytic continuation at the end point? (7p)
III. Let G be the interior of the triangle with vertices at the points 0,1 and i in the complex plane. $g: G \rightarrow D$ is an analytic isomorphism between G and the (open) unit disk D. Moreover, g extends to a homeomorphism between the closure of G and the closed unit disk.
a. State a theorem from which it follows that such a function g indeed exists. (4p)
b. Prove that g can be analytically continued to an elliptic function on C. (5p)
c. Determine both the periods of this elliptic function and its order. (7p)

Please turn over for problem IV.

IV. Let Λ be the lattice consisting of the points $z=m+n \omega$ where $m, n \in \mathbf{Z}$ and $\omega=\frac{1}{2}+\frac{1}{2} i \sqrt{3}$.
a. State (necessary and sufficient) conditions on the real numbers a, b, c, d such that $\{a+b \omega, c+d \omega\}$ is a basis of Λ. Explain your answer. (4p)
b. Construct an entire function $h(z)$ that has zeros of multiplicity 1 exactly at the lattice points and such that $h^{\prime}(0)=1$. (8 p)
(You may use that $\sum_{\Omega \in \Lambda}{ }^{\prime} \frac{1}{|\Omega|^{\ell}}$ converges for $\ell>2$).
Let $A_{k}:=\sum_{\Omega \in \Lambda}{ }^{\prime} \frac{1}{\Omega^{2 k}}$. As has been shown in the lectures, $g_{2}=60 A_{2}$ and $g_{3}=140 A_{3}$.
c. Prove that $g_{2}=0$ and $g_{3} \in \mathbf{R}$. (Hint: first show that $\Lambda=\omega \Lambda$.) (8 p)
d. Show that

$$
\int_{\sqrt[3]{g_{3} / 4}}^{\infty} \frac{d x}{\sqrt{4 x^{3}-g_{3}}}=\frac{1}{2}
$$

(The integral is taken over the real axis and the square root is assumed to be non-negative.) (10p)

