Midterm Exam : 05 November 2007

Duration : 2 hours

No books, written notes are permitted. Please do not use pencils!

Exercise 1

Let A be a commutative ring and \mathbf{p} be a prime ideal of A. Set $S = A \setminus \mathbf{p}$.

1. Show that (S, \leq) is a filtrant pre-ordered set if we define \leq as follows :

$$f \leq g \iff \exists h \notin \mathfrak{p}, fh = g.$$

2. Let M be an A-module. For $a \in A$, define $M_a = M[\frac{1}{a}]$, and set $M_{\mathfrak{p}} = S^{-1}M$. Prove that the natural morphism

$$\varinjlim_{t\not\in\mathfrak{p}} M_t \to M_\mathfrak{p}$$

is an isormophism of A-modules.

3. Show that for any short exact sequence of A-modules

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

and any $t \in S$, the sequence

$$0 \longrightarrow M'[\frac{1}{t}] \longrightarrow M[\frac{1}{t}] \longrightarrow M''[\frac{1}{t}] \longrightarrow 0$$

is exact.

4. Deduce that for any short exact sequence of A-modules

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

the sequence of A-modules obtained after applying the functor $-\otimes_A A_{\mathfrak{p}}$:

$$0 \longrightarrow M' \otimes_A A_{\mathfrak{p}} \longrightarrow M \otimes_A A_{\mathfrak{p}} \longrightarrow M'' \otimes_A A_{\mathfrak{p}} \longrightarrow 0$$

is exact.

Exercise 2

Let \mathcal{C} be a category with an initial object denoted $\alpha_{\mathcal{C}}$ and a terminal object denoted $\omega_{\mathcal{C}}$. Let \mathcal{I} be the empty category. Let $F: \mathcal{I} \to \mathcal{C}$ and $G: \mathcal{I}^{\text{op}} \to \mathcal{C}$ be two functors. Show that :

(1) $\lim_{\longrightarrow} F = \alpha_{\mathcal{C}},$

(2)
$$\lim_{\leftarrow \mathcal{I}} G = \omega_{\mathcal{C}}.$$

Exercise 3

Let \mathcal{C} be a category. The category \mathcal{C} is *cartesian* if the following holds :

- (1) \mathcal{C} has a final object, denoted $\omega_{\mathcal{C}}$.
- (2) For all X and Y in \mathcal{C} , the product $X \prod Y$ exists.

A category is said *cocartesian* if its opposite category is cartesian, and *bicartesian* if it is cartesian and cocartesian.

- 1. Show that \mathcal{C} is cocartesian if and only if the following holds
 - (a) \mathcal{C} has an initial object, denoted $\alpha_{\mathcal{C}}$.
 - (b) For all X and Y in \mathcal{C} , the coproduct $X \coprod Y$ exists.
- 2. Suppose \mathcal{C} is cartesian. Prove that for any $\overline{X} \in \mathcal{C}$, the objects $X \prod \omega_{\mathcal{C}}$, $\omega_{\mathcal{C}} \prod X$ and X are isomorphic.
- 3. Suppose that \mathcal{C} is a cartesian category. Let $f: X \to Y$ and $a: A \to B$ be morphisms. Prove that there is a unique morphism $\phi: X \prod A \to Y \prod B$ such that :

$$\begin{cases} f\pi_X = \pi_Y \phi, \\ a\pi_A = \pi_B \phi, \end{cases}$$

where the $\pi's$ are the canonical morphisms

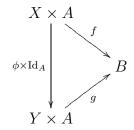
$$\begin{cases} \pi_X \colon X \prod Y \to X, \\ \pi_Y \colon X \prod Y \to Y, \\ \pi_A \colon A \prod B \to A, \\ \pi_B \colon A \prod B \to B. \end{cases}$$

The morphism ϕ will be denoted $f \times a$.

4. Let \mathcal{C} be a cartesian category. To simplify the notations, for A and B of \mathcal{C} we will write $A \times B$ instead of $A \prod B$ and, if $A \coprod B$ exists it will be denoted A + B. For two objects A and B of \mathcal{C} , denote by $\mathfrak{exp}(\mathcal{C})_{A,B}$ the category whose objects are diagrams (in \mathcal{C}):

$$X \times A \xrightarrow{f} B.$$

and a morphism between $X \times A \xrightarrow{f} B$ and $Y \times A \xrightarrow{g} B$ consists of a morphism $\phi \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ such that the diagram :



commutes. Let A and B be two objects of C. If the category $\mathfrak{exp}(\mathcal{C})_{A,B}$ has a final object, we will denote it by $B^A \times A \xrightarrow{e} B$, where $B^A \in \mathcal{C}$ and $e \in \operatorname{Hom}_{\mathcal{C}}(B^A \times A, B)$.

Show that \mathfrak{Set} is a bicartesian category. Prove that if A, B are two sets, the category $\mathfrak{Exp}(\mathfrak{Set})_{A,B}$ has a final object (construct B^A and the morphism e).

5. From now on \mathcal{C} is a bicartesian category such that for any $A, B \in \mathcal{C}$, the category $\mathfrak{exp}(\mathcal{C})_{A,B}$ admits a final object.

a. Show that for any object $X, Y, Z \in \mathcal{C}$, we have an isomorphism :

 $\operatorname{Hom}_{\mathcal{C}}(X \times Y, Z) \simeq \operatorname{Hom}_{\mathcal{C}}(X, Z^Y).$

b. From now on, we fix three objects A, B and C of C. Prove that there is a canonical morphism :

$$\phi \colon (A \times C) + (B \times C) \to (A + B) \times C.$$

c. Show that we have a canonical morphism :

$$\bar{\psi} \colon A + B \to ((A \times C) + (B \times C))^C.$$

And show that it correponds uniquely to a morphism ψ :

$$\psi \colon (A+B) \times C \to (A \times C) + (B \times C).$$

- d. Prove that $\psi \circ \phi = \operatorname{Id}_{(A \times C) + (B \times C)}$.
- e. Prove that $\phi \circ \psi = \operatorname{Id}_{(A+B) \times C}$.