Midterm Exam : 05 November 2007
 Duration : 2 hours

No books, written notes are permitted. Please do not use pencils!

Exercise 1

Let A be a commutative ring and \mathfrak{p} be a prime ideal of A. Set $S=A \backslash \mathfrak{p}$.

1. Show that (S, \leq) is a filtrant pre-ordered set if we define \leq as follows :

$$
f \leq g \Longleftrightarrow \exists h \notin \mathfrak{p}, f h=g
$$

2. Let M be an A-module. For $a \in A$, define $M_{a}=M\left[\frac{1}{a}\right]$, and set $M_{\mathfrak{p}}=S^{-1} M$. Prove that the natural morphism

$$
\underset{t \notin \mathfrak{p}}{\lim _{t}} M_{t} \rightarrow M_{\mathfrak{p}}
$$

is an isormophism of A-modules.
3. Show that for any short exact sequence of A-modules

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0
$$

and any $t \in S$, the sequence

$$
0 \longrightarrow M^{\prime}\left[\frac{1}{t}\right] \longrightarrow M\left[\frac{1}{t}\right] \longrightarrow M^{\prime \prime}\left[\frac{1}{t}\right] \longrightarrow 0
$$

is exact.
4. Deduce that for any short exact sequence of A-modules

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0
$$

the sequence of A-modules obtained after applying the functor $-\otimes_{A} A_{\mathfrak{p}}$:

$$
0 \longrightarrow M^{\prime} \otimes_{A} A_{\mathfrak{p}} \longrightarrow M \otimes_{A} A_{\mathfrak{p}} \longrightarrow M^{\prime \prime} \otimes_{A} A_{\mathfrak{p}} \longrightarrow 0
$$

is exact.

Exercise 2

Let \mathcal{C} be a category with an initial object denoted $\alpha_{\mathcal{C}}$ and a terminal object denoted $\omega_{\mathcal{C}}$. Let \mathcal{I} be the empty category. Let $F: \mathcal{I} \rightarrow \mathcal{C}$ and $G: \mathcal{I}^{\text {op }} \rightarrow \mathcal{C}$ be two functors. Show that:

$$
\begin{align*}
& \underset{\mathcal{I}}{\lim } F=\alpha_{\mathcal{C}} \tag{1}\\
& {\underset{\mathcal{I}}{ }}_{\lim G}=\omega_{\mathcal{C}} . \tag{2}
\end{align*}
$$

Exercise 3

Let \mathcal{C} be a category. The category \mathcal{C} is cartesian if the following holds :
(1) \mathcal{C} has a final object, denoted $\omega_{\mathcal{C}}$.
(2) For all X and Y in \mathcal{C}, the product $X \prod Y$ exists.

A category is said cocartesian if its opposite category is cartesian, and bicartesian if it is cartesian and cocartesian.

1. Show that \mathcal{C} is cocartesian if and only if the following holds
(a) \mathcal{C} has an initial object, denoted $\alpha_{\mathcal{C}}$.
(b) For all X and Y in \mathcal{C}, the coproduct $X \amalg Y$ exists.
2. Suppose \mathcal{C} is cartesian. Prove that for any $X \in \mathcal{C}$, the objects $X \prod \omega_{\mathcal{C}}, \omega_{\mathcal{C}} \prod X$ and X are isomorphic.
3. Suppose that \mathcal{C} is a cartesian category. Let $f: X \rightarrow Y$ and $a: A \rightarrow B$ be morphisms. Prove that there is a unique morphism $\phi: X \prod A \rightarrow Y \prod B$ such that:

$$
\left\{\begin{aligned}
f \pi_{X} & =\pi_{Y} \phi \\
a \pi_{A} & =\pi_{B} \phi
\end{aligned}\right.
$$

where the $\pi^{\prime} s$ are the canonical morphisms

$$
\left\{\begin{array}{l}
\pi_{X}: X \prod Y \rightarrow X, \\
\pi_{Y}: X \prod Y \rightarrow Y \\
\pi_{A}: A \prod B \rightarrow A \\
\pi_{B}: A \prod B \rightarrow B
\end{array}\right.
$$

The morphism ϕ will be denoted $f \times a$.
4. Let \mathcal{C} be a cartesian category. To simplify the notations, for A and B of \mathcal{C} we will write $A \times B$ instead of $A \prod B$ and, if $A \coprod B$ exists it will be denoted $A+B$. For two objects A and B of \mathcal{C}, denote by $\mathfrak{E x p}(\mathcal{C})_{A, B}$ the category whose objects are diagrams (in \mathcal{C}):

$$
X \times A \xrightarrow{f} B
$$

and a morphism between $X \times A \xrightarrow{f} B$ and $Y \times A \xrightarrow{g} B$ consists of a morphism $\phi \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ such that the diagram :

commutes. Let A and B be two objects of \mathcal{C}. If the category $\mathfrak{E x p}(\mathcal{C})_{A, B}$ has a final object, we will denote it by $B^{A} \times A \xrightarrow{e} B$, where $B^{A} \in \mathcal{C}$ and $e \in \operatorname{Hom}_{\mathcal{C}}\left(B^{A} \times A, B\right)$.

Show that $\mathfrak{S e t}^{\text {et }}$ is a bicartesian category. Prove that if A, B are two sets, the category $\mathfrak{E x p}(\mathfrak{S e t})_{A, B}$ has a final object (construct B^{A} and the morphism $\left.e\right)$.
5. From now on \mathcal{C} is a bicartesian category such that for any $A, B \in \mathcal{C}$, the category $\mathfrak{E x p}(\mathcal{C})_{A, B}$ admits a final object.
a. Show that for any object $X, Y, Z \in \mathcal{C}$, we have an isomorphism :

$$
\operatorname{Hom}_{\mathcal{C}}(X \times Y, Z) \simeq \operatorname{Hom}_{\mathcal{C}}\left(X, Z^{Y}\right)
$$

b. From now on, we fix three objects A, B and C of \mathcal{C}. Prove that there is a canonical morphism :

$$
\phi:(A \times C)+(B \times C) \rightarrow(A+B) \times C .
$$

c. Show that we have a canonical morphism :

$$
\bar{\psi}: A+B \rightarrow((A \times C)+(B \times C))^{C} .
$$

And show that it correponds uniquely to a morphism ψ :

$$
\psi:(A+B) \times C \rightarrow(A \times C)+(B \times C) .
$$

d. Prove that $\psi \circ \phi=\operatorname{Id}_{(A \times C)+(B \times C)}$.
e. Prove that $\phi \circ \psi=\operatorname{Id}_{(A+B) \times C}$.

