HOMOLOGICAL ALGEBRA - FINAL EXAM

FRANCK DORAY

Solution of Exercise 1. 1. Given an $\alpha \in \operatorname{Hom}_{\mathcal{C}^{\vee}}\left(h^{\vee}(X), F\right)$, we have $\alpha_{X}: \operatorname{Hom}_{\mathcal{C}}(X, X) \rightarrow F(X)$. Hence we define a morphism of sets $\phi:$

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{C}^{\vee}}\left(h^{\vee}(X), F\right) & \rightarrow F(X) \\
\alpha & \mapsto \alpha_{X}\left(\operatorname{Id}_{X}\right) .
\end{aligned}
$$

Conversely, let $a \in F(X)$. For any object $Y \in \mathcal{C}$, define a morphism α_{Y} :

$$
\begin{array}{clcc}
\alpha_{Y}: \quad \operatorname{Hom}_{\mathcal{C}}(Y, X) & \rightarrow & F(Y) \\
f & \mapsto & F(f)(a)
\end{array}
$$

The collection of $\left(\alpha_{Y}\right)_{Y}$ defines a natural transformation $\operatorname{Hom}_{\mathcal{C}}(-, X) \rightarrow$ $F(-)$ and hence we have a morphism of sets ψ :

$$
\begin{array}{rllc}
\psi: \quad F(X) & \rightarrow & \operatorname{Hom}_{\mathcal{C}}\left(h_{\mathcal{C}}^{\vee}(X), F\right) \\
a & \mapsto & \left(\alpha_{Y}\right)_{Y}
\end{array}
$$

It is straightforward to check that $\phi \circ \psi=\operatorname{Id}_{F X}$ and $\psi \circ \phi=$ $\mathrm{Id}_{\operatorname{Hom}_{\mathcal{C} \vee}\left(h_{\mathcal{C}}^{\vee}(X), F\right)}$.
2. Set $F=h(Y)$, we have, thanks to the question 1. a bijection:

$$
\operatorname{Hom}_{\mathcal{C} \vee}(h(X), h(Y)) \rightarrow h(Y)(X)=\operatorname{Hom}_{\mathcal{C}}(X, Y) .
$$

This means that h is full faithful.
3. If $f: X \rightarrow Y$ is an isomorphism, it is obvious that for any W the induced map:

$$
\operatorname{Hom}_{\mathcal{C}}(W, X) \rightarrow \operatorname{Hom}_{\mathcal{C}}(W, Y)
$$

is an isomorphism. Conversely, the morphism $f: X \rightarrow Y$ gives a morphism $h(f): h(X) \rightarrow h(Y)$ which is an isomorphism by hypotheses. Denote by G the inverse of $h(f)$. Since the functor $h: \mathcal{C} \rightarrow \mathcal{C}^{\vee}$ is full faithfull, there exists a unique morphism $g: Y \rightarrow X$, such that $h(g)=G$. Moreover we have

$$
\begin{aligned}
g \circ f=\operatorname{Id}_{X} & \Longleftrightarrow h(g \circ f)=\operatorname{Id}_{h(X)}, \\
& \Longleftrightarrow h(g) h(f)=\operatorname{Id}_{h(X)} .
\end{aligned}
$$

Since $h(g)$ is an inverse of $h(f)$ we get $g \circ f=\operatorname{Id}_{X}$ and likewise $f \circ g=\operatorname{Id}_{Y}$.

Solution of Exercise 2 (Category $\mathfrak{R i n g}$). 1. Let $\phi, \psi: \mathbf{Q} \rightarrow A$ be two ring homomorphisms such that $\phi i=\psi i$ where i is the natural morphism $\mathbf{Z} \rightarrow \mathbf{Q}$. Let $n \geqslant 1$ be an integer. We must have $n \phi(1 / n)=$
$\phi(1)=1=n \psi(1 / n)$, hence $\phi(1 / n)=\psi(1 / n)=1 / n \in A$. Thus ϕ and ψ agree and i is an epimorphism.
2. Let $f: A \rightarrow B$ be a monomorphism. Suppose that the map of the underlying sets is not an injection. There exist two different elements in $A a_{1}$ and a_{2} such that $f\left(a_{1}\right)=f\left(a_{2}\right)$. Define two morphisms ϕ_{i} for $i=1,2$

$$
\begin{array}{rll}
\mathbf{Z}[T] & \rightarrow A \\
T & \mapsto & a_{i}
\end{array}
$$

By defintion the two morphisms are different and $f \phi_{1}=f \phi_{2}$. Hence f is not a monomorphism. Contradiction.

Solution of Exercise 3 (A bit of analysis). 1. The first group is the kernel of the morphism $d: C^{\infty}(I) \rightarrow C^{\infty}(I)$, the constant functions. So it is isomorphic to \mathbf{R}. The second group is the cokernel of d. But if f is a \mathcal{C}^{∞} function on I, it admits a primitive. Therefore the cokernel of d is trivial.
2. The first group, as above, is the kernel of d. Since the only constant function on I with compact support is the 0 function, we get that the first cohomology group is 0 . If f has a compact support then $d(f)$ as well and $\int_{I} d f=0$. The converse is true, if h is a function on I with compact support such that $\int_{I} h=0$ then there exists a function H with compact support with $H^{\prime}=h$. Just take $H(x)=\int_{t=x_{0}}^{t=x} h(t) d f$ for x_{0} sufficiently closed to 0 . Hence this shows that the second cohomology group is isomorphic to \mathbf{R}.
Solution of Exercise 4 (Filtrant categories). 1. Let $\left(X_{1}, f_{1}\right)$ and (X_{2}, f_{2}) be two objects of \mathcal{C}_{Y}. Denote by X the coproduct of X_{1} and X_{2} in \mathcal{C} and by $r_{i}: X_{i} \rightarrow X$ for $i=1,2$ the two canonical morphisms. Since F is right exact, the coproduct of $F X_{1}$ and $F X_{2}$ exists in \mathcal{D} and is $F X$. By construction of the coproduct we get morphisms

$$
\left\{\begin{array}{l}
\rho_{1}: F X_{1} \rightarrow F X, \\
\rho_{2}: F X_{2} \rightarrow F X
\end{array}\right.
$$

Furthermore, the two morphisms $f_{1}: F X_{1} \rightarrow Y$ and $f_{2}: F X_{2} \rightarrow Y$ yield a morphism $F X \rightarrow Y$ such that

$$
\left\{\begin{array}{l}
f \rho_{1}=f_{1}, \\
f \rho_{2}=f_{2}
\end{array}\right.
$$

Thus we have the following diagram in \mathcal{C}_{Y} :

Let $\left(X_{1}, f_{1}\right) \xrightarrow[\psi]{\phi}\left(X_{2}, f_{2}\right)$ be two parallel morphisms in \mathcal{C}_{Y}. Since \mathcal{C} admits finite inductive limits, the cokernel of

$$
X_{1} \xrightarrow[\psi]{\stackrel{\phi}{\longrightarrow}} X_{2}
$$

exists, denote it by C and by $p_{i}: X_{i} \rightarrow C$ the canonical morphisms associated to it. As above, we know that the cokernel of:

$$
F X_{1} \xrightarrow[F \psi]{\stackrel{F \phi}{\longrightarrow}} F X_{2}
$$

exists and is $F C$. The two morphisms f_{1} and f_{2} yields a morphism $f: F C \rightarrow Y$ and we get as above the following diagram in \mathcal{C}_{Y} :

$$
\left(X_{1}, f_{1}\right) \xrightarrow[\psi]{\stackrel{\phi}{\longrightarrow}}\left(X_{2}, f_{2}\right) \xrightarrow{p_{2}}(X, f)
$$

such that $p_{2} \phi=p_{2} \psi$.
2. Denote by G a right adjoint of F, We have a natural isomorphism of bifunctors:

$$
\theta_{X, Y}: \operatorname{Hom}_{\mathcal{D}}(F X, Y) \rightarrow \operatorname{Hom}_{\mathcal{C}}(X, G Y)
$$

Let $Y \in \mathcal{D}$. The category \mathcal{C}_{Y} is non-empty since $\left(G Y, \theta_{G Y, Y}^{-1}\left(\operatorname{Id}_{G Y}\right)\right)$ is an object of it. Given two objects $\left(X_{1}, f_{1}\right)$ and $\left(X_{2}, f_{2}\right)$ of \mathcal{C}_{Y}. we have in \mathcal{C}_{Y} :

Likewise given two parallel morphisms in \mathcal{C}_{Y} :

$$
\left(X_{1}, f_{1}\right) \xrightarrow[\psi]{\stackrel{\phi}{\longrightarrow}}\left(X_{2}, f_{2}\right)
$$

we have a morphism $\theta_{X_{2}, Y}^{-1}\left(f_{2}\right):\left(X_{2}, f_{2}\right) \rightarrow\left(G Y, \theta_{G Y, Y}^{-1}\left(\operatorname{Id}_{G Y}\right)\right)$ and we compute:

$$
\theta_{X_{2}, Y}^{-1}\left(f_{2}\right) \phi=\theta_{X_{2}, Y}^{-1}\left(f_{2}\right) \psi
$$

Solution of Exercise 5 (Ext of Abelian groups). 1. Let $n \mathbf{Z}$ be an ideal of \mathbf{Z}. Suppose we have a map $f: n \mathbf{Z} \rightarrow I / X$. We have $f(n)=i+X$ for an $i \in I$. Since I is injective the morphism :

$$
\begin{array}{lll}
n \mathbf{Z} & \rightarrow & I \\
n & \mapsto & i
\end{array}
$$

extends to a morphism $\mathbf{Z} \rightarrow I$. Hence there exists a $j \in I$ such that $n j=i$. Thus we can extend $f:$

$$
\begin{array}{rrr}
\mathbf{Z} & \rightarrow & I / X \\
1 & \mapsto & j+X
\end{array}
$$

2. Since \mathbf{Z} has enough injectives, there exists an injective Z-module I and a monomorphism

$$
N \rightarrow I
$$

Thanks to the fist question, the complex

$$
I \longrightarrow I / N \longrightarrow 0 \longrightarrow
$$

is an injective resolution of N. Therefore $\operatorname{Ext}_{A}^{i}(M, N)$ is 0 for $i \geqslant 2$.
Solution of Exercise 6 (Some Ext's). 1. a. For a given i, the groups $\operatorname{Ext}_{A}^{i}(A, M)$ is the i th left derived functor of

$$
\begin{array}{ll}
A-\mathfrak{M o d} & \rightarrow A-\mathfrak{M o d} \\
X & \rightarrow \operatorname{Hom}_{A}(A, X)=X
\end{array}
$$

which is an exact functor. Hence $\forall i>0, \operatorname{Ext}_{A}^{i}(A, M)=0$
b. Since x is not a zero divisor, we have a short exact sequence

$$
0 \longrightarrow A \xrightarrow{\times x} A \longrightarrow A /(x) \longrightarrow 0 .
$$

If we apply the functor $M \mapsto \operatorname{Hom}_{A}(-, M)$ we get a long exact sequence:

$$
\left.\operatorname{Ext}_{A}^{i}(A / x, M) \longrightarrow \operatorname{Ext}_{A}^{i}(A, M) \longrightarrow \operatorname{Ext}_{A}^{i}(A, M)\right)
$$

$\longrightarrow \operatorname{Ext}^{i+1}(A / x, M) \longrightarrow \operatorname{Ext}_{A}^{i+1}(A, M) \longrightarrow \operatorname{Ext}_{A}^{i+1}(A, M)$
Hence for $i \geqslant 2, \operatorname{Ext}^{i}(A / x, M)=0$. Of course $\operatorname{Ext}^{0}(A / x, A)=$ $\operatorname{Hom}_{A}(A / x, M)$. Furthermore the module $\operatorname{Ext}_{A}^{1}(A /(x), M)$ is the cokernel of the morphism

$$
\operatorname{Hom}_{A}(A, M) \xrightarrow{\times x} \operatorname{Hom}_{A}(A, M) .
$$

Hence $\operatorname{Ext}_{A}^{1}(A /(x), M)=M / x M$.
2. a. All the groups are zero, except H_{0}, the cokernel of $A \oplus A \rightarrow A$ which equals to $A /\left(x_{1}, x_{2}\right)=k$.
b. The above complex gives a projective resolution of k, hence $\operatorname{Ext}_{A}^{i}(k, A)=$ 0 for $i \geqslant 3$. Furthermore, the complex $\operatorname{Hom}_{A}\left(K_{\bullet}, A\right)$ is isomorphic to:

So we can compute :

$$
\left\{\begin{array}{l}
\operatorname{Ext}_{A}^{0}(k, A)=\operatorname{Hom}_{A}(k, A)=0, \\
\operatorname{Ext}_{A}^{1}(k, A)=0, \\
\operatorname{Ext}_{A}^{2}(k, A)=k, \\
\operatorname{Ext}_{A}^{i}(k, A)=0, i \geqslant 3
\end{array}\right.
$$

For $M^{\prime \prime}$ the question 1 b . gives:

$$
\left\{\begin{array}{l}
\operatorname{Ext}^{0}\left(M^{\prime \prime}, A\right)=\operatorname{Hom}_{A}\left(M^{\prime \prime}, A\right), \\
\operatorname{Ext}^{1}\left(M^{\prime \prime}, A\right)=A / x_{1} A=k\left[x_{2}\right], \\
\operatorname{Ext}^{i}\left(M^{\prime \prime}, A\right)=0, i \geqslant 2
\end{array}\right.
$$

Moreover, we have a short exact sequence:

$$
0 \longrightarrow k \xrightarrow{\times x_{1}} M \longrightarrow M^{\prime \prime} \longrightarrow 0 .
$$

So for any $i \geqslant 0$, we get a long exact sequence :

Hence for $i \geqslant 3$, we have $\operatorname{Ext}^{i}(M, A)=0$. For $i=1$, we have a long exact sequence:

So $k\left[x_{2}\right] \rightarrow \operatorname{Ext}_{A}^{1}(M, A)$ is an isomorphism. Furthemore, for $i=2$ we have:

So, $\operatorname{Ext}^{2}(M, A) \rightarrow k$ is an isomorphism. Of course $\operatorname{Ext}^{0}(M, A)=$ $\operatorname{Hom}_{A}(M, A)$.

