HOMOLOGICAL ALGEBRA - FINAL EXAM

FRANCK DORAY

Solution of Exercise 1. 1. Given an $\alpha \in \operatorname{Hom}_{\mathcal{C}^{\vee}}(h^{\vee}(X), F)$, we have $\alpha_X \colon \operatorname{Hom}_{\mathcal{C}}(X, X) \to F(X)$. Hence we define a morphism of sets ϕ :

$$\operatorname{Hom}_{\mathcal{C}^{\vee}}(h^{\vee}(X), F) \to F(X)$$

$$\alpha \mapsto \alpha_X(\operatorname{Id}_X).$$

Conversely, let $a \in F(X)$. For any object $Y \in \mathcal{C}$, define a morphism α_Y :

$$\begin{array}{rccc} \alpha_Y \colon & \operatorname{Hom}_{\mathcal{C}}(Y,X) & \to & F(Y) \\ & f & \mapsto & F(f)(a) \end{array}$$

The collection of $(\alpha_Y)_Y$ defines a natural transformation $\operatorname{Hom}_{\mathcal{C}}(-, X) \to F(-)$ and hence we have a morphism of sets ψ :

$$\psi \colon F(X) \to \operatorname{Hom}_{\mathcal{C}\vee}(h_{\mathcal{C}}^{\vee}(X), F)$$
$$a \mapsto (\alpha_{Y})_{Y}$$

It is straightforward to check that $\phi \circ \psi = \mathrm{Id}_{FX}$ and $\psi \circ \phi = \mathrm{Id}_{\mathrm{Hom}_{C^{\vee}}(h_{C}^{\vee}(X),F)}$.

2. Set F = h(Y), we have, thanks to the question 1. a bijection:

$$\operatorname{Hom}_{\mathcal{C}^{\vee}}(h(X), h(Y)) \to h(Y)(X) = \operatorname{Hom}_{\mathcal{C}}(X, Y).$$

This means that h is full faithful.

3. If $f: X \to Y$ is an isomorphism, it is obvious that for any W the induced map:

$$\operatorname{Hom}_{\mathcal{C}}(W, X) \to \operatorname{Hom}_{\mathcal{C}}(W, Y)$$

is an isomorphism. Conversely, the morphism $f: X \to Y$ gives a morphism $h(f): h(X) \to h(Y)$ which is an isomorphism by hypotheses. Denote by G the inverse of h(f). Since the functor $h: \mathcal{C} \to \mathcal{C}^{\vee}$ is full faithfull, there exists a unique morphism $g: Y \to X$, such that h(g) = G. Moreover we have

$$g \circ f = \mathrm{Id}_X \iff h(g \circ f) = \mathrm{Id}_{h(X)},$$

 $\iff h(g)h(f) = \mathrm{Id}_{h(X)}.$

Since h(g) is an inverse of h(f) we get $g \circ f = \mathrm{Id}_X$ and likewise $f \circ g = \mathrm{Id}_Y$.

Solution of Exercise 2 (Category \mathfrak{Ring}). 1. Let $\phi, \psi: \mathbf{Q} \to A$ be two ring homomorphisms such that $\phi i = \psi i$ where *i* is the natural morphism $\mathbf{Z} \to \mathbf{Q}$. Let $n \ge 1$ be an integer. We must have $n\phi(1/n) =$

FRANCK DORAY

 $\phi(1) = 1 = n\psi(1/n)$, hence $\phi(1/n) = \psi(1/n) = 1/n \in A$. Thus ϕ and ψ agree and *i* is an epimorphism.

2. Let $f: A \to B$ be a monomorphism. Suppose that the map of the underlying sets is not an injection. There exist two different elements in $A a_1$ and a_2 such that $f(a_1) = f(a_2)$. Define two morphisms ϕ_i for i = 1, 2

$$\begin{array}{cccc} \mathbf{Z}[T] & \to & A \\ T & \mapsto & a_i \end{array}$$

By definition the two morphisms are different and $f\phi_1 = f\phi_2$. Hence f is not a monomorphism. Contradiction.

- Solution of Exercise 3 (A bit of analysis). 1. The first group is the kernel of the morphism $d: C^{\infty}(I) \to C^{\infty}(I)$, the constant functions. So it is isomorphic to **R**. The second group is the cokernel of d. But if f is a \mathcal{C}^{∞} function on I, it admits a primitive. Therefore the cokernel of d is trivial.
- 2. The first group, as above, is the kernel of d. Since the only constant function on I with compact support is the 0 function, we get that the first cohomology group is 0. If f has a compact support then d(f) as well and $\int_I df = 0$. The converse is true, if h is a function on I with compact support such that $\int_I h = 0$ then there exists a function H with compact support with H' = h. Just take $H(x) = \int_{t=x_0}^{t=x} h(t) df$ for x_0 sufficiently closed to 0. Hence this shows that the second cohomology group is isomorphic to \mathbf{R} .
- Solution of Exercise 4 (Filtrant categories). 1. Let (X_1, f_1) and (X_2, f_2) be two objects of \mathcal{C}_Y . Denote by X the coproduct of X_1 and X_2 in \mathcal{C} and by $r_i: X_i \to X$ for i = 1, 2 the two canonical morphisms. Since F is right exact, the coproduct of FX_1 and FX_2 exists in \mathcal{D} and is FX. By construction of the coproduct we get morphisms

$$\begin{cases} \rho_1 \colon FX_1 \to FX, \\ \rho_2 \colon FX_2 \to FX \end{cases}$$

Furthermore, the two morphisms $f_1: FX_1 \to Y$ and $f_2: FX_2 \to Y$ yield a morphism $FX \to Y$ such that

$$\begin{cases} f\rho_1 = f_1, \\ f\rho_2 = f_2. \end{cases}$$

Thus we have the following diagram in C_Y :

 $\mathbf{2}$

Let $(X_1, f_1) \xrightarrow{\phi} (X_2, f_2)$ be two parallel morphisms in \mathcal{C}_Y . Since

 $\mathcal C$ admits finite inductive limits, the cokernel of

$$X_1 \xrightarrow[\psi]{\phi} X_2$$

exists, denote it by C and by $p_i: X_i \to C$ the canonical morphisms associated to it. As above, we know that the cokernel of:

$$FX_1 \xrightarrow{F\phi} FX_2$$

exists and is FC. The two morphisms f_1 and f_2 yields a morphism $f: FC \to Y$ and we get as above the following diagram in \mathcal{C}_Y :

$$(X_1, f_1) \xrightarrow{\phi}_{\psi} (X_2, f_2) \xrightarrow{p_2} (X, f)$$

such that $p_2\phi = p_2\psi$.

2. Denote by G a right adjoint of F, We have a natural isomorphism of bifunctors:

 $\theta_{X,Y}$: Hom_{\mathcal{D}}(FX,Y) \rightarrow Hom_{\mathcal{C}}(X,GY).

Let $Y \in \mathcal{D}$. The category \mathcal{C}_Y is non-empty since $(GY, \theta_{GY,Y}^{-1}(\mathrm{Id}_{GY}))$ is an object of it. Given two objects (X_1, f_1) and (X_2, f_2) of \mathcal{C}_Y . we have in \mathcal{C}_Y :

Likewise given two parallel morphisms in \mathcal{C}_Y :

$$(X_1, f_1) \xrightarrow[\psi]{\phi} (X_2, f_2)$$

we have a morphism $\theta_{X_2,Y}^{-1}(f_2)$: $(X_2, f_2) \to (GY, \theta_{GY,Y}^{-1}(\mathrm{Id}_{GY}))$ and we compute: -

$$\theta_{X_2,Y}^{-1}(f_2)\phi = \theta_{X_2,Y}^{-1}(f_2)\psi$$

Solution of Exercise 5 (Ext of Abelian groups). 1. Let $n\mathbf{Z}$ be an ideal of **Z**. Suppose we have a map $f: n\mathbf{Z} \to I/X$. We have f(n) = i + X

for an $i \in I$. Since I is injective the morphism :

$$\begin{array}{cccc} n\mathbf{Z} & \to & I \\ n & \mapsto & i \end{array}$$

extends to a morphism $\mathbf{Z} \to I$. Hence there exists a $j \in I$ such that nj = i. Thus we can extend f:

$$\begin{array}{rccc} \mathbf{Z} & \to & I/X \\ 1 & \mapsto & j+X \end{array}$$

2. Since \mathbf{Z} has enough injectives, there exists an injective \mathbf{Z} -module I and a monomorphism

 $N \rightarrow I.$

Thanks to the fist question, the complex

$$I \longrightarrow I/N \longrightarrow 0 \longrightarrow$$

is an injective resolution of N. Therefore $\operatorname{Ext}_A^i(M,N)$ is 0 for $i \ge 2$.

Solution of Exercise 6 (Some Ext's). 1. a. For a given *i*, the groups $\operatorname{Ext}_{A}^{i}(A, M)$ is the *i*th left derived functor of

$$\begin{array}{rcl} A - \mathfrak{Mod} & \to & A - \mathfrak{Mod} \\ X & \to & \operatorname{Hom}_A(A, X) = X \end{array}$$

which is an exact functor. Hence $\forall i > 0$, $\operatorname{Ext}_{A}^{i}(A, M) = 0$ b. Since x is not a zero divisor, we have a short exact sequence

 $0 \longrightarrow A \xrightarrow{\times x} A \longrightarrow A/(x) \longrightarrow 0 \; .$

If we apply the functor $M \mapsto \operatorname{Hom}_A(-, M)$ we get a long exact sequence:

$$\operatorname{Ext}_{A}^{i}(A/x, M) \longrightarrow \operatorname{Ext}_{A}^{i}(A, M) \longrightarrow \operatorname{Ext}_{A}^{i}(A, M)$$

$$\longrightarrow \operatorname{Ext}^{i+1}(A/x, M) \longrightarrow \operatorname{Ext}^{i+1}_A(A, M) \longrightarrow \operatorname{Ext}^{i+1}_A(A, M)$$

Hence for $i \ge 2$, $\operatorname{Ext}^{i}(A/x, M) = 0$. Of course $\operatorname{Ext}^{0}(A/x, A) = \operatorname{Hom}_{A}(A/x, M)$. Furthermore the module $\operatorname{Ext}^{1}_{A}(A/(x), M)$ is the cokernel of the morphism

$$\operatorname{Hom}_A(A, M) \xrightarrow{\times x} \operatorname{Hom}_A(A, M)$$
.

Hence $\operatorname{Ext}_{A}^{1}(A/(x), M) = M/xM.$

- 2. a. All the groups are zero, except H_0 , the cokernel of $A \oplus A \to A$ which equals to $A/(x_1, x_2) = k$.
 - b. The above complex gives a projective resolution of k, hence $\operatorname{Ext}_{A}^{i}(k, A) = 0$ for $i \ge 3$. Furthermore, the complex $\operatorname{Hom}_{A}(K_{\bullet}, A)$ is isomorphic to:

$$0 \longrightarrow A \xrightarrow{a \mapsto (ax_1, ax_2)} A \times A \xrightarrow{(a,b) \mapsto ax_1 - bx_2} A \longrightarrow 0 \ .$$

 $\mathbf{4}$

So we can compute :

$$\begin{array}{l} \operatorname{Ext}^{0}_{A}(k,A) = \operatorname{Hom}_{A}(k,A) = 0, \\ \operatorname{Ext}^{1}_{A}(k,A) = 0, \\ \operatorname{Ext}^{2}_{A}(k,A) = k, \\ \operatorname{Ext}^{i}_{A}(k,A) = 0, \ i \geq 3 \end{array}$$

For M'' the question 1b. gives:

$$\begin{cases} \operatorname{Ext}^{0}(M'', A) = \operatorname{Hom}_{A}(M'', A), \\ \operatorname{Ext}^{1}(M'', A) = A/x_{1}A = k[x_{2}], \\ \operatorname{Ext}^{i}(M'', A) = 0, \ i \ge 2. \end{cases}$$

Moreover, we have a short exact sequence:

$$0 \longrightarrow k \xrightarrow{\times x_1} M \longrightarrow M'' \longrightarrow 0$$

So for any $i \ge 0$, we get a long exact sequence :

$$\operatorname{Ext}_{A}^{i}(M'',A) \longrightarrow \operatorname{Ext}_{A}^{i}(M,A) \longrightarrow \operatorname{Ext}_{A}^{i}(k,A) \longrightarrow$$

$$\longrightarrow \operatorname{Ext}_{A}^{i+1}(M'', A) \longrightarrow \operatorname{Ext}_{A}^{i+1}(M, A) \longrightarrow \operatorname{Ext}_{A}^{i+1}(k, A).$$

Hence for $i \ge 3$, we have $\operatorname{Ext}^{i}(M, A) = 0$. For i = 1, we have a long exact sequence:

$$0 \longrightarrow \operatorname{Hom}(M'', A) \longrightarrow \operatorname{Hom}(M, A) \longrightarrow 0$$
$$(\longrightarrow k[x_2] \longrightarrow \operatorname{Ext}^1_A(M, A) \longrightarrow 0$$

So $k[x_2] \to \operatorname{Ext}^1_A(M, A)$ is an isomorphism. Furthemore, for i = 2 we have:

$$0 \longrightarrow \operatorname{Ext}^2(M, A) \longrightarrow k$$

$$0 \longrightarrow 0$$

. So, $\operatorname{Ext}^2(M,A) \to k$ is an isomorphism. Of course $\operatorname{Ext}^0_A(M,A) = \operatorname{Hom}_A(M,A)$.