
HOMOLOGICAL ALGEBRA - FINAL EXAM

FRANCK DORAY

Solution of Exercise 1. 1. Given an α ∈ HomC∨(h
∨(X), F ), we have

αX : HomC(X,X) → F (X). Hence we de�ne a morphism of sets φ :

HomC∨(h
∨(X), F ) → F (X)

α 7→ αX(IdX).

Conversely, let a ∈ F (X). For any object Y ∈ C, de�ne a mor-
phism αY :

αY : HomC(Y,X) → F (Y )
f 7→ F (f)(a)

The collection of (αY )Y de�nes a natural transformation HomC(−, X) →
F (−) and hence we have a morphism of sets ψ :

ψ : F (X) → HomC∨(h
∨
C (X), F )

a 7→ (αY )Y

It is straightforward to check that φ ◦ ψ = IdFX and ψ ◦ φ =
IdHomC∨ (h∨C (X),F ).

2. Set F = h(Y ), we have, thanks to the question 1. a bijection:

HomC∨(h(X), h(Y )) → h(Y )(X) = HomC(X, Y ).

This means that h is full faithful.
3. If f : X → Y is an isomorphism, it is obvious that for any W the

induced map:

HomC(W,X) → HomC(W,Y )

is an isomorphism. Conversely, the morphism f : X → Y gives a
morphism h(f) : h(X) → h(Y ) which is an isomorphism by hypothe-
ses. Denote by G the inverse of h(f). Since the functor h : C → C∨ is
full faithfull, there exists a unique morphism g : Y → X, such that
h(g) = G. Moreover we have

g ◦ f = IdX ⇐⇒ h(g ◦ f) = Idh(X),

⇐⇒ h(g)h(f) = Idh(X) .

Since h(g) is an inverse of h(f) we get g ◦ f = IdX and likewise
f ◦ g = IdY .

Solution of Exercise 2 (Category Ring). 1. Let φ, ψ : Q→ A be two
ring homomorphisms such that φi = ψi where i is the natural mor-
phism Z → Q. Let n > 1 be an integer. We must have nφ(1/n) =

1
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φ(1) = 1 = nψ(1/n), hence φ(1/n) = ψ(1/n) = 1/n ∈ A. Thus φ
and ψ agree and i is an epimorphism.

2. Let f : A → B be a monomorphism. Suppose that the map of the
underlying sets is not an injection. There exist two di�erent elements
in A a1 and a2 such that f(a1) = f(a2). De�ne two morphisms φi
for i = 1, 2

Z[T ] → A
T 7→ ai

By de�ntion the two morphisms are di�erent and fφ1 = fφ2. Hence
f is not a monomorphism. Contradiction.

Solution of Exercise 3 (A bit of analysis). 1. The �rst group is the
kernel of the morphism d : C∞(I) → C∞(I), the constant functions.
So it is isomorphic to R. The second group is the cokernel of d.
But if f is a C∞ function on I, it admits a primitive. Therefore the
cokernel of d is trivial.

2. The �rst group, as above, is the kernel of d. Since the only constant
function on I with compact support is the 0 function, we get that the
�rst cohomology group is 0. If f has a compact support then d(f) as
well and

∫
I
df = 0. The converse is true, if h is a function on I with

compact support such that
∫
I
h = 0 then there exists a function H

with compact support with H ′ = h. Just take H(x) =
∫ t=x

t=x0
h(t)df

for x0 su�ciently closed to 0. Hence this shows that the second
cohomology group is isomorphic to R.

Solution of Exercise 4 (Filtrant categories). 1. Let (X1, f1) and (X2, f2)
be two objects of CY . Denote by X the coproduct of X1 and X2 in C
and by ri : Xi → X for i = 1, 2 the two canonical morphisms. Since
F is right exact, the coproduct of FX1 and FX2 exists in D and is
FX. By construction of the coproduct we get morphisms{

ρ1 : FX1 → FX,
ρ2 : FX2 → FX

Furthermore, the two morphisms f1 : FX1 → Y and f2 : FX2 → Y
yield a morphism FX → Y such that{

fρ1 = f1,
fρ2 = f2.

Thus we have the following diagram in CY :

(X1, f1)
r1

%%JJJJJJJJJ

(X, f)

(X2, f2)

r2
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Let (X1, f1)
φ //

ψ
// (X2, f2) be two parallel morphisms in CY . Since

C admits �nite inductive limits, the cokernel of

X1

φ //

ψ
// X2

exists, denote it by C and by pi : Xi → C the canonical morphisms
associated to it. As above, we know that the cokernel of:

FX1

Fφ //

Fψ
// FX2

exists and is FC. The two morphisms f1 and f2 yields a morphism
f : FC → Y and we get as above the following diagram in CY :

(X1, f1)
φ //

ψ
// (X2, f2)

p2 // (X, f)

such that p2φ = p2ψ.
2. Denote by G a right adjoint of F , We have a natural isomorphism

of bifunctors:

θX,Y : HomD(FX, Y ) → HomC(X,GY ).

Let Y ∈ D. The category CY is non-empty since (GY, θ−1
GY,Y (IdGY ))

is an object of it. Given two objects (X1, f1) and (X2, f2) of CY . we
have in CY :

(X1, f1)
f1

((PPPPPPPPPPPP

(GY, θ−1
GY,Y (IdGY ))

(X2, f2)

f2

66nnnnnnnnnnnn

Likewise given two parallel morphisms in CY :

(X1, f1)
φ //

ψ
// (X2, f2)

we have a morphism θ−1
X2,Y

(f2) : (X2, f2) → (GY, θ−1
GY,Y (IdGY )) and

we compute:
θ−1
X2,Y

(f2)φ = θ−1
X2,Y

(f2)ψ.

Solution of Exercise 5 (Ext of Abelian groups). 1. Let nZ be an ideal
of Z. Suppose we have a map f : nZ→ I/X. We have f(n) = i+X
for an i ∈ I. Since I is injective the morphism :

nZ → I
n 7→ i
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extends to a morphism Z→ I. Hence there exists a j ∈ I such that
nj = i. Thus we can extend f :

Z → I/X
1 7→ j +X

2. Since Z has enough injectives, there exists an injective Z-module I
and a monomorphism

N → I.

Thanks to the �st question, the complex

I // I/N // 0 //

is an injective resolution of N . Therefore ExtiA(M,N) is 0 for i > 2.

Solution of Exercise 6 (Some Ext's). 1. a. For a given i, the groups
ExtiA(A,M) is the ith left derived functor of

A−Mod → A−Mod
X → HomA(A,X) = X

which is an exact functor. Hence ∀i > 0, ExtiA(A,M) = 0
b. Since x is not a zero divisor, we have a short exact sequence

0 // A
×x // A // A/(x) // 0 .

If we apply the functor M 7→ HomA(−,M) we get a long exact
sequence:

ExtiA(A/x,M) // ExtiA(A,M) // ExtiA(A,M) EDBC
GF@A

// Exti+1(A/x,M) // Exti+1
A (A,M) // Exti+1

A (A,M)

Hence for i > 2, Exti(A/x,M) = 0. Of course Ext0(A/x,A) =
HomA(A/x,M). Furthermore the module Ext1

A(A/(x),M) is the
cokernel of the morphism

HomA(A,M)
×x // HomA(A,M) .

Hence Ext1
A(A/(x),M) = M/xM.

2. a. All the groups are zero, except H0, the cokernel of A ⊕ A → A
which equals to A/(x1, x2) = k.

b. The above complex gives a projective resolution of k, hence ExtiA(k,A) =
0 for i > 3. Furthermore, the complex HomA(K•, A) is isomorphic
to:

0 // A
a 7→(ax1,ax2)

// A× A
(a,b) 7→ax1−bx2 // A // 0 .
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So we can compute :
Ext0

A(k,A) = HomA(k,A) = 0,
Ext1

A(k,A) = 0,
Ext2

A(k,A) = k,
ExtiA(k,A) = 0, i > 3

For M ′′ the question 1b. gives: Ext0(M ′′, A) = HomA(M ′′, A),
Ext1(M ′′, A) = A/x1A = k[x2],
Exti(M ′′, A) = 0, i > 2.

Moreover, we have a short exact sequence:

0 // k
×x1 // M // M ′′ // 0 .

So for any i > 0, we get a long exact sequence :

ExtiA(M ′′, A) // ExtiA(M,A) // ExtiA(k,A) EDBC
GF@A

// Exti+1
A (M ′′, A) // Exti+1

A (M,A) // Exti+1
A (k,A).

Hence for i > 3, we have Exti(M,A) = 0. For i = 1, we have a
long exact sequence:

0 // Hom(M ′′, A) // Hom(M,A) // 0 EDBC
GF@A

// k[x2] // Ext1
A(M,A) // 0

So k[x2] → Ext1
A(M,A) is an isomorphism. Furthemore, for i = 2

we have:

0 // Ext2(M,A) // k EDBC
GF@A

// 0 .

So, Ext2(M,A) → k is an isomorphism. Of course Ext0
A(M,A) =

HomA(M,A).


