Final Exam: 18 January 2008 Duration: 4 hours

Neither books, nor written notes are permitted. Please do not use pencils!

Exercise 1 (Yoneda's lemma). Let \mathcal{C} be a category. The category of functors from \mathcal{C}^{op} to \mathfrak{Set} will be denoted $\mathcal{C}^{\vee} = \mathfrak{Funct}(\mathcal{C}^{\text{op}}, \mathfrak{Set})$. Denote by h the following functor:

$$\begin{array}{rccc} h \colon & \mathcal{C} & \to & \mathcal{C}^{\vee} \\ & X & \mapsto & \operatorname{Hom}_{\mathcal{C}}(-, X) \end{array}$$

1. Let X be an object of \mathcal{C} and F be a functor $\mathcal{C}^{\mathrm{op}} \to \mathfrak{Set}$. Construct a bijective map

$$\phi \colon \operatorname{Hom}_{\mathcal{C}^{\vee}}(h(X), F) \to F(X),$$

and its inverse:

$$F(X) \to \operatorname{Hom}_{\mathcal{C}^{\vee}}(h(X), F).$$

- 2. Prove that the functor $h: \mathcal{C} \to \mathcal{C}^{\vee}$ is fully faithful.
- 3. Show that a morphism $X \xrightarrow{f} Y$ in \mathcal{C} is an isomorphism if and only if the the induced morphism

$$\operatorname{Hom}_{\mathcal{C}}(W, X) \xrightarrow{f \circ} \operatorname{Hom}_{\mathcal{C}}(W, Y)$$

is a bijective map for any $W \in \mathcal{C}$.

Exercise 2 (Category Ring). Denote by Ring the category of rings.

1. Show that the natural morphism $\mathbf{Z} \to \mathbf{Q}$ is an epimorphism in \mathfrak{Ring} . 2. Prove that a ring monomorphism $A \to B$ is an injection.

Exercise 3 (A bit of analysis). Let $I =]0, 1[\subset \mathbb{R}$. Recall that $\mathcal{C}^{\infty}(I)$ denotes the **R**-algebra of **R**-valued \mathcal{C}^{∞} functions on I, and $\mathcal{C}^{\infty}_{K}(I)$ is the ideal of functions with compact support.

1. Compute the cohomology groups of the complex

$$0 \longrightarrow \mathcal{C}^{\infty}(I) \xrightarrow{d} \mathcal{C}^{\infty}(I) \longrightarrow 0$$

where $d = \frac{d}{dx}$ is the usual derivation.

2. Compute the cohomology groups of the complex

$$0 \longrightarrow \mathcal{C}^{\infty}_{K}(I) \xrightarrow{d} \mathcal{C}^{\infty}_{K}(I) \longrightarrow 0 .$$

Exercise 4 (Filtrant categories). Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. For any $Y \in \mathcal{D}$ denote by \mathcal{C}_Y the category whose objects are pairs (X, f) where X is an object of \mathcal{C} and $f \in \operatorname{Hom}_{\mathcal{D}}(FX, Y)$, and a morphism between (X, f) and (X', f') consists of a morphism $\phi \in \operatorname{Hom}_{\mathcal{C}}(X, X')$ such that the following diagram

commutes, i.e. $f' \circ F \phi = f$. We say that F has the property \mathcal{R} if for any $Y \in \mathcal{D}$, the category \mathcal{C}_Y is filtrant¹.

- 1. Suppose that C admits finite inductive limits. Show that if F is right exact² then it has the property \mathcal{R} .
- 2. Suppose that F has a right adjoint Prove that the functor F has the property \mathcal{R} .
- **Exercise 5** (Ext of Abelian groups). 1. Let X be a Z-module. Show that for any injective Z-module I and any injective morphism $X \to I$, the quotient module I/X is injective³.
- 2. Prove that for any two **Z**-modules M and N, and any integer $i \ge 2$, we have

$$\operatorname{Ext}^{i}_{\mathbf{Z}}(M, N) = 0.$$

- **Exercise 6** (Some Ext's). 1. Let A be a commutative ring, and M be an A-module.
 - a. Show that for any i > 0, we have

$$\operatorname{Ext}_{A}^{i}(A, M) = 0.$$

b. Let $x \in A$ be an element of A, which is not a zero divisor. Compute $\operatorname{Ext}_{A}^{i}(A/(x), M)$ for all $i \ge 0$.

¹A category is filtrant if it is non-empty if for any two objects X and Y there exists a Z with morphisms $X \to Z$ and $Y \to Z$ and if finally for any two parallel morphisms $X \xrightarrow{g} Y$ there exist a morphism $h: Y \to Z$ such that hf = hg.

²A functor $\mathcal{C} \to \mathcal{D}$ where \mathcal{C} is a category admitting finite inductive limits is right exact if for any inductive system $(X_i)_{i \in \mathcal{I}}$ in \mathcal{C} indexed by a finite category \mathcal{I} , the limit of the induced inductive system $(F(X_i))_{i \in \mathcal{I}}$ in \mathcal{D} is represented by $F(\varinjlim X_i)$.

³One may use Baer's lemma: an *R*-module *J* is injective if and only if for any ideal $\mathfrak{a} \subset R$ the canonical morphism

$$\operatorname{Hom}_R(R,J) \to \operatorname{Hom}_R(\mathfrak{a},J)$$

is surjective.

- c. Let n, m be two integers ≥ 1 . Compute $\operatorname{Ext}^{i}_{\mathbf{Z}}(\mathbf{Z}/n\mathbf{Z}, \mathbf{Z}/m\mathbf{Z})$ for all $i \ge 0$.
- 2. Set $A = k[x_1, x_2]$ where k is a commutative ring. Consider the following A-modules:

$$\begin{cases} M = A/(x_1^2 A + x_1 x_2 A), \\ M'' = A/(x_1). \end{cases}$$

a. Compute the homology groups of the following complex K_{\bullet} :

$$0 \longrightarrow A \xrightarrow{a \mapsto (ax_2, -ax_1)} A \oplus A \xrightarrow{(a,b) \mapsto ax_1 + bx_2} A \longrightarrow 0 .$$

b. Compute for every i the groups $\operatorname{Ext}_A^i(k, A)$ and $\operatorname{Ext}_A^i(M'', A)$. Deduce $\operatorname{Ext}_A^i(M, A)$ for any $i \ge 0$.