
Exam Commutative Algebra: Solutions

2. (a) Let y ∈ S such that xy = 1. We need to show that y ∈ R. Assume
that y satisfies the integral equation

yn + a1y
n−1 + · · ·+ an = 0

with ai ∈ R. Multiply this equation with xn−1 to find

y = −a1 − · · · − anx
n−1.

The right hand side belongs to R, so y ∈ R.

(b) It suffices to show that an elementary tensor s′⊗t ∈ S ′⊗RT is integral
over S ⊗R T . Assume that s′ has integral equation

(s′)n + f(a1)(s
′)n−1 + · · ·+ f(an) = 0,

with ai ∈ S. Then s′ ⊗ t satisfies the integral equation

(s′ ⊗ t)n + (f(a1)⊗ t)(s′ ⊗ t)n−1 + · · ·+ (f(an)⊗ tn) = 0

by definition of the addition and multiplication in S ′ ⊗R T .

3. (a) i. We may assume that the primes in Ass(M) that do not meet U
are P1, . . . , Pt. By Theorem 3.10d

0 =
t⋂

i=1

Mi[U
−1]

is a minimal primary decomposition of 0 in M [U−1]. By Corol-
lary 2.6 localization commutes with finite intersections, so 0 =
(∩t

i=1Mi)[U
−1] in M [U−1]. If we take the inverse image under the

localization map ϕ : M → M [U−1], then it suffices to show that

ϕ−1

(( t⋂
i=1

Mi

)
[U−1]

)
=

t⋂
i=1

Mi.

It is obvious that the right hand side is contained in the left hand
side. For the other inclusion: take m ∈ M and assume that
ϕ(m) = m

1
equals m′

u
for m′ ∈ ∩t

i=1Mi, u ∈ U . Then there exists
a u′ ∈ U such that u′um = u′m′. In particular u′um ∈ ∩t

i=1Mi.
The following lemma shows that this implies m ∈ ∩t

i=1Mi.

Lemma. Let Mi be a Pi-primary submodule of an R-module M
and U a multiplicatively closed subset of R not meeting Pi. Then
for all u ∈ U and m ∈ M we have: um ∈ Mi ⇒ m ∈ Mi.

Proof. By definition Pi is the only associated prime of M/Mi.
Theorem 3.1b implies that the elements of U act as nonzerodi-
visors on M/Mi. And this is a restatement of what we need to
show. �

1



ii. Let Pt+1, . . . , Pn be the associated primes of M that meet U . Let
I = ∩n

i=t+1Pi. Then I ∩ U 6= ∅ since we can take ui ∈ Pi ∩ U for
i = t + 1, . . . , n and then

∏n
i=t+1 ui ∈ I ∩ U . So for an associated

prime of M we have: not containing I and being disjoint from
U are equivalent. Proposition 3.13a now shows that H0

I (M) =
∩t

i=1Mi.

(b) Let R be the ring k[x1,x2,x3,...]

(x1,x2
2,x3

3,...)
with k a field. Consider R as R-module.

Since R has only one prime ideal, namely M = (x1, x2, x3, . . .), it
suffices to show that this is not the annihilator of an element of R.
Indeed, a coset in R may be uniquely represented by a polynomial f
in variables x1, . . . , xn for some n ≥ 1 and with degxi

(f) < i. But then
xn+1 does not belong to the annihilator of f + (x1, x

2
2, x

3
3, . . .).

4. (a) If grM(R) is a polynomial ring in d variables, then dimk
M
M2 = d and

thus by definition R is regular. Conversely, assume that R is regu-
lar. Choose regular parameters y1, . . . , yd in M (so these generate the
maximal ideal). Define a k-algebra homomorphism

ϕ : k[x1, . . . , xd] → grM(R)

by mapping xi to yi. This is obviously a surjective morphism of graded
rings. Assume that ker ϕ is nontrivial. Choose a nonzero element g ∈
ker ϕ. Then each homogeneous piece of g is sent to 0 by ϕ since it is a
morphism of graded rings. So ker ϕ contains a nonzero (and necessarily
nonconstant) homogeneous polynomial f . Let f have degree e > 0.
The number of monomials of degree n in k[x1, . . . , xd] equals

(
n+d−1

d−1

)
.

For n ≥ e the dimension (as k-vector space) of the homogeneous piece

of degree n in the graded ring k[x1,...,xd]
(f)

equals(
n + d− 1

d− 1

)
−

(
n− e + d− 1

d− 1

)
So

dimk
Mn

Mn+1
≤

(
n + d− 1

d− 1

)
−

(
n− e + d− 1

d− 1

)
for n ≥ e. This implies that the Hilbert polynomial of R has degree
≤ d−2 and thus dim R ≤ d−1 (Theorem 12.1) which is a contradiction.

(b) The completion of R with respect to M is also a Noetherian local ring
of the same dimension and it has the same associated graded ring as R
(we use Theorem 7.1 and Corollary 10.12). So (a) immediately gives
the solution.
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