2.

3.

Exam Commutative Algebra: Solutions

(a) Let y € S such that zy = 1. We need to show that y € R. Assume

that y satisfies the integral equation

y a4t =0

with a; € R. Multiply this equation with 2"~ to find

Yy=—a; — - —apa" "

The right hand side belongs to R, so y € R.

(b) Tt suffices to show that an elementary tensor s’ ®t € S'®@xT is integral

(a)

over S ®r T. Assume that s’ has integral equation

()" + fla)(s)" ™+ + flan) =0,

with a; € S. Then s’ ® t satisfies the integral equation

()" + (fla) @) (s @)+ + (fla,) @) =0

by definition of the addition and multiplication in S’ ®g T

i. We may assume that the primes in Ass(M) that do not meet U

are Py, ..., P,. By Theorem 3.10d

0= ﬁMi[U‘l]

is a minimal primary decomposition of 0 in M[U~']. By Corol-
lary 2.6 localization commutes with finite intersections, so 0 =
(N, M)[U™Y] in M[U™Y]. TIf we take the inverse image under the
localization map ¢ : M — M|[U™!], then it suffices to show that

o ! <(fj1 M;) [U_l]) — @M

It is obvious that the right hand side is contained in the left hand
side. For the other inclusion: take m € M and assume that
@(m) = % equals %/ for m’ € Ni_;M;, u € U. Then there exists
a v € U such that v'um = «'m/. In particular v'um € Ni_; M;.
The following lemma shows that this implies m € N._, M;.

Lemma. Let M; be a P;-primary submodule of an R-module M
and U a multiplicatively closed subset of R not meeting P;. Then

for all u € U and m € M we have: um € M; = m € M,.
Proof. By definition P; is the only associated prime of M/M,;.
Theorem 3.1b implies that the elements of U act as nonzerodi-

visors on M /M;. And this is a restatement of what we need to
show. 0



(b)

ii. Let P,yq,..., P, be the associated primes of M that meet U. Let
I'=n7,, P Then I NU # 0 since we can take u; € P,NU for
t=1t+1,...,n and then H?:tﬂ u; € INU. So for an associated
prime of M we have: not containing /I and being disjoint from
U are equivalent. Proposition 3.13a now shows that HY(M) =
Ni_ M;.

Let R be the ring klz1szass, ] with k a field. Consider R as R-module.

(x1,23,23,...)
Since R has only one prime ideal, namely M = (z1,x9,x3,...), it

suffices to show that this is not the annihilator of an element of R.
Indeed, a coset in R may be uniquely represented by a polynomial f
in variables 1, ..., x, for some n > 1 and with deg, (f) < i. But then
Tpy1 does not belong to the annihilator of f + (z1, 23, 73, ...).

If gry(R) is a polynomial ring in d variables, then dimy 25 = d and
thus by definition R is regular. Conversely, assume that R is regu-
lar. Choose regular parameters y1, ...,y in M (so these generate the
maximal ideal). Define a k-algebra homomorphism

¢ k[xy, ... xq] — gry(R)

by mapping x; to y;. This is obviously a surjective morphism of graded
rings. Assume that ker ¢ is nontrivial. Choose a nonzero element g €
ker . Then each homogeneous piece of g is sent to 0 by ¢ since it is a
morphism of graded rings. So ker ¢ contains a nonzero (and necessarily
nonconstant) homogeneous polynomial f. Let f have degree e > 0.
The number of monomials of degree n in k[zy, ..., x4] equals (”ﬁ;l).
For n > e the dimension (as k-vector space) of the homogeneous piece
klz1,...,zq)

of degree n in the graded ring =" equals

n+d-—1 B n—e+d-—1
d—1 d—1

di M" < n+d-—1 n—e+d-—1

imy —— -

Pyt =\ a-1 d—1

for n > e. This implies that the Hilbert polynomial of R has degree
< d—2 and thus dim R < d—1 (Theorem 12.1) which is a contradiction.

The completion of R with respect to M is also a Noetherian local ring
of the same dimension and it has the same associated graded ring as R
(we use Theorem 7.1 and Corollary 10.12). So (a) immediately gives
the solution.



