Exam Commutative Algebra: Solutions

2. (a) Let $y \in S$ such that $x y=1$. We need to show that $y \in R$. Assume that y satisfies the integral equation

$$
y^{n}+a_{1} y^{n-1}+\cdots+a_{n}=0
$$

with $a_{i} \in R$. Multiply this equation with x^{n-1} to find

$$
y=-a_{1}-\cdots-a_{n} x^{n-1}
$$

The right hand side belongs to R, so $y \in R$.
(b) It suffices to show that an elementary tensor $s^{\prime} \otimes t \in S^{\prime} \otimes_{R} T$ is integral over $S \otimes_{R} T$. Assume that s^{\prime} has integral equation

$$
\left(s^{\prime}\right)^{n}+f\left(a_{1}\right)\left(s^{\prime}\right)^{n-1}+\cdots+f\left(a_{n}\right)=0
$$

with $a_{i} \in S$. Then $s^{\prime} \otimes t$ satisfies the integral equation

$$
\left(s^{\prime} \otimes t\right)^{n}+\left(f\left(a_{1}\right) \otimes t\right)\left(s^{\prime} \otimes t\right)^{n-1}+\cdots+\left(f\left(a_{n}\right) \otimes t^{n}\right)=0
$$

by definition of the addition and multiplication in $S^{\prime} \otimes_{R} T$.
3. (a) i. We may assume that the primes in $\operatorname{Ass}(M)$ that do not meet U are P_{1}, \ldots, P_{t}. By Theorem 3.10d

$$
0=\bigcap_{i=1}^{t} M_{i}\left[U^{-1}\right]
$$

is a minimal primary decomposition of 0 in $M\left[U^{-1}\right]$. By Corollary 2.6 localization commutes with finite intersections, so $0=$ $\left(\cap_{i=1}^{t} M_{i}\right)\left[U^{-1}\right]$ in $M\left[U^{-1}\right]$. If we take the inverse image under the localization map $\varphi: M \rightarrow M\left[U^{-1}\right]$, then it suffices to show that

$$
\varphi^{-1}\left(\left(\bigcap_{i=1}^{t} M_{i}\right)\left[U^{-1}\right]\right)=\bigcap_{i=1}^{t} M_{i} .
$$

It is obvious that the right hand side is contained in the left hand side. For the other inclusion: take $m \in M$ and assume that $\varphi(m)=\frac{m}{1}$ equals $\frac{m^{\prime}}{u}$ for $m^{\prime} \in \cap_{i=1}^{t} M_{i}, u \in U$. Then there exists a $u^{\prime} \in U$ such that $u^{\prime} u m=u^{\prime} m^{\prime}$. In particular $u^{\prime} u m \in \cap_{i=1}^{t} M_{i}$. The following lemma shows that this implies $m \in \cap_{i=1}^{t} M_{i}$.
Lemma. Let M_{i} be a P_{i}-primary submodule of an R-module M and U a multiplicatively closed subset of R not meeting P_{i}. Then for all $u \in U$ and $m \in M$ we have: $u m \in M_{i} \Rightarrow m \in M_{i}$.
Proof. By definition P_{i} is the only associated prime of M / M_{i}. Theorem 3.1b implies that the elements of U act as nonzerodivisors on M / M_{i}. And this is a restatement of what we need to show.
ii. Let P_{t+1}, \ldots, P_{n} be the associated primes of M that meet U. Let $I=\cap_{i=t+1}^{n} P_{i}$. Then $I \cap U \neq \emptyset$ since we can take $u_{i} \in P_{i} \cap U$ for $i=t+1, \ldots, n$ and then $\prod_{i=t+1}^{n} u_{i} \in I \cap U$. So for an associated prime of M we have: not containing I and being disjoint from U are equivalent. Proposition 3.13a now shows that $H_{I}^{0}(M)=$ $\cap_{i=1}^{t} M_{i}$.
(b) Let R be the ring $\frac{k\left[x_{1}, x_{2}, x_{3}, \ldots\right]}{\left(x_{1}, x_{2}^{2}, x_{3}^{3}, \ldots\right)}$ with k a field. Consider R as R-module. Since R has only one prime ideal, namely $M=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$, it suffices to show that this is not the annihilator of an element of R. Indeed, a coset in R may be uniquely represented by a polynomial f in variables x_{1}, \ldots, x_{n} for some $n \geq 1$ and with $\operatorname{deg}_{x_{i}}(f)<i$. But then x_{n+1} does not belong to the annihilator of $f+\left(x_{1}, x_{2}^{2}, x_{3}^{3}, \ldots\right)$.
4. (a) If $\operatorname{gr}_{M}(R)$ is a polynomial ring in d variables, then $\operatorname{dim}_{k} \frac{M}{M^{2}}=d$ and thus by definition R is regular. Conversely, assume that R is regular. Choose regular parameters y_{1}, \ldots, y_{d} in M (so these generate the maximal ideal). Define a k-algebra homomorphism

$$
\varphi: k\left[x_{1}, \ldots, x_{d}\right] \rightarrow \operatorname{gr}_{M}(R)
$$

by mapping x_{i} to y_{i}. This is obviously a surjective morphism of graded rings. Assume that $\operatorname{ker} \varphi$ is nontrivial. Choose a nonzero element $g \in$ $\operatorname{ker} \varphi$. Then each homogeneous piece of g is sent to 0 by φ since it is a morphism of graded rings. So ker φ contains a nonzero (and necessarily nonconstant) homogeneous polynomial f. Let f have degree $e>0$. The number of monomials of degree n in $k\left[x_{1}, \ldots, x_{d}\right]$ equals $\binom{n+d-1}{d-1}$. For $n \geq e$ the dimension (as k-vector space) of the homogeneous piece of degree n in the graded ring $\frac{k\left[x_{1}, \ldots, x_{d}\right]}{(f)}$ equals

$$
\binom{n+d-1}{d-1}-\binom{n-e+d-1}{d-1}
$$

So

$$
\operatorname{dim}_{k} \frac{M^{n}}{M^{n+1}} \leq\binom{ n+d-1}{d-1}-\binom{n-e+d-1}{d-1}
$$

for $n \geq e$. This implies that the Hilbert polynomial of R has degree $\leq d-2$ and thus $\operatorname{dim} R \leq d-1$ (Theorem 12.1) which is a contradiction.
(b) The completion of R with respect to M is also a Noetherian local ring of the same dimension and it has the same associated graded ring as R (we use Theorem 7.1 and Corollary 10.12). So (a) immediately gives the solution.

