MEASURE THEORY, FALL 2010

Exam 25/02/2011 (max 10 points)

- (1) [2 points] Suppose Ω is a non-empty set, and \mathcal{A} is a collection of subsets Ω such that
 - $\Omega \in \mathcal{A}$,
 - $A, B \in \mathcal{A}$ implies that $A \cap B^c \in \mathcal{A}$.

Show that \mathcal{A} is an algebra.

- (2) [2 points]
 - Suppose $f : \mathbb{R} \to \mathbb{R}$ is non-decreasing. Prove that f is Borel measurable.
 - Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable, i.e., f'(x) is defined for every $x \in \mathbb{R}$. Prove that f' is a Borel measurable function.

(3) [2 points] State the dominated convergence theoreom, and use this theorem to find

$$\lim_{n \to \infty} \int_1^\infty f_n(x) dx,$$

where

$$f_n(x) = \frac{\sqrt{x}\log(nx)\sin(nx)}{1+nx^3}, \quad n \in \mathbb{N}.$$

(4) [2 points] Suppose $(\Omega, \mathcal{A}, \mu)$ is a measure space, and real numbers p, q, s > 1 satisfy

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{s} = 1$$

Show that for any $f \in \mathcal{L}_p(\Omega, \mu), g \in \mathcal{L}_q(\Omega, \mu), h \in \mathcal{L}_s(\Omega, \mu)$, the function $f \cdot g \cdot h$ is integrable.

(5) [2 points] Let *m* be the Lebesgue measure on [0, 1]. Suppose $K(x, y) : [0, 1] \times [0, 1] \to \mathbb{R}$ is a square-integrable function:

$$\int_{0}^{1} \int_{0}^{1} |K(x,y)|^{2} m(dx) m(dy) < \infty.$$

The corresponding Hilbert-Schmidt integral operator A_K is given by

$$(A_K f)(x) = \int_0^1 K(x, y) f(y) m(dy), \quad x \in [0, 1].$$

Prove that for a square-integrable kernel K, the operator A_K maps $\mathcal{L}_2([0,1],m)$ into itself, i.e., $A_K f \in \mathcal{L}_2([0,1],m)$ for every $f \in \mathcal{L}_2([0,1],m)$. Show also that the norm of A_K :

$$||A_K|| := \sup\{||A_K f||_2 : f \in \mathcal{L}_2([0,1],m), ||f||_2 \le 1\}$$

is bounded.