Mathematisch Instituut Universiteit Leiden

January 21, 2013 14:00 – 17:00

Percolation theory Examination

Question 1. Consider percolation on the hypercubic lattice (\mathbb{Z}^d , E^d). The state space for this model is $\Omega = \{0, 1\}^{E^d}$.

- 1. Define the terms *increasing event* and *decreasing event*.
- 2. Let $x, y \in \mathbb{Z}^d$. Decide for each of the following events whether it is (a) increasing / (b) decreasing / (c) an intersection of an increasing and a decreasing event / (d) neither of the former three:

 $A_1 = \Omega, \qquad A_2 = \{0 \leftrightarrow x\} \Box \{0 \leftrightarrow y\}, \qquad A_3 = \{|\mathscr{C}(x)| = 17\},$

 $A_4 = \{$ there exist (at least) two (different) infinite clusters $\}$.

Motivate your decisions. In case of (c), specify which increasing or decreasing event can be used to get the right intersection.

3. For an increasing event *A*, prove that $\mathbb{P}_p(A)$ is an increasing function of *p*.

Question 2. For bond percolation on the square lattice (\mathbb{Z}^2 , E^2), show that

$$\lim_{n \to \infty} \mathbb{P}_p((0,0) \leftrightarrow (n,0)) = \theta(p)^2.$$

Question 3. Consider site percolation on the triangular lattice \mathbb{T} , end let $\Lambda(n)$ be the ball of radius n centered at the origin 0. Use the RSW theorem to show that there exists constants $C, \alpha > 0$ such that for any $k, n \in \mathbb{N}$ with $0 < k \le n$ the following hold:

$$\mathbb{P}_{1/2}\big(\Lambda(k) \leftrightarrow \partial \Lambda(n)\big) \leq C \left(\frac{n}{k}\right)^{-\alpha}.$$

(You get part of the points for this question if you prove the special case k = 1.)