Examination for the course on **Probability**

Teacher: F. den Hollander

Tuesday 12 January 2010, 10:00–13:00

- Write your name and student identification number on each piece of paper you hand in.
- All answers must come with an explanation. A simple "yes" or "no" is not enough.
- The use of notes and/or textbooks is not allowed.
- There are 15 questions, each weighting 5, 10 or 15 points. The weights are indicated in boldface. The total number of points is 135. *Final score*: 1 for free, 1 added per 15 points; ≥ 68 points is sufficient, ≤ 67 points is insufficient.
- (1) [5] Let U and V be \mathbb{R}^2 -valued random variables with probability density functions

$$f_U(x_1, x_2) = e^{-x_1 - x_2} 1_{[0, \infty)^2}, \qquad f_V(x_1, x_2) = \frac{1}{4} e^{-|x_1| - |x_2|}.$$

Can U and V be coupled such that they are component-wise ordered?

- (2) For which values of $\mu_1, \mu_2 \in \mathbb{R}$ and $\sigma_1, \sigma_2 \in [0, \infty)$ can two \mathbb{R} -valued random variables with normal distributions $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ be coupled such that they are ordered?
 - (a) [3] $\mu_1 = \mu_2, \, \sigma_1 \neq \sigma_2.$
 - (b) [3] $\mu_1 \neq \mu_2, \, \sigma_1 = \sigma_2.$
 - (c) [4] $\mu_1 \neq \mu_2$, $\sigma_1 \neq \sigma_2$. (question is tricky)
- (3) (a) [3] Formulate the standard convergence theorem for a (time-homogeneous) finite-state Markov chain.
 - (b) [7] Sketch the proof of this theorem with the help of coupling.
 - (c) [5] State the standard coupling inequality for two copies $X = (X_n)_{n \in \mathbb{N}_0}$ and $Y = (Y_n)_{n \in \mathbb{N}_0}$ of the same finite-state Markov chain with different initial distributions μ_X and μ_Y .
- (4) (a) [4] Describe a successful coupling of two copies of simple random walk on \mathbb{Z} starting from $x, y \in \mathbb{Z}$ with $x y \in 2\mathbb{Z}$.
 - (b) [4] How can this coupling be extended to \mathbb{Z}^d with $d \geq 2$?
 - (c) [2] What is known about the rate of coupling?
- (5) Let $(Y_m)_{m=1}^n$ be i.i.d. random variables with

$$P(Y_1 = 1) = p$$
, $P(Y_1 = 0) = 1 - p$, $p \in [0, 1]$.

Let $X = \sum_{m=1}^{n} Y_m$ and $\lambda = np$.

(a) [8] Prove with the help of the Chen-Stein coupling method that

$$||P(X \in \cdot) - p_{\lambda}(\cdot)||_{\text{tv}} \le 2p\lambda,$$

where p_{λ} is the Poisson distribution with mean λ .

- (b) [2] What does this inequality imply when $n \to \infty$ and $p \downarrow 0$ such that $\lambda = np$ is fixed?
- (6) Let P, P' be two probability measures on a countable space E with a partial order \leq . Let K, K' be two Markov transition kernels on $E \times E$.
 - (a) [3] When does P' stochastically dominate P?
 - (b) [2] Give an example for $E = \{0, 1\}^2$.
 - (c) [3] When does K' stochastically dominate K?
 - (d) [2] Give an example for $E = \{0, 1\}^2$.
- (7) (a) [6] Formulate the Fortuin-Kasteleyn-Ginibre correlation inequality for monotone functions on partially ordered sets.
 - (b) [4] Use this inequality to show that

$$P_p(a \leftrightarrow b, c \leftrightarrow d) \ge P_p(a \leftrightarrow b) P_p(c \leftrightarrow d) \qquad \forall a, b, c, d \in \mathbb{Z}^2, p \in [0, 1],$$

where P_p is the probability law of ordinary site percolation on \mathbb{Z}^2 , and $a \leftrightarrow b$ means that a and b are connected by an open lattice path.

- (8) (a) [2] Give the definition of a random shuffle of a deck of N cards.
 - (b) [3] When is a sequence of times $(t_N)_{N\in\mathbb{N}}$ called a sequence of threshold times for a given random shuffle?
- (9) (a) [3] What is the "top to random" shuffle?
 - (b) [4] How does t_N grow with N for this shuffle? Give a heuristic explanation why.
 - (c) [3] What information does the growth of t_N provide?
- (10) (a) [3] Describe how two ordinary percolation models on \mathbb{Z}^d , $d \geq 1$, with parameters p < p' can be coupled such that their sets of open bonds are ordered?
 - (b) [5] Explain why this coupling implies that the percolation transition occurs at a unique critical threshold p_c .
 - (c) [2] Does the coupling provide any information on the value of p_c ?
- (11) (a) [2] Give the definition of invasion bond percolation on \mathbb{Z}^d , $d \geq 1$.
 - (b) [3] What is known about the sequence of weights of the bonds that are successively invaded? (question is tricky)
- (12) Let $X = (X_t)_{t > 0}$ be a spin-flip system on \mathbb{Z}^d , $d \geq 1$, with local flip rates

$$c(x,\eta), \qquad x \in \mathbb{Z}^d, \ \eta \in \{-1,1\}^{\mathbb{Z}^d}.$$

(a) [5] What inequalities must these rates satisfy in order for X to be attractive?

- (b) [5] When is an attractive X ergodic, i.e., $\lim_{t\to\infty} \mu P_t = \nu$ weakly for all initial distributions μ , with $P = (P_t)_{t\geq 0}$ the semigroup of X and ν the same invariant distribution for all μ ?
- (13) [5] Give three examples of attractive spin-flip systems by specifying their local flip rates.
- (14) (a) [5] Describe the two phases of the Contact Process on $\mathbb{Z}^d, d \geq 1$.
 - (b) [5] Prove that the critical threshold λ_d satisfies $d\lambda_d \geq 1$. (question is tricky)
- (15) (a) [2] What is a Brownian motion on \mathbb{R} ?
 - (b) [3] How does this process arise as a scaling limit of simple random walk on \mathbb{Z} ?
 - (c) [3] Give the definition of an Itô-diffusion on \mathbb{R} .
 - (d) [2] Can two regular recurrent Itô-diffusions on \mathbb{R} be successfully coupled?