Re-examination for the course on
 Random Walks

Teachers: M. Heydenreich, F. den Hollander, E. Verbitskiy

Tuesday 8 July 2014, 10:00-13:00

- Write your name and student identification number on each piece of paper you hand in.
- All answers must come with an explanation.
- The use of notes and/or diktaat is not allowed.
- There are 10 questions. The total number of points is 100 (per question indicated in boldface). A score of ≥ 55 points is sufficient.
(1) [5] Consider simple random walk $\left(S_{n}\right)_{n \in \mathbb{N}_{0}}$ on \mathbb{Z} with length $N \in \mathbb{N}$ starting at 0 . Which of the following two times is a stopping time? Prove your answer!

$$
T_{1}=\left\lfloor\frac{1}{2} N\right\rfloor, \quad T_{2}=\max \left\{0 \leq k \leq N: S_{k}=0\right\} .
$$

(2) [5] Consider a random walk on the square lattice \mathbb{Z}^{2} with "diagonal jumps", i.e., the jump probabilities are:

$$
P\left(X_{1}=x\right)= \begin{cases}\frac{1}{4}, & \text { if } x \in\{(0,1),(1,1),(0,-1),(-1,-1)\} \\ 0, & \text { otherwise }\end{cases}
$$

Compute the covariance matrix $\left(\operatorname{Cov}\left(X_{1}^{(i)}, X_{1}^{(j)}\right)_{i, j=1,2}\right.$, where $X_{1}^{(i)}$ is the i-th component of X_{1}, and state the central limit theorem for the partial sums $S_{n}=\sum_{i=1}^{n} X_{1}, n \in \mathbb{N}$.
(3) [10] Use the reflection principle to compute the probability $P\left(S_{m} \leq 2\right.$ for $\left.0 \leq m \leq 5\right)$ for a simple random walk $\left(S_{n}\right)_{n \in \mathbb{N}_{0}}$ on \mathbb{Z}. In other words: What is the probability that a simple random walk does not exceed the value 2 during its first 5 steps?
(4) [5] Compute the effective resistance between 0 and 2 of the graph with vertex set $\{0,1,2\}$ and edge set as follows: 2 edges between vertices 0 and $1 ; 4$ edges between vertices 1 and 2; 1 edge between vertices 0 and 2 .
(5) Given is a finite connected graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ with conductances $C_{x y} \in(0, \infty)$ assigned to each of the edges $x y \in \mathcal{E}$ such that $C_{x y}=C_{y x}$. Pick any two vertices $a, b \in V$ and place a battery across them.
(a) [5] Formulate the Dirichlet Principle.
(b) [5] Formulate the Thomson Principle.
(c) [10] Express the effective resistance of \mathcal{G} in terms of both these variational principles.
(6) Let c_{n} denote the number of self-avoiding walks of length $n \in \mathbb{N}$ on the rooted tree of degree 6 starting at the root.
(a) [5] Give a formula for c_{n}.
(b) [5] Show that c_{n} is at least as large as the number of self-avoiding walks of length n on \mathbb{Z}^{3}.
(c) [5] What is c_{n} on the unrooted tree?
(7) Consider the wetted polymer ($=$ pinned polymer with hard wall constraint) of length $n \in \mathbb{N}$ with interaction strength $\zeta \in \mathbb{R}$.
(a) [5] Give the definition of the free energy $\zeta \mapsto f^{+}(\zeta)$.
(b) [10] Explain why $f^{+}(\zeta)=f\left(\zeta-\zeta_{c}^{+}\right)$with $\zeta_{c}^{+}=\log 2$, where $f(\zeta)$ is the free energy of the pinned polymer.
(c) [Bonus] Explain how this formula is derived.
(8) [10] Let $\left(W_{t}\right)_{t \geq 0}$ be a standard Brownian motion. Put $X_{t}=W_{2 t}-W_{t}$. Is $\left(X_{t}\right)_{t \geq 0}$ a Brownian motion?
(9) [5] Let $(W(t))_{t \geq 0}$ be standard Brownian motion. The Ornstein-Uhlenbeck process $\left(U_{t}\right)_{t \geq 0}$ is defined by

$$
U(t)=e^{-t} W\left(e^{2 t}\right)
$$

Provide an explicit expression for $\operatorname{cov}(U(s), U(t))$ for $s, t \geq 0$.
(10) Suppose that the current price of a stock is $S_{0}=50$ euro, and that at the end of a period of time its price must be either $S_{1}=25$ or $S_{1}=100$ euro. A call option on the stock is available with a striking price of $K=50$ euro, expiring at the end of the period. It is also possible to borrow and lend at a 25% rate of interest.
(a) [5] Compute the arbitrage-free price of the call option.
(b) [5] Suppose that you can buy such an option on the market for $€ 25$. What should you do?

