Examination for the course on
 Random Walks

Teachers: M. Heydenreich, F. den Hollander, E. Verbitskiy

Monday 23 June 2014, 14:00-17:00

- Write your name and student identification number on each piece of paper you hand in.
- All answers must come with a full explanation.
- The use of notes or diktaat is not allowed.
- There are 10 questions. The total number of points is 100 (per question indicated in boldface). A score of ≥ 55 points is sufficient.
(1) [5] Consider simple random walk on \mathbb{Z}. Given two stopping times T_{1} and T_{2}, is the minimum $T=\min \left\{T_{1}, T_{2}\right\}$ again a stopping time? Prove your answer!
(2) [10] Consider a random walk on the square lattice \mathbb{Z}^{2} with "diagonal jumps", i.e., the jump probabilities are

$$
P\left(X_{1}=x\right)= \begin{cases}\frac{1}{4}, & \text { if } x \in\{(1,1),(-1,1),(1,-1),(-1,-1)\}, \\ 0, & \text { otherwise } .\end{cases}
$$

Compute the covariance matrix $\left(\operatorname{Cov}\left(X_{1}^{(i)}, X_{1}^{(j)}\right)\right)_{i, j=1,2}$, where $X_{1}^{(i)}$ denotes the i-th component of X_{1}. State the central limit theorem for the partial sums $S_{n}=\sum_{i=1}^{n} X_{i}, n \in \mathbb{N}$.
(3) [10] In the game double or loose you bet 1 euro per round. The bet is either doubled or lost, both with 50% chance. The strategy of a gambler is to continue playing until either a total of 10 euro is won (the gambler leaves the game happy) or four times in a row a loss is suffered (the gambler leaves frustrated). Is the expected payoff of this strategy positive, zero or negative? Prove your answer!
(4) Compute the effective resistance between a and b of the following two networks of unit resistances:
(a) [5]

(b) $[5]$

(5) Given is a finite connected graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ and two vertices $a, b \in \mathcal{V}$.
(a) [5] What is a unit potential from a to b ?
(b) [5] What is a unit flow from a to b ?
(6) Let c_{n} denote the number of self-avoiding walks of length $n \in \mathbb{N}$ on the triangular lattice (i.e., the two-dimensional lattice where unit triangles are packed together).
(a) [5] What inequality is satisfied by $n \mapsto c_{n}$, and why does this inequality imply the existence of the so-called connective constant μ ?
(b) [5] Compute c_{3}.
(c) [5] Show that $2^{n} \leq c_{n} \leq 6 \times 5^{n-1}, n \in \mathbb{N}$ and use this to obtain bounds on μ.
(7) (a) [5] Give a description of the path space \mathcal{W}_{n} of the pinned polymer of length $n \in \mathbb{N}$. The path measure with interaction strength $\zeta \in \mathbb{R}$ is

$$
\bar{P}_{n}^{\zeta}(w)=\frac{1}{Z_{n}^{\zeta}} e^{\zeta \sum_{i=1}^{n} 1_{\left\{w_{i}=0\right\}}} \bar{P}_{n}(w), \quad w \in \mathcal{W}_{n}
$$

Explain what this path measure models.
(b) [5] Give the definition of the free energy $\zeta \mapsto f(\zeta)$, and explain why this quantity is capable of detecting a phase transition.
(c) [5] Give the formula that expresses $f(\zeta)$ in terms of the generating function for the probability distribution of the first return time to the origin of one-dimensional simple random walk.
(d) [Bonus] Explain how this formula is derived.
(8) Let $\left(W_{t}\right)_{t \geq 0}$ and $\left(\tilde{W}_{t}\right)_{t \geq 0}$ be independent standard Brownian motions. Put $X_{t}=\alpha W_{t}+$ $\beta \tilde{W}_{t}$, where and $\alpha, \beta \in \mathbb{R}$ are such that $\alpha^{2}+\beta^{2}=1$.
(a) [5] Show that $\left(X_{t}\right)_{t \geq 0}$ is standard Brownian motion as well.
(b) [5] Compute the correlation coefficient $\rho\left(X_{t}, W_{t}\right)$.
(9) [5] Let $(W(t))_{t \geq 0}$ be standard Brownian motion, and let $0<t_{1}<t_{1}+t_{2}<t_{1}+t_{2}+t_{3}$. Compute

$$
E\left[W\left(t_{1}\right) W\left(t_{1}+t_{2}\right) W\left(t_{1}+t_{2}+t_{3}\right)\right]
$$

(10) Suppose that the current price of a stock is $S_{0}=50$ euro, and that at the end of a period of time its price must be either $S_{1}=25$ or $S_{1}=100$ euro. A call option on the stock is available with a striking price of $K=50$ euro, expiring at the end of the period. It is also possible to borrow and lend at a 25% rate of interest.
(a) [5] Compute the arbitrage-free price of the call option.
(b) [5] Suppose that you can buy such an option on the market for $€ 15$. What should you do?

