
Statistical Learning Exam
Friday, January 11th 2013, 10:00-13:00

For each question, you can get up to 2.5 points (10 points in total). Do not spend too much
time on questions you do not understand! It is wiser to first skip these and start with the
questions you find more easy. Please motivate all your answers!

1. Linear Classification Let Yi ∈ {−1, 1} and let the Xi be p-dimensional vectors of categorical
(discrete) or real-valued attributes. Answer the questions below.

a. Suppose we fit logistic regression to the data set (X1, Y1), . . . , (XN , YN ). Can it happen
that the resulting coefficient vector β will be infinitely large (i.e. ‖β‖ =∞)? If yes, then
when does it happen?

b. Answer the same question as above given that we fit penalized logistic regression (with
L2 or L1 regularization).

c. Suppose we fit logistic regression (not penalized) to the data set (X1, Y1), . . . , (XN , YN ).
Can it happen that the resulting coefficient vector β will be 0? If yes, then when does it
happen?

d. Is it true that fitting logistic regression (not penalized) will result in the decision boundary
with the smallest 0/1 training error?

e. Is it true, that for every training set (X1, Y1), . . . , (XN , YN ) that is linearly separable, the
decision boundary learned by logistic regression for that training set perfectly separates
the data?

f. Is it true, that for every training set (X1, Y1), . . . , (XN , YN ) that is linearly separable, the
decision boundary learned by using the Naive Bayes model perfectly separates the data
(naive Bayes is used here with a multinomial model for the categorical attributes, and a
Gaussian model with fixed variance for the real-valued attributes)?

2. K-means. The K-means algorithm iteratively minimizes the W (C) criterion, where C is
the clustering (function, which assigns to each observation a cluster index), while W (C) is
the within-point scatter (within-cluster variance). Please answer the following questions.
Motivate your answer in each case.

a. Is W (C) decreasing after each iteration?

b. The K-means starts by choosing the initial cluster centroids as randomly selected K
points. If we start from a different initial centroids, will we end up with a possibly
different final solution?

c. The K-means starts by choosing the initial cluster centroids as randomly selected K
points. Consider the data set presented on Figure 1. Each dot represents a single point
(p = 2, so the data can be visualized on a plane). The algorithm is run with K = 3, and
the initial 3 cluster centroids are marked as white dots in the upper-right cluster. Can
you sketch how will the situation look like after the first iteration of K-means.

d. For a given K, let C∗K denote the optimal cluster assignments, minimizing W (C). How
would a plot of W (C∗K) look like as a function of K = 1, 2, 3, . . .? (do not try to calculate
particular values, just try to anticipate the shape of the function).
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Figure 1: Clustering Problem

3. Regression. The least squares regression is the most popular, but not the only way to fit a
model to data with continuous output. Another important algorithm is the least absolute
deviation (LAD) method, which is based on minimizing the sum of absolute errors:

SAE(β) =
N∑
i=1

|yi − xTi β|.

Comparing to least squares, the only difference is that the error is measured as the absolute
difference, rather than the squared difference. The main drawback of LAD is that there is
no closed-form solution and one needs to numerically solve for β.

Please answer the questions below. Motivate your answer in each case.

a. The least squares method is known to be equivalent to maximum likelihood estimation,
when the noise distribution is Gaussian. Can you propose a distribution, for which β̂
obtained from LAD would also be a maximum likelihood estimator with respect to this
distribution? (you do not need to calculate normalization constant, you can leave the
distribution unnormalized, that is you can write “p(y|x) ∝ something”, where ∝ means
“proportional to”).

b. Consider a data set concerning a one-dimensional (p = 1) regression problem. Here
xi = (1, xi1) and β = (β0, β1). The set is presented on Figure 2a (left plot). Input values
(xi1) are on the horizontal axis, while output values (yi) are on the vertical axis. Can you
sketch, what would be the results of fitting:

• least squares,
• least absolute deviation

to the data set? Do not try to calculate β̂, just describe what you expect to obtain. Figure
2b (right plot) should be helpful for you: look how the two error curves differ for large
deviations y − ŷ.
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Figure 2: (a) Left plot: regression problem (pay attention to the two points far above
the rest!). (b) Right plot: the values of squared error (y − ŷ)2 and absolute error |y − ŷ| as a
function of y − ŷ, where y is the observed output and ŷ is the output from the model (model
prediction).

c. The least-squares estimator β̂ = (β̂0, β̂1) has the property that, if all xi are 0, then β̂0 is
always well-defined, and equal to the average of the yi’s. Give an example of a nonempty
data set with all xi equal to 0 for which the LAD estimator is not defined (i.e. there
are various values of β minimizing SAE(β)). Also give an example of such a data set
for which the LAD estimator is uniquely defined, but not equal to the average of the yi
(HINT: for the first case there exists an example with only two data points, for the second
case, there exists an example with only three data points. Just try out a few values for
the yi points and a few values of β and calculate the corresponding SAE(β) to get an
idea of how SAE(β) varies with β).

d. Suppose we have a data set (now the xi do not have to be 0 any more) with least-squares
estimate β̂ = (β̂0, β̂1) and LAD estimate β◦ = (β◦0 , β

◦
1). We translate all the y-values in

our data set by adding, say, 2 to them and we recalculate the least squares and LAD
estimator. What will happen to β̂0, β̂1, β

◦
0 , β

◦
1? (You don’t have to formally prove that

your answer is correct, just give some intuition on why you think your answer is correct).

4. Classification with a Strange Model . Suppose we observe a sample (x1, y1), . . . , (xN , yN )
with each yi ∈ Y = {0, 1, . . . , 9} (there are 10 classes) and each xi a positive integer, i.e.
xi ∈ X = {1, 2, . . .}. The goal is to make good predictions of a new Y ∈ Y given a new
X ∈ X . In the exercise below you may assume that N is reasonably large, at least, say 1000.

The company wefititall.com proposes to fit the data using the following unusual single-
parameter model F = {fθ : 0 ≤ θ < 1} consisting of functions fθ : X → Y defined as
follows:

fθ(x) = the x-th digit of θ.

For example, if fθ(1) = 3, fθ(2) = 1, fθ(3) = 4, fθ(4) = 1, then θ = .3141..., i.e. its first four
digits must be 3, 1, 4, 1. As another example, for θ = 1/3 = 0.3333... we have fθ(x) = 3 for
all x.

a. Suppose we fit this model using empirical error minimization with the 0/1-loss, i.e., we
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pick the θ̂ minimizing L̂ =
∑N

i=1 L(yi, fθ(xi)) where L(yi, ŷi) = 0 if yi = ŷi and 1 otherwise.
If the minimum K̂ is achieved for more than one θ with 0 ≤ θ < 1, we pick the smallest
one. (1) What θ̂ will be chosen? (2) Assume there are no repetitions in the xi. How large
will its error L̂ on the training set be?

b. Suppose the data (Xi, Yi) are i.i.d. according to some unknown distribution P ∗, and we
test θ̂ on a new example (X,Y ) drawn from the same distribution P ∗. What can you say
about the expected prediction error (EPE) of θ̂ as compared to its empirical error L̂?

c. It is sometimes claimed that empirical error minimization is a good method, that will not
overfit, as long as the number of parameters is small relative to the sample size N . Does
this claim hold in general? Why (not)?

d. Let Θk be the subset of [0, 1] consisting of all numbers with the k + 1st, k + 2nd etc.
digit after the decimal point being 0. For example, Θ2 = {0, 1/100, 2/100, . . . , 99/100} =
{0, 0.01, 0.02, . . . , 0.99}. Suppose that, based on data as above, we select a submodel
Θk̂ where k̂ is chosen using 10-fold cross-validation. Let θ̂k̂ be the θ that minimizes the
training error L̂k̂ within Θk̂. What can you say about the EPE of θ̂k̂ as compared to its
empirical error L̂k̂?
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