
Statistical Learning, Second Exam, April 23rd, 2013

You get 1 point for free, a maximum of 2 points for each of questions 1, 3 and 4, and a
maximum of 3 points for question 2. Good luck!

R1 R2

R3

R4 R6 R5

R1 R2

R3

R4
R6

R5

Figure 1: Ordinary classification tree (left) and dyadic classification tree (right).

1. Classification trees. A dyadic classification tree recursively partitions the feature space into
two subregions along one of the axes, similarly to the ordinary classification trees that were
discussed during the lectures. However, while ordinary trees subsequently test each possible
split-point on each axis, dyadic trees can only make a partition exactly in the middle of the
current region. Figure 1 shows possible partitions obtained using the two kinds of trees for
a two-dimensional feature space. Give the answer to the following questions:

a) What do you think are the main advantages and main disadvantages of the dyadic tree
over the ordinary tree? Consider:

• computational issues,
• interpretability,
• statistical issues (generalization ability); can you characterize the two kinds of trees

in terms of the bias and variance (it is sufficient to give a qualitative answer, we do
not expect you to give a formula here)?

b) Are ordinary classification trees more general than dyadic ones? More precisely, if we
think of a tree as a function f :X → Y assigning the label (output) y ∈ Y to each input
vector x ∈ X, can there be an ordinary tree f which is not expressible as a dyadic tree as
well (assume that you analyze data on a computer, so that all x-values are recorded up
the a fixed, finite precision)?

c) Assume we control the complexity of the tree by fixing the maximal number of partitions
to the same number (for concreteness, say 5) for both ordinary and dyadic trees. In such
a case, which trees – ordinary or dyadic – would probably be more advantageous when
combining them using boosting? Please motivate your answer.

2. Variable Selection in Regression Consider a linear regression problem in which we fit a model

E[Y | X] = β0 + β1X1 + β2X2 + . . . βkXk. (1)

Our main goal is to find out which of the variables X1, . . . , Xk are relevant for predicting Y .
To this end, for each subset J of {1, . . . , k}, define PJ as the model in which all variables
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outside J are set to 0, i.e. E[Y | X] is of the form β0 +
∑

j∈J βjXj where the |J | + 1
parameters are all real numbers.

To determine the ‘best’ subset J based on training sample (x1, y1), . . . , (xn, yn), we use three
methods: (1) OLS+CV (ordinary least squares plus cross-validation); (2) Ridge Regression;
(3) Lasso. In method 1, we split the training set in two equal parts and we fit, for each
J ⊆ {1, . . . , k}, the corresponding model PJ using ordinary least squares on the first sample.
We then test the inferred parameter values by using them to predict the second sample and
noting the mean squared error they achieve on that sample. In the end, we select the
submodel PJ that gave the best fit on the second sample. In method (2) and (3), we simply
fit the full model using ridge regression and Lasso, respectively, and we select the submodel
consisting of all variables Xj for which the corresponding βj was not set to zero by the fitting
procedure.

a) Compare (approximately) the computational efficiency of the three methods. Is there a
clear winner/loser?

b) Compare the methods in terms of how well they work in practice for determining what
variables are relevant for predicting Y (assuming enough computation time is available
for each method). Is there a clear winner/loser?

c) Suppose that (without the statistician knowing this) the data are preprocessed: in each
data point (xi, yi), xi = (xi1, . . . , xik)), for all j = 1, . . . , k, xij is replaced by xij + 5.
Will this affect the results of method (1)? Of method (2)? Of method (3)? Explain your
answer.

d) Suppose that the data are preprocessed: in each data point (xi, yi), xi = (xi1, . . . , xik)),
for all j = 1, . . . , k, xij is replaced by 5 · xij . Will this affect the results of method (1)?
Of method (2)? Of method (3)? Explain your answer.

e) Suppose that the data are preprocessed: in each data point (xi, yi), xi = (xi1, . . . , xik)),
for all j = 1, . . . , k, xij is replaced by xij + 5j. Will this affect the results of method (1)?
Of method (2)? Of method (3)? Explain your answer.

f) Suppose that the data are preprocessed: in each data point (xi, yi), xi = (xi1, . . . , xik)),
for all j = 1, . . . , k, xij is replaced by x2

ij . Will this affect the results of method (1)? Of
method (2)? Of method (3)? Explain your answer.

g) Suppose that we really have only one input variable U , and we want to model Y as a
polynomial of U , i.e, for some d ≥ 0, E[Y |U ] = β0 +

∑d
j=1 βjU

j . Describe how we can
map this model to the model given by (1), and how we can then use the methods above
to find a ‘best’ degree d based on the data. How do the computational requirements of
the three methods compare in this new setting?

h) Suppose that we really have only one input variable U , and we want to model Y as a
‘power law’ of U , i.e. for some β1, β2, E[Y | U ] = β1U

β2 . Can we still map this model to
(1)? Why (not)? And can we still map the extended model E[Y | U ] = β0 + β1U

β2 to
(1)? Why (not)?

3. Cross-validation. The following questions are about estimation of the expected prediction
error (EPE) using K-fold cross-validation (CV) in two-class classification problems. EPE is
defined relative to the 0/1-loss function. Please motivate your answer in each case.

We will apply cross validation in combination with a very simple learning algorithm, the
so-called majority rule. The majority rule neglects the input variables Xi in the training set
(X1, Y1), . . . , (XN , YN ) and predicts according to the class that has occurred most frequently
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in this training set (in case of a tie, the class is chosen at random). Thus, if the majority of
the training instances have Yi = 1, then, given a new training instance Xnew, we predict the
corresponding Ynew as 1 (irrespective of the value of Xnew); if the majority has Yi = −1,
then we predict Ynew as −1, irrespective of Xnew.

a. What is the true EPE of the majority rule if we assume the data are sampled independently
from distribution Pr(X,Y ) with equal class priors Pr(Y = 1) = Pr(Y = −1)?

b. Consider the case of CV with K = N (“leave-one-out”). Suppose we have a training data
set, exactly half of which (N/2) belongs to the class Y = 1, while the other half belongs
to the class Y = −1. What estimate of the EPE would we get from leave-one-out CV
with this data set? What estimate would we (approximately) get from K-fold CV with a
smaller value of K?

c. Can you come up with a simple classification rule/learning algorithm (just as simple as
the majority rule) which would get a zero leave-one-out CV error for the considered data
set? Would it be a reasonable classification rule in general?

4. Linear Classification Let Yi ∈ {−1, 1} and let the Xi be p-dimensional vectors of categorical
(discrete) or real-valued attributes: Xi = (Xi,1, . . . , Xi,p). Are the following statements true
or false? Please motivate your answer in each case.

a. For every training set (X1, Y1), . . . , (XN , YN ) that is linearly separable, the decision bound-
ary learned by logistic regression for that training set perfectly separates the data.

b. For every training set (X1, Y1), . . . , (XN , YN ) that is linearly separable, the decision bound-
ary learned by using the Naive Bayes model with maximum likelihood, perfectly separates
the data (naive Bayes is used here with a multinomial model for the categorical attributes,
and a Gaussian model for the real-valued attributes).

c. For every training set (X1, Y1), . . . , (XN , YN ) that is linearly separable, the decision bound-
ary learned by using the maximum-margin hyperplane (support vector machine) algorithm
with a cost parameter C > 0, perfectly separates the data.
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