Exam Statistics, Probability and Calculus

January 15, 2010, 10:00-13:00 h.

Use of Rice's book, class notes, calculator and laptop is allowed. If you perform any computations with R, please provide the commands you used.

1. (a) Assume we have a joint probability mass function of X and Y

$$
p_{X, Y}(x, y)=p^{2}(1-p)^{x+y-2}, \quad x=1,2, \ldots \quad \text { and } y=1,2, \ldots
$$

and $p_{X, Y}(x, y)=0$ otherwise, where $0<p<1$. Find the marginal distribution of X. Do you know the name of this distribution?
(b) Now consider two light bulbs A and B, with lifetimes X and Y. Suppose the joint density of X and Y is

$$
f_{X, Y}(x, y)=\lambda \mu e^{-(\lambda x+\mu y)}, \quad x, y>0
$$

and $f_{X, Y}(x, y)=0$ otherwise. Here λ and μ are positive constants. Determine the probability that both lamps are still burning at time t.
(c) Determine the probability that lamp A fails first.
2. Consider the genotypes AA, AB and BB with frequencies $0,0.02$ and 0.98 respectively. Persons carrying genotype AB have probability 0.85 to have a disease D. Persons with genotype BB have probability of 0.03 to have disease D . Define the random variable X to be 1 if a person is AB and 0 otherwise and the random variable Y to be 1 if a person has disease D and to be 0 if a person has not the disease.
(a) Find the prevalence of disease D in the population.
(b) Find the variance of Y conditional on $X=1$.
(c) Find the variance of Y.
(d) In the family below, numbers 1 and 2 are healthy and number 3 has disease D. Person 2 is pregnant of and wants to know the probability for her newborn 4 to have the disease.

Find the probability that number 4 has the disease. Hint: Start with the genotypes of the parents and notice that the probability of more than 1 copy of the D allele is very small.
(e) Consider a randomly chosen pair of two siblings. Let X_{1} be the number of A alleles carried by sibling 1 and let X_{2} be the number of A alleles carried by sibling 2. The joint distribution is given by

	$X_{1}=0$	$X_{1}=1$
$X_{2}=0$	0.97	0.01
$X_{2}=1$	0.01	0.01

Find the covariance of X_{1} and X_{2}.
(f) Consider two quantitative variables $Y_{1}=X_{1}+U+V$ and $Y_{2}=X_{2}+U+W$ with U, V and W independent normally distributed random variables with variance equal to 1 . We have

$$
\operatorname{cov}\left(X_{1}, U\right)=\operatorname{cov}\left(X_{1}, V\right)=\operatorname{cov}\left(X_{1}, W\right)=\operatorname{cov}\left(X_{2}, U\right)=\operatorname{cov}\left(X_{2}, V\right)=\operatorname{cov}\left(X_{2}, W\right)=0
$$

For the covariance between X_{1} and X_{2}, see question (e). Now, find the covariance between Y_{1} and Y_{2}.
3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables with density function

$$
f_{\theta}(x)=(\theta+1) x^{\theta}, \quad 0 \leq x \leq 1
$$

(a) Find the method of moments estimator of θ.
(b) Find the maximum likelihood estimator of θ.
(c) Find the asymptotic variance of the MLE.
4. Let X_{1}, \ldots, X_{10} be a random sample of size 10 from a Bernoulli distribution, which is given by

$$
P(X=0)=p \quad \text { and } \quad P(X=1)=1-p
$$

where $0 \leq p \leq 1$ is an unknown parameter. Suppose the realization of our sample is

$$
0110101110
$$

(a) We want to test

$$
H_{0}: p=1 / 3 \text { versus } H_{A}: p=1 / 2
$$

Determine the most powerful test with significance level $\alpha=0.05$. Do you reject H_{0} on the basis of our sample?
(b) To simplify the calculations of the previous problem, you could have used the normal approximation. How?
(c) Compute the p value.

