Exam for Topics in Geometry 2

Let X be a normal curve over a field k. For a closed point P on X and a nonzero function $f \in K(X)$ we define the order $\operatorname{ord}_{P}(f)$ to be the unique integer n for which we can write $f=u \pi^{n}$ where u is a unit in $\mathcal{O}_{X, P}$ and π is a uniformiser in $\mathcal{O}_{X, P}$, which exists because X is normal. Here we identify $K(X)$ with the field of fractions of $\mathcal{O}_{X, P}$ in the natural way.

We define a divisor D on X to be a finite formal sum

$$
D=\sum_{i} n_{i} P_{i}
$$

with $n_{i} \in \mathbb{Z}$ and the P_{i} distinct closed points of X. For P a closed point of X, we set

$$
\operatorname{ord}_{P}(D)= \begin{cases}n_{i} & \text { if } P=P_{i} \text { for some } i \\ 0 & \text { otherwise }\end{cases}
$$

To a divisor $D=\sum n_{i} P_{i}$ we associate a sheaf $\mathcal{O}_{X}(D)$ on X which is a subsheaf of the constant sheaf $K(X)_{X}$ and whose sections over the open set U are given by

$$
\mathcal{O}_{X}(D)(U)=\{0\} \cup\left\{f \in K(X)^{*}: \operatorname{ord}_{P}(f)+\operatorname{ord}_{P}(D) \geq 0 \quad \text { for all closed points } P \in U\right\}
$$

For example, if $D=0$ then $\mathcal{O}_{X}(D)$ is the usual structure sheaf \mathcal{O}_{X}.

Exercise 1. For X a projective normal curve over k, show that $\Gamma\left(X, \mathcal{O}_{X}(D)\right)$ is finite dimensional as a vector space over k for all D. You may use here that $k \rightarrow \Gamma\left(X, \mathcal{O}_{X}\right)$ is a finite extension of fields.

From now on we suppose that $\operatorname{char}(k) \neq 2$ and that k is algebraically closed. Let $f \in k[x]$ be a polynomial of degree at least 5 without repeated roots. Let X be the normalisation of \mathbb{P}_{k}^{1} in the extension of $k(x)$ defined by $y^{2}=f$. We will say that " X is the hyperelliptic curve defined by $y^{2}=f$."

Exercise 2. Let X be the hyperelliptic curve defined by $y^{2}=f$ and let P be a point $(\alpha, 0)$ on X where α is a root of f. Show that there exists a coordinate transformation such that in the new coordinates X is the hyperelliptic curve defined by $v^{2}=g(u)$ where $g \in k[u]$ has odd degree $2 d+1$ and such that P is the point at infinity, i.e. P is not in the affine u, v-piece.

Exercise 3. With the same assumptions and notations as in exercise 2, compute ord ${ }_{P}(a(u)+b(u) v)$ in terms of the polynomials $a(u)$ and $b(u)$.

Exercise 4. Again using the assumptions and notations from exercise 2, compute a basis for the k-vector space $\Gamma\left(X, \mathcal{O}_{X}(n P)\right)$ for any $n \in \mathbb{Z}$.

Exercise 5. Let X be the hyperelliptic curve defined by $y^{2}=f(x)$. Now, let $P=(x, y)$ be a point in the affine x, y-piece of X with $y \neq 0$. Show that there is a coordinate transformation such that in the new coordinates X is the hyperelliptic curve defined by $v^{2}=g(u)$ where $g(u) \in k[u]$ is a monic polynomial of even degree $2 d$ and such that P is one of the two points at infinity. In the sequel, we denote the other point at infinity by Q.

Exercise 6. Using the assumptions and notations of exercise 5, determine a basis for the k-vector space $\Gamma\left(X, \mathcal{O}_{X}(n P+n Q)\right)$ for any $n \in \mathbb{Z}$.

Exercise 7. Again, notations and assumptions are as in exercise 5. Let w, t be the coordinates of the other affine piece, i.e.

$$
w=\frac{1}{u}, \quad t=\frac{v}{u^{d}}, \quad t^{2}=w^{2 d} g\left(\frac{1}{w}\right) .
$$

Consider the completion $\widehat{\mathcal{O}}_{X, Q}$ of $\mathcal{O}_{X, Q}$, that is

$$
\widehat{\mathcal{O}}_{X, Q}=\lim _{\longleftarrow} \mathcal{O}_{X, Q} / m_{P}^{n}
$$

Prove that $\widehat{\mathcal{O}}_{X, Q} \cong k[[w]]$ and calculate a few terms of t as a power series in w.

Exercise 8. Notations and assumptions are as in exercises 5 and 7. Suppose that n is a nonnegative integer.
Consider the natural map

$$
\phi: \Gamma\left(X, \mathcal{O}_{X}(n P+n Q)\right) \rightarrow k((w))
$$

where the Laurent series ring $k((w))$ is identified with the field of fractions of $\widehat{\mathcal{O}}_{X, Q}$. Show that

$$
\Gamma\left(X, \mathcal{O}_{X}(n P)\right)=\phi^{-1}(k[[w]])
$$

and use this to compute $\operatorname{dim}_{k} \Gamma\left(X, \mathcal{O}_{X}(n P)\right)$.

