Website of Dalia Terhesiu



Mathematisch Instituut
University of Leiden
Niels Bohrweg 1, 2333 CA Leiden
Office 208
Tel:++31 71 527 8029
Email: daliaterhesiu@gmail.com


Research interests: dynamical sytems; ergodic theory; statistical properties; mixing rates; infinite ergodic theory


Publications/Preprints

  1. I. Melbourne, D. Terhesiu. Analytic proof of stable local large deviations andapplication to deterministic dynamical systems. Preprint, 2020. [.pdf]
  2. P. Kevei, D. Terhesiu. Strong renewal theorem and local limit theorem in the absence of regular variation Preprint, 2020. [.pdf]
  3. F. Pène, D. Terhesiu. Sharp error term in local limit theorems and mixing for Lorentz gases with infinite horizon. Preprint, 2020. [.pdf]
  4. D. Coates, M. Holland, D. Terhesiu. Limit theorems for wobbly interval intermittent maps. Preprint 2019. [.pdf]
  5. D. Terhesiu. Krickeberg mixing for Z extensions of Gibbs Markov semiflows. Preprint 2019. [.pdf]
  6. H. Bruin, D. Terhesiu, M. Todd. Pressure function and limit theorems for almost Anosov flows. To appear in Comm. Math. Phys. Preprint version. [.pdf]
  7. H. Bruin, I. Melbourne, D. Terhesiu. Sharp polynomial bounds on decay of correlations for multidimensional nonuniformly hyperbolic systems and billiards. To appear in Annales Henri Lebesgue. Preprint version: [.pdf]
  8. P. Kevei, D. Terhesiu. Darling-Kac theorem for renewal shifts in the absence of regular variation. J. Theoret. Prob. (2019) doi.org/10.1007/s10959-019-00930-z. Preprint version: [.pdf]
  9. H. Bruin, D. Terhesiu, M. Todd. The pressure function for infinite equilibrium measures. Israel J. Math. (2019) 232 775-826 Preprint version [.pdf]
  10. J. Aaronson, D. Terhesiu. Local limit theorems for fibred semiflows. Discr. and Cont. Dyn. Syst. A (2020) 40 6575-6609. Preprint version [.pdf]
  11. H. Bruin, D. Terhesiu. Regular variation and rates of mixing for infinite measure preserving almost Anosov diffeomorphisms. Ergodic Th. and Dyn. Syst. (2020) 40 663--698. doi.org/10.1017/etds.2018.58. Preprint version [.pdf]
  12. I. Melbourne, D. Terhesiu. Renewal theorems and mixing for non Markov flows with infinite measure. Ann. Inst. H. Poincare Probab. Statist. (2020) 56 449-476 Preprint version [.pdf]
  13. D. Terhesiu. Non trivial limit distributions for transient renewal chains. Preprint version:[.pdf] Stat. and Probab.Letters (2017) 129 189--195. DOI:10.1016/j.spl.2017.05.013
  14. H. Bruin, I. Melbourne, D. Terhesiu. Rates of mixing for nonMarkov infinite measure semiflows. Trans. Americ. Math. Soc. (2019) 371 7343-7386 DOI: https://doi.org/10.1090/tran/7582. Preprint version [.pdf]
  15. H. Bruin, D. Terhesiu. The Dolgopyat inequality in BV for non-Markov maps. Preprint version [.pdf] Stoch. and Dyn.(2018) 18 185-246. DOI: 10.1142/S0219493718500065
  16. I. Melbourne, D. Terhesiu. Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure. J. of Modern Dyn. (2018) 12 285--313. Preprint version [.pdf]. DOI: 10.3934/jmd.2018011
  17. H Bruin , D. Terhesiu. Upper and lower bounds for the correlation function via inducing with general return times.Preprint version [.pdf] Ergodic Th. and Dyn. Syst. (2018) 38 34--62. DOI:10.1017/etds.2016.20.
  18. I. Melbourne, D. Terhesiu. Operator renewal theory for continuous time dynamical systems with finite and infinite measure. Preprint 2014 [.pdf]. Monatsh. Math. (2017) 182--377. DOI:10.1007/s00605-016-0922-0
    This preprint subsumes our July 2013 preprint "Mixing for continuous time dynamical systems with infinite measure" [arXiv:1307.7990].
  19. D. Terhesiu. Mixing rates for intermittent maps of high exponent. Prob. Theory and Rel. Fields. 166 (2016) 1025--1060. DOI:10.1007/s00440-015-0690-0. Preprint version: [.pdf]
  20. C. Liverani, D. Terhesiu. Mixing for some non-uniformly hyperbolic systems. Annales Henri Poincare, 17 (2016) 179--226. DOI:10.1007/s00023-015-0399-8. [.pdf]
  21. D. Terhesiu. Error rates in the Darling Kac law. Studia Math. 220 (2014) no. 2, 101--117. DOI:10.4064/sm220-2-1.[.pdf]
  22. D. Terhesiu. Improved mixing rates for infinite measure preserving transformations, Ergodic Th. and Dyn. Syst. 35 (2015) 585--614. DOI:10.1017/etds.2013.59[.pdf]
  23. I. Melbourne, D. Terhesiu. First and higher order uniform ergodic theorems for dynamical systems with infinite measure, Israel J. Math. 194 (2013) 793--830. DOI:10.1007/s11856-012-0154-5[.pdf]
  24. I. Melbourne, D. Terhesiu. Decay of correlation for nonuniformly hyperbolic systems with general return times, Ergodic Th. and Dyn. Syst. 34 (2014) 893--918. DOI:10.1017/etds.2012.158[.pdf]
  25. I. Melbourne, D. Terhesiu. Operator renewal theory and mixing rates for dynamical systems with infinite measure, Invent. Math. 1 (2012) 61--110. DOI:10.1007/s00222-011-0361-4[.pdf]
  26. H. Bruin, M. Nicol, D. Terhesiu. On Young towers associated with infinite measure preserving transformations, Stoch. and Dynamics, 9 (2009), 635 - 655. DOI:10.1142/S0219493709002816 [.pdf]
  27. D. Terhesiu, G. Froyland, Rigorous numerical approximation of Ruelle-Perron-Frobenius operators and topological pressure for expanding maps, Nonlinearity 21 (2008) 1953-1966. DOI:10.1088/0951-7715/21/9/001 [.pdf]
  28. G. Froyland, R. Murray, D. Terhesiu, Efficient computation of topological entropy, pressure, conformal measures, and equilibrium states in one dimension, Physical Review E, 76:03:6702 , 2007. DOI:10.1103/PhysRevE.76.036702 [.pdf]
  29. D. Terhesiu. On the approximation of finite and infinite equilibrium states and some aspects of Young towers with non-integrable return time function, PhD thesis, UNSW, Sydney 2009.


For my list of pubilcations/preprints see also Google scholar profile

Teaching at Leiden University

Spring, 2020: Measure Theory, year II. Further information on Blackboard - Universiteit Leiden. Main text used: R. Bass, Analysis (measure theory and theory of integration)

Spring, 2020, together with C. Kalle: Bachelor/master course Ergodic Theory and Fractals. Further information on Blackboard - Universiteit Leiden


Workshop/Conference

Erwin Schrödinger Institute Thematic Programme "Mixing Flows and Averaging Methods" , Vienna, 4 April to 25 May, 2016. Organizers: P. Bálint, H. Bruin, C. Liverani, I. Melbourne and D. Terhesiu.



Updated October 2019