How the Octonions Form a Division Algebra

Oliver Lenz

Wednesday, 2nd of April 2008

During the talk it will be shown that O, that is the *Octonions*, form a *division algebra*.

Definition. An algebra A is said to be a division algebra if for any $a \in A$, $a \neq 0$, the left multiplication l_a and right multiplication r_a

$$l_a, r_a : A \longrightarrow A$$
$$z \longmapsto az$$
$$z \longmapsto za$$

are bijective.

given for any $z \in A$ by, resp.,

In the finite dimensional case, this is equivalent to there existing no zero divisors in *A*.

We then construct O starting off from the quaternions, \mathbb{H} , through the Cayley-Dickson construction. Since the conjugation on \mathbb{H} satisfies some nice properties, it then follows from direct computation that O is *alternative*.

Definition. Let A be an algebra. A is said to be alternative if

$$(aa)b = a(ab),$$

 $(ab)a = a(ba),$
 $(ba)a = b(aa).$

We can now prove that O is a division algebra using Artin's Lemma in conjunction with the equally nice properties of conjugation on O.

Artin's Lemma An algebra A is alternative iff every subalgebra generated by two of its elements is associative.