Why there exist no Division Algebras over \mathbb{R} of uneven dimension greater than 1

Oliver Lenz

Wednesday, 14th of May 2008

Definition. Identify the n-sphere S^n with all points in \mathbb{R}^{n+1} of euclidean norm 1. The n-sphere is said to be parallelisable if there exist n continuous maps

 $\phi_i: S^n \longrightarrow S^n$

such that for every $a \in S^n$, $a, \phi_1(a), \phi_2(a), \dots, \phi_n(a)$ is linearly independent.

The concept of parallelisability is relevant to the existence of division algebras by way of the following implication:

Proposition. Suppose that for $n \ge 0$, there exists an n-dimensional division algebra *A* over \mathbb{R} . Then the (n - 1)-sphere is parallelisable.

In the uneven-dimensional case we can then show that parallelisability of the *n*-sphere leads to a contradiction using the *Brouwer degree* of a map from S^n to S^n :

Claim. Let $n \ge 0$. Let $f, g \in Mor(S^n, S^n)$. The Brouwer degree satisfies the following properties:

- 1. $deg(g \circ f) = deg(f)deg(g)$.
- 2. deg(Const) = 0.
- 3. $deg(Id_{S^n}) = 1$.
- 4. If $f \sim g$, then deg(f) = deg(g).
- 5. Let $0 \le i \le n$, then Refl_i is the map that sends a point $(v_0, v_1, \ldots, v_i, \ldots, v_n)$ to $(v_0, v_1, \ldots, -v_i, \ldots, v_n)$. We have $\operatorname{deg}(\operatorname{Refl}_i) = -1$.

For the purpose of this talk, these properties will only be assumed, not proven, but it will be shown how this leads to a contradiction, and if there is time, the construction of the Brouwer degree will shortly be discussed.