Upper bounds for discriminants

Notes by F.Beukers

October 17, 2005

1 Introduction

Let p be a prime and

$$
\rho: G a l(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G L_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

a continuous, irreducible Galois representation unramified outside of p.
Then Moon and Taguchi show in [MT] that for the following pairs k, p no such representation exists:

$$
\begin{aligned}
& 2 \leq p \leq 19 \text { and } k=2,3,5,7 \\
& 2 \leq p \leq 7 \text { and } k=4
\end{aligned}
$$

For the following pairs k, p at most finitely many such representations exist:

$$
\begin{aligned}
& k=3,5 \text { and } p=23,29,31 \\
& k=7 \text { and } p=23,29
\end{aligned}
$$

Under the assumption of GRH we can find additional pairs. In 1973 (published in [T,1994]) Tate showed that no such representations with $p=2$ exist and Serre, in the 1970's showed this for $p=3$. Under assumption of GRH Brueggeman showed that no such representations for $p=5$ exist.

2 Generalities

Let

$$
\rho: G a l(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G L_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

be a continuous Galois representation, possible reducible and possibly ramified at other primes than p.
Let K be the invariant field of the kernel op ρ. Let \mathcal{P} be a prime in K over p and D_{p} its decomposition group. Denote the completion of K with respect to \mathcal{P} again by K. The we get the faithful representation

$$
\rho: D_{p}=\operatorname{Gal}\left(K / \mathbb{Q}_{p}\right) \rightarrow G L_{2}\left(\overline{\mathbb{F}}_{p}\right) .
$$

Let K_{0} be the maximal unramified extension of \mathbb{Q}_{p} in K. Let K_{1} be the maximal tamely ramified extension of \mathbb{Q}_{p} in K. Hence

$$
\mathbb{Q}_{p} \subset K_{0} \subset K_{1} \subset K
$$

We have the following Galois groups:

$$
\begin{aligned}
& I=\operatorname{Gal}\left(K / K_{0}\right), \text { the inertia group } \\
& I_{w}=\operatorname{Gal}\left(K / K_{1}\right), \text { the wild ramification group } \\
& I_{t}=I / I_{w}, \text { the tame ramification group. }
\end{aligned}
$$

We let $\chi: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathbb{F}_{p}^{*}$ be the cyclotomic character defined by $\sigma\left(\zeta_{p}\right)=\zeta_{p}^{\chi(\sigma)}$ for any p-th root of unity ζ_{p}.
We say that ρ is finite at p if the extension K / K_{1} can be generated by p-th roots of units in K_{1}.

Lemma 2.1 The field $\mathbb{Q}_{p}\left(\zeta_{p}\right)$ contains an element π such that $\pi^{p-1}=-p$ and such that $\zeta_{p}-1 \equiv \pi\left(\bmod \pi^{2}\right)$. Moreover, the Galois group $G_{\mathbb{Q}_{p}}$ acts on π via $\sigma: \pi\left(\bmod \pi^{2}\right) \mapsto$ $\chi(\sigma) \pi\left(\bmod \pi^{2}\right)$.

Lemma 2.2 Suppose that I_{w} is non-trivial. Then

1. There exists a divisor d of $p-1$ such that $K_{1}=K_{0}\left(\pi^{d}\right)$ where π is as in Lemma 2.1. The number $e=(p-1) / d$ is the ramification index of K_{1} / K_{0}.
2. The restriction of ρ to I has the form $\left(\begin{array}{cc}\chi^{b} & * \\ 0 & \chi^{a}\end{array}\right)$ where a, b are integers such that $\operatorname{gcd}(a, b, p-1)=d$.
3. The matrices in $\rho\left(I_{w}\right)$ are characterised by the shape $\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right)$.

Proof. The group $\rho\left(I_{w}\right)$ is a subgroup consisting of elements of order p^{r} for some r. It is an exercise to show that such a group is conjugate to a group of the form

$$
\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) .
$$

Since the order of D_{p} / I_{w} is relatively prime to p, the elements of $\rho\left(I_{w}\right)$ are the only ones within this group.
Since D_{p} is a normaliser of the non-trivial group I_{w}, the restriction of ρ to D_{p} has the form $\left(\begin{array}{cc}\chi_{1} & * \\ 0 & \chi_{2}\end{array}\right)$. Here χ_{1} and χ_{2} are characters on D_{p}. The semisimplification of $\rho: D_{p} \rightarrow G L_{2}\left(\overline{\mathbb{F}}_{p}\right)$ consists of the direct sum of χ_{1} and χ_{2}. Its kernel is I_{w} and thus we see that D_{p} / I_{w} is abelian.

In particular, K_{1} / \mathbb{Q}_{p} is abelian. Since any abelian normal extension of \mathbb{Q}_{p} can be generated by roots of unity, we see that K_{0} / \mathbb{Q}_{p} is generated by roots of unity whose order is prime to p and $K_{1} \subset K_{0}\left(\zeta_{p}\right)$. By Lemma 2.1 there exists a number $d \mid p-1$ such that $K_{1}=K_{0}\left(\pi^{d}\right)$. Consequently the ramification index e equals $(p-1) / d$.
Of course the characters χ_{1}, χ_{2} restricted to I are powers χ^{b}, χ^{a} of χ^{d}, where $\operatorname{gcd}(a, b)=d$. qed
Although not strictly necessary for our story, we recall what happens if I_{w} is trivial.
Lemma 2.3 Suppose that I_{w} is trivial, i.e. K is tamely ramified over \mathbb{Q}_{p}. Then we have the following possibilities.

1. There exist two characters ϕ, ϕ^{\prime} on I such that $\phi^{\prime}=\phi^{p}, \phi=\left(\phi^{\prime}\right)^{p}$ and

$$
\rho \left\lvert\, I=\left(\begin{array}{cc}
\phi & 0 \\
0 & \phi^{\prime}
\end{array}\right) .\right.
$$

Moreover, D_{p} is non-abelian in this case.
2. There exist integers a, b such that

$$
\rho \left\lvert\, I=\left(\begin{array}{cc}
\chi^{b} & 0 \\
0 & \chi^{a}
\end{array}\right) .\right.
$$

Moreover, D_{p} is abelian in this case.
Proof. If the group D_{p} is abelian we can finish by the same arguments as in the previous Lemma. It then turns out that K / \mathbb{Q}_{p} is generated by roots of unity and we are in the second case of our Lemma. So from now on we assume that D_{p} is non-abelian.
The extension $K=K_{1} / K_{0}$ is generated by a uniformiser π, ramified of order e over p. The index e is not divisible by p. Please be warned, the π we use here in this proof has in principle nothing to do with the π we use elsewhere in these notes. The inertia group I is now a cyclic group of order e, generated by an element we call σ. Let $F \in G a l\left(K / \mathbb{Q}_{p}\right)$ be an element which is a lift of the Frobenius element of $\operatorname{Gal}\left(K_{0} / \mathbb{Q}_{p}\right)$. Then there exist p-adic units $\psi, \beta \in K_{0}$ such that

$$
\sigma(\pi) \equiv \psi \pi\left(\bmod \pi^{2}\right), \quad F(\pi) \equiv \beta \pi\left(\bmod \pi^{2}\right)
$$

From this we deduce

$$
(F \circ \sigma)(\pi) \equiv F(\psi \pi) \equiv \psi^{p} \beta \pi\left(\bmod \pi^{2}\right)
$$

The latter is easily seen to be equal to $\left(\sigma^{p} \circ F\right)(\pi)\left(\bmod \pi^{2}\right)$. Hence $F \circ \sigma$ and $\sigma^{p} \circ F$ differ by an element from I_{w} which is the trivial group. We conclude that $F \circ \sigma=\sigma^{p} \circ F$.
Since I is cyclic the restriction of ρ to I consists of a direct sum of two characters we call ψ, ψ^{\prime}. Because D_{p} is non-abelian, the characters ψ, ψ^{\prime} are distinct. Furthermore, conjugation of $\left.\rho\right|_{I}$ by F interchanges the characters ψ and ψ^{\prime}. But we also have that $\rho\left(F^{-1} \circ \sigma \circ F\right)=\rho(\sigma)^{p}$. Hence we conclude that $\psi^{p}=\psi^{\prime}$ and $\left(\psi^{\prime}\right)^{p}=\psi$.
qed

We define the Serre-weight $k(\rho)$ as follows. First we deal with the case $\left.\rho\right|_{I}=\left(\begin{array}{cc}\chi^{b} & * \\ 0 & \chi^{a}\end{array}\right)$. When I_{w} is trivial, we can interchange a, b if necessary so that we have $0 \leq a \leq b \leq p-2$. We define $k(\rho)=1+p a+b$. When I_{w} is not trivial we take $0 \leq a \leq p-2$ and $1 \leq b \leq p-1$. When $b=a+1$ and $\chi^{-a} \otimes \rho$ is not finite at p, we set $k(\rho)=(a+1)(p+1)$ and $k(\rho)=$ $1+p \min (a, b)+\max (a, b)$ in all other cases.
Secondly we deal with the case when $\left.\rho\right|_{I}$ is a direct sum of two conjugate characters. Letting π be again the uniformizer of K / K_{0}, then the action of I can be described by a character ψ with values in $\mathbb{F}_{p^{2}}$ via $\sigma: \pi\left(\bmod \pi^{2}\right) \mapsto \psi(\sigma) \pi\left(\bmod \pi^{2}\right)$. The characters ϕ, ϕ^{\prime} are powers of ψ. After interchanging ϕ, ϕ^{\prime} is necessary, we can find integers a, b with $o \leq a<b \leq p-1$ such that $\phi=\psi^{a+p b}$. We set $k(\rho)=1+p a+b$.
Let us now turn back to the case when I_{w} is non-trivial. By taking tensor products $\chi^{c} \otimes \rho$ we can shift the weight of ρ by multiples of $p-1$. We do this in such a way that the new weight lies between 2 and $p+1$. We call this the reduced Serre-weight $\tilde{k}(\rho)$.
In the case when I_{w} is non-trivial it can be defined as follows. Let a, b as before and choose an integer k such that $2 \leq k \leq p$ and $k-1=b-a(\bmod p-1)$

$$
\tilde{k}=\left\{\begin{array}{cl}
p+1 & \text { if } k=2 \text { and } \rho \otimes \chi^{-a} \text { not finite } \\
k & \text { otherwise }
\end{array}\right.
$$

Theorem 2.4 (Moon, Taguchi) Let $\mathcal{D}_{K / \mathbb{Q}_{p}}$ be the different of K / \mathbb{Q}_{p} and define $v_{p}(p)=1$. Let $d=\operatorname{gcd}(a, b, p-1)$. Then

$$
v_{p}\left(\mathcal{D}_{K / \mathbb{Q}_{p}}\right)=\left\{\begin{array}{cl}
1+\frac{\tilde{k}-1}{p-1}-\frac{\tilde{k}-1+d}{(p-1) p^{m}} & \text { if } 2 \leq \tilde{k} \leq p \\
2+\frac{1}{(p-1) p}-\frac{2}{(p-1) p^{m}} & \text { if } \tilde{k}=p+1
\end{array}\right.
$$

Comparing this with Tate's result,
Theorem 2.5 (Tate) With the same notations as before,

$$
v_{p}\left(\mathcal{D}_{K / \mathbb{Q}_{p}} \leq 2+\frac{1}{p(p-1)}-\frac{2}{(p-1) p^{m}} .\right.
$$

Application: take $p=2$. Then $v_{2}\left(\mathcal{D}_{K / \mathbb{Q}_{2}}\right) \leq 5 / 2$. Assume that the representation representation ρ of $G_{\mathbb{Q}}$ is irreducible and unramified outside 2 . For the discriminant $d_{K / \mathbb{Q}}$ this implies

$$
d_{K / \mathbb{Q}}^{1 / n} \leq 2^{5 / 2}<5.66
$$

contradicting the Minkowski bound when $n>400$ and the Odlyzko bound when $n \geq 8$. A case by case reduction yields $n=1$, the trivial representation.

Theorem 2.6 (Serre) There are no irreducible continuous Galois representations, unramified outside $p=3$.

Proof Apply Tate's bound with $p=3$ to get $d_{K / \mathbb{Q}}^{1 / n}<3^{7 / 3}<13$. Via Odlyzko's bounds we have a lower bound of 13 when $n \geq 48$. So, $n \leq 38$. But then the image $\rho\left(G_{\mathbb{Q}}\right)$ is solvable and can be described explicitly. A case by case reduction then gives the result.

3 Proofs

Let \mathcal{O} be the ring of integers in K_{1}. Then π^{d} is a generator of the ideal $\left\{x \in \mathcal{O}\left||x|_{p}<1\right\}\right.$. We have $\mathcal{O}=\mathcal{O}_{K_{0}}\left[\pi^{d}\right]$. Recall that $e /(p-1) / d$.
The group of units in \mathcal{O} is denoted by U. The group of units of the form $1+\pi^{d i} \alpha$ with $\alpha \in \mathcal{O}$ is denoted by $U^{(i)}$. We have the filtration

$$
U \supset U^{(1)} \supset U^{(2)} \supset \cdots \supset U^{(i)} \supset \cdots
$$

Denote the p-th powers of the elements of $U^{(1)}$ by $\left(U^{(1)}\right)^{p}$. Then we have,

$$
U^{(e+2)} \subset\left(U^{(1)}\right)^{p} \subset U^{(e+1)}
$$

More precisely,
Lemma 3.1 We have

$$
U^{(e+2)} \subset\left(U^{(1)}\right)^{p} \subset U^{(e+1)}
$$

If $d>1$ then $\left(U^{(1)}\right)^{p}=U^{(e+1)}$. If $d=1$ then $\left(U^{(1)}\right)^{p}$ has index p in $U^{(e+1)}$.
Proof. It is an exercise to show that $\left(U^{(1)}\right)^{p} \subset U^{(e+1)}$ and $\left(U^{(2)}\right)^{p}=U^{(e+2)}$. The first statement follows from this. Consider the p-th power map

$$
\alpha: U^{(1)} / U^{(2)} \rightarrow\left(U^{(1)}\right)^{p} /\left(U^{(2)}\right)^{p} \subset U^{(e+1)} / U^{(e+2)}
$$

The kernel of α consists of the p-th roots of unity contained in K_{1}. So, if $d>1$, the map α is a bijection and since the quotients $U^{(i)} / U^{(i+1)}$ all have the same cardinality, we conclude $\left(U^{(1)}\right)^{p}=U^{(e+1)}$. When $d=1$ and $K_{1}=K_{0}\left(\zeta_{p}\right)$, the map α has kernel of order p and $\left(U^{(1)}\right)^{p}$ has index p in $U^{(e+1)}$.
qed
According to local classfield theory of the abelian extension K / K_{1} we have a surjective classfield mapping

$$
\phi: U \rightarrow I_{w}
$$

The kernel is precisely the norm group $N \mathcal{O}_{K}^{*}$. Since I_{w} is a p-group we can restrict ϕ to

$$
\phi: U^{(1)} \rightarrow I_{w}
$$

Let $\kappa: I_{w} \rightarrow \mathbb{C}^{*}$ be a one-dimensional character. We define the conductor to be $\pi^{d f(\kappa)}$ where

$$
f(\kappa)=\min \left\{k \mid U^{(k)} \subset \operatorname{ker}(\kappa \circ \phi)\right\} .
$$

In particular, $f\left(\chi_{0}\right)=0$ for the trivial character χ_{0}. Then we have the conductor-discriminant relation

$$
\left[K: K_{1}\right] v_{p}\left(\mathcal{D}_{K / K_{1}}\right)=\left(\sum_{\kappa \in \hat{I}_{w}} f(\kappa)\right) v_{p}\left(\pi^{d}\right)
$$

Proof of Tate's theorem.
Notice that $\left(U^{(1)}\right)^{p} \subset \operatorname{ker}(\kappa \circ \phi)$ for any character $\kappa: I_{w} \rightarrow \mathbb{C}^{*}$.
Suppose that $d>1$. Then we have $U^{(e+1)}=\left(U^{(1)}\right)^{p}$ and hence $f(\kappa) \leq e+1$ for all non-trivial characters κ. By the conductor-discriminant relation we now obtain

$$
v_{p}\left(\mathcal{D}_{K / K_{1}} \leq \frac{1}{p^{m}}\left(p^{m}-1\right)(e+1) v_{p}\left(\pi^{d}\right) .\right.
$$

Together with $v_{p}\left(\mathcal{D}_{K_{1} / K_{0}}=1-1 / e\right.$ and $v_{p}\left(\mathcal{D}_{K / \mathbb{Q}_{p}}\right)=v_{p}\left(\mathcal{D}_{K / K_{1}}+v_{p}\left(\mathcal{D}_{K_{1} / K_{0}}\right.\right.$ we obtain

$$
v_{p}\left(\mathcal{D}_{K / \mathbb{Q}_{p}}\right) \leq 2-(e+1) / p^{m} .
$$

Suppose that $d=1$ and $e=p-1$. Then $\left(U^{(1)}\right)^{p}$ has index p in $U^{(e+1)}$. Of the p^{m} characters of $I_{w} p^{m}-p^{m-1}$ have conductor dividing $\pi^{2} p, p^{m-1}-1$ have conductor dividing πp and the trivial character has trivial conductor. We get

$$
v_{p}\left(\mathcal{D}_{K / K_{1}}\right) \leq \frac{1}{p^{m}}\left(\left(p^{m}-p^{m-1}\right)(1+2 / e)+\left(p^{m-1}-1\right)(1+1 / e)\right)
$$

from which

$$
v_{p}\left(\mathcal{D}_{K / \mathbb{Q}_{p}}\right) \leq 2+\frac{1}{p(p-1)}-\frac{1}{p^{m-1}(p-1)}
$$

follows immediately.
qed
Proof of the Moon-Taguchi upper bound.
Let $\phi: U^{(1)} \rightarrow I_{w}$ be the classfield map as before. In addition ϕ is compatible with the action of I_{t} in the following sense

$$
(\phi \circ \sigma)(u)=\sigma \phi(u) \sigma^{-1}
$$

for all $\sigma \in I_{t}$. Suppose that $\tau \in I_{w}, \sigma \in I_{t}$ and

$$
\rho(\sigma)=\left(\begin{array}{cc}
\chi^{a}(\sigma) & * \\
0 & \chi^{b}(\sigma)
\end{array}\right) \quad \rho(\tau)=\left(\begin{array}{cc}
1 & \psi \\
0 & 1
\end{array}\right) .
$$

then

$$
\rho\left(\sigma \tau \sigma^{-1}\right)=\left(\begin{array}{cc}
1 & \chi^{a-b}(\sigma) \psi \\
0 & 1
\end{array}\right)=\rho(\tau)^{\chi^{a-b}(\sigma)} .
$$

Hence $\sigma \tau \sigma^{-1}=\tau^{\chi^{a-b}(\sigma)}$ for all $\sigma \in I_{t}$ and all $\tau \in I_{w}$.
Now consider the action of $\sigma \in I_{t}$ on $U^{(i)} / U^{(i+1)}$. Since, by Lemma 2.1, $\sigma\left(\pi^{d}\right)=\chi^{d}(\sigma) \pi^{d}\left(\bmod \pi^{2 d}\right)$, we get

$$
\begin{aligned}
\sigma\left(1+u \pi^{d i}\right) & =\left(1+u \chi^{d i}(\sigma) \pi^{d i}\right)\left(\bmod \pi^{d(i+1)}\right) \\
& =\left(1+u \pi^{d i}\right)^{\chi^{d i}(\sigma)}\left(\bmod \pi^{d(i+1)}\right)
\end{aligned}
$$

Since ϕ is I_{t}-equivariant, we conclude that ϕ maps $U^{(i)} / U^{(i+1)}$ to the trivial element if $d i \neq$ $k-1(\bmod p-1)$, i.e. $i \neq(k-1) / d(\bmod e)$.

Suppose first that $(k-1) / d \neq 1(\bmod e)$. Then $U^{(i)} / U^{(i+1)}$ has trivial image under ϕ for $i=(k-1) / d+1, \ldots, e+1$. Since $U^{(e+2)}$ always has trivial image under ϕ we conclude that $f(\chi) \leq(k-1) / d+1$ for all characters in \hat{I}_{w}. Application of the conductor-discriminant relation then gives us

$$
v_{p}\left(\mathcal{D}_{K / K_{1}}\right) \leq\left(1-p^{-m}\right)((k-1) / d+1) v_{p}\left(\pi^{d}\right) .
$$

This leads to

$$
v_{p}\left(\mathcal{D}_{K / \mathbb{Q}_{p}}\right) \leq 1+\frac{k-1}{p-1}-\frac{k-1+d}{p^{m}(p-1)}
$$

Suppose now that $(k-1) / d=1(\bmod e)$. Hence $d=1, e=p-1$ and $k=2(\bmod p-1)$. In this case both $U^{(1)} / U^{(2)}$ and $U^{(p)} / U^{(p+1)}$ may have non-trivial image under ϕ. By a result of Serre $U^{(p)}$ has trivial image if and only if K / K_{1} is "peu ramifie"" if and only if the representation $\rho \otimes \chi^{-a}$ is finite. This, as remarked before, is equivalent to the case when K can be generated over K_{1} by p-th roots of units in K_{1}. In this case we can proceed as before with $\tilde{k}=k=2$. When $\tilde{k}=p+1$ we recover Tate's bound.

4 References

[MT] H.Moon, Y.Taguchi, Refinement of Tate's discriminant vound and non-existence for $\bmod p$ galois representations., Documenta Math. Extra Kato Volume (2003), 641-654.
[T] J.Tate, The non-existence of certain Galois extensions of \mathbb{Q} unramified outside 2, Contemp. Math. 174(1994), 153-156.
[S1] J.P.Serre, Note 229 on p710 of Serre's Collected Works, Volume 3.
[S2] J.P.Serre, Sur les représentations modualires de degré 2 de Gal($\overline{\mathbb{Q}} / \mathbb{Q})$, Duke Math.J. 54(1987), 179-230.

