
Upper bounds for discriminants

Notes by F.Beukers

October 17, 2005

1 Introduction

Let p be a prime and
ρ : Gal(Q/Q) → GL2(Fp)

a continuous, irreducible Galois representation unramified outside of p.
Then Moon and Taguchi show in [MT] that for the following pairs k, p no such representation
exists:

2 ≤ p ≤ 19 and k = 2, 3, 5, 7

2 ≤ p ≤ 7 and k = 4.

For the following pairs k, p at most finitely many such representations exist:

k = 3, 5 and p = 23, 29, 31

k = 7 and p = 23, 29

Under the assumption of GRH we can find additional pairs. In 1973 (published in [T,1994])
Tate showed that no such representations with p = 2 exist and Serre, in the 1970’s showed
this for p = 3. Under assumption of GRH Brueggeman showed that no such representations
for p = 5 exist.

2 Generalities

Let
ρ : Gal(Q/Q) → GL2(Fp)

be a continuous Galois representation, possible reducible and possibly ramified at other primes
than p.
Let K be the invariant field of the kernel op ρ. Let P be a prime in K over p and Dp its
decomposition group. Denote the completion of K with respect to P again by K. The we
get the faithful representation

ρ : Dp = Gal(K/Qp) → GL2(Fp).
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Let K0 be the maximal unramified extension of Qp in K. Let K1 be the maximal tamely
ramified extension of Qp in K. Hence

Qp ⊂ K0 ⊂ K1 ⊂ K.

We have the following Galois groups:

I = Gal(K/K0), the inertia group

Iw = Gal(K/K1), the wild ramification group

It = I/Iw, the tame ramification group.

We let χ : Gal(Q/Q) → F∗
p be the cyclotomic character defined by σ(ζp) = ζ

χ(σ)
p for any p-th

root of unity ζp.
We say that ρ is finite at p if the extension K/K1 can be generated by p-th roots of units in
K1.

Lemma 2.1 The field Qp(ζp) contains an element π such that πp−1 = −p and such that
ζp − 1 ≡ π(mod π2). Moreover, the Galois group GQp acts on π via σ : π(mod π2) 7→
χ(σ)π(mod π2).

Lemma 2.2 Suppose that Iw is non-trivial. Then

1. There exists a divisor d of p − 1 such that K1 = K0(π
d) where π is as in Lemma 2.1.

The number e = (p− 1)/d is the ramification index of K1/K0.

2. The restriction of ρ to I has the form

(
χb ∗
0 χa

)
where a, b are integers such that

gcd(a, b, p− 1) = d.

3. The matrices in ρ(Iw) are characterised by the shape

(
1 ∗
0 1

)
.

Proof. The group ρ(Iw) is a subgroup consisting of elements of order pr for some r. It is an
exercise to show that such a group is conjugate to a group of the form(

1 ∗
0 1

)
.

Since the order of Dp/Iw is relatively prime to p, the elements of ρ(Iw) are the only ones
within this group.
Since Dp is a normaliser of the non-trivial group Iw, the restriction of ρ to Dp has the form(
χ1 ∗
0 χ2

)
. Here χ1 and χ2 are characters onDp. The semisimplification of ρ : Dp → GL2(Fp)

consists of the direct sum of χ1 and χ2. Its kernel is Iw and thus we see that Dp/Iw is abelian.
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In particular, K1/Qp is abelian. Since any abelian normal extension of Qp can be generated
by roots of unity, we see that K0/Qp is generated by roots of unity whose order is prime to
p and K1 ⊂ K0(ζp). By Lemma 2.1 there exists a number d|p − 1 such that K1 = K0(π

d).
Consequently the ramification index e equals (p− 1)/d.
Of course the characters χ1, χ2 restricted to I are powers χb, χa of χd, where gcd(a, b) = d.
qed

Although not strictly necessary for our story, we recall what happens if Iw is trivial.

Lemma 2.3 Suppose that Iw is trivial, i.e. K is tamely ramified over Qp. Then we have the
following possibilities.

1. There exist two characters φ, φ′ on I such that φ′ = φp, φ = (φ′)p and

ρ |I =

(
φ 0
0 φ′

)
.

Moreover, Dp is non-abelian in this case.

2. There exist integers a, b such that

ρ |I =

(
χb 0
0 χa

)
.

Moreover, Dp is abelian in this case.

Proof. If the group Dp is abelian we can finish by the same arguments as in the previous
Lemma. It then turns out that K/Qp is generated by roots of unity and we are in the second
case of our Lemma. So from now on we assume that Dp is non-abelian.
The extension K = K1/K0 is generated by a uniformiser π , ramified of order e over p. The
index e is not divisible by p. Please be warned, the π we use here in this proof has in principle
nothing to do with the π we use elsewhere in these notes. The inertia group I is now a cyclic
group of order e, generated by an element we call σ. Let F ∈ Gal(K/Qp) be an element which
is a lift of the Frobenius element of Gal(K0/Qp). Then there exist p-adic units ψ, β ∈ K0

such that
σ(π) ≡ ψπ(mod π2), F (π) ≡ βπ(mod π2).

From this we deduce
(F ◦ σ)(π) ≡ F (ψπ) ≡ ψpβπ(mod π2).

The latter is easily seen to be equal to (σp ◦F )(π)(mod π2). Hence F ◦ σ and σp ◦F differ by
an element from Iw which is the trivial group. We conclude that F ◦ σ = σp ◦ F .
Since I is cyclic the restriction of ρ to I consists of a direct sum of two characters we call ψ, ψ′.
Because Dp is non-abelian, the characters ψ, ψ′ are distinct. Furthermore, conjugation of ρ|I
by F interchanges the characters ψ and ψ′. But we also have that ρ(F−1 ◦ σ ◦ F ) = ρ(σ)p.
Hence we conclude that ψp = ψ′ and (ψ′)p = ψ. qed
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We define the Serre-weight k(ρ) as follows. First we deal with the case ρ|I =

(
χb ∗
0 χa

)
.

When Iw is trivial, we can interchange a, b if necessary so that we have 0 ≤ a ≤ b ≤ p − 2.
We define k(ρ) = 1 + pa+ b. When Iw is not trivial we take 0 ≤ a ≤ p− 2 and 1 ≤ b ≤ p− 1.
When b = a + 1 and χ−a ⊗ ρ is not finite at p, we set k(ρ) = (a + 1)(p + 1) and k(ρ) =
1 + pmin(a, b) + max(a, b) in all other cases.
Secondly we deal with the case when ρ|I is a direct sum of two conjugate characters. Letting
π be again the uniformizer of K/K0, then the action of I can be described by a character ψ
with values in Fp2 via σ : π(mod π2) 7→ ψ(σ)π(mod π2). The characters φ, φ′ are powers of
ψ. After interchanging φ, φ′ is necessary, we can find integers a, b with o ≤ a < b ≤ p−1 such
that φ = ψa+pb. We set k(ρ) = 1 + pa+ b.

Let us now turn back to the case when Iw is non-trivial. By taking tensor products χc⊗ ρ we
can shift the weight of ρ by multiples of p− 1. We do this in such a way that the new weight
lies between 2 and p+ 1. We call this the reduced Serre-weight k̃(ρ).
In the case when Iw is non-trivial it can be defined as follows. Let a, b as before and choose
an integer k such that 2 ≤ k ≤ p and k − 1 = b− a(mod p− 1)

k̃ =

{
p+ 1 if k = 2 and ρ⊗ χ−a not finite
k otherwise

Theorem 2.4 (Moon, Taguchi) Let DK/Qp be the different of K/Qp and define vp(p) = 1.
Let d = gcd(a, b, p− 1). Then

vp(DK/Qp) =

{
1 + k̃−1

p−1
− k̃−1+d

(p−1)pm if 2 ≤ k̃ ≤ p

2 + 1
(p−1)p

− 2
(p−1)pm if k̃ = p+ 1

Comparing this with Tate’s result,

Theorem 2.5 (Tate) With the same notations as before,

vp(DK/Qp ≤ 2 +
1

p(p− 1)
− 2

(p− 1)pm
.

Application: take p = 2. Then v2(DK/Q2) ≤ 5/2. Assume that the representation repre-
sentation ρ of GQ is irreducible and unramified outside 2. For the discriminant dK/Q this
implies

d
1/n
K/Q ≤ 25/2 < 5.66

contradicting the Minkowski bound when n > 400 and the Odlyzko bound when n ≥ 8. A
case by case reduction yields n = 1, the trivial representation.

Theorem 2.6 (Serre) There are no irreducible continuous Galois representations, unrami-
fied outside p = 3.

Proof Apply Tate’s bound with p = 3 to get d
1/n
K/Q < 37/3 < 13. Via Odlyzko’s bounds we

have a lower bound of 13 when n ≥ 48. So, n ≤ 38. But then the image ρ(GQ) is solvable
and can be described explicitly. A case by case reduction then gives the result. qed

4



3 Proofs

Let O be the ring of integers in K1. Then πd is a generator of the ideal {x ∈ O | |x|p < 1}.
We have O = OK0 [π

d]. Recall that e/(p− 1)/d.
The group of units in O is denoted by U . The group of units of the form 1+πdiα with α ∈ O
is denoted by U (i). We have the filtration

U ⊃ U (1) ⊃ U (2) ⊃ · · · ⊃ U (i) ⊃ · · ·

Denote the p-th powers of the elements of U (1) by (U (1))p. Then we have,

U (e+2) ⊂ (U (1))p ⊂ U (e+1).

More precisely,

Lemma 3.1 We have
U (e+2) ⊂ (U (1))p ⊂ U (e+1).

If d > 1 then (U (1))p = U (e+1). If d = 1 then (U (1))p has index p in U (e+1).

Proof. It is an exercise to show that (U (1))p ⊂ U (e+1) and (U (2))p = U (e+2). The first
statement follows from this. Consider the p-th power map

α : U (1)/U (2) → (U (1))p/(U (2))p ⊂ U (e+1)/U (e+2).

The kernel of α consists of the p-th roots of unity contained in K1. So, if d > 1, the map α
is a bijection and since the quotients U (i)/U (i+1) all have the same cardinality, we conclude
(U (1))p = U (e+1). When d = 1 and K1 = K0(ζp), the map α has kernel of order p and (U (1))p

has index p in U (e+1). qed

According to local classfield theory of the abelian extension K/K1 we have a surjective class-
field mapping

φ : U → Iw.

The kernel is precisely the norm group NO∗
K . Since Iw is a p-group we can restrict φ to

φ : U (1) → Iw.

Let κ : Iw → C∗ be a one-dimensional character. We define the conductor to be πdf(κ) where

f(κ) = min{k | U (k) ⊂ ker(κ ◦ φ)}.

In particular, f(χ0) = 0 for the trivial character χ0. Then we have the conductor-discriminant
relation

[K : K1]vp(DK/K1) =

∑
κ∈Îw

f(κ)

 vp(π
d).
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Proof of Tate’s theorem.
Notice that (U (1))p ⊂ ker(κ ◦ φ) for any character κ : Iw → C∗.
Suppose that d > 1. Then we have U (e+1) = (U (1))p and hence f(κ) ≤ e+ 1 for all non-trivial
characters κ. By the conductor-discriminant relation we now obtain

vp(DK/K1 ≤
1

pm
(pm − 1)(e+ 1)vp(π

d).

Together with vp(DK1/K0 = 1− 1/e and vp(DK/Qp) = vp(DK/K1 + vp(DK1/K0 we obtain

vp(DK/Qp) ≤ 2− (e+ 1)/pm.

Suppose that d = 1 and e = p− 1. Then (U (1))p has index p in U (e+1). Of the pm characters
of Iw pm − pm−1 have conductor dividing π2p , pm−1 − 1 have conductor dividing πp and the
trivial character has trivial conductor. We get

vp(DK/K1) ≤
1

pm

(
(pm − pm−1)(1 + 2/e) + (pm−1 − 1)(1 + 1/e)

)
from which

vp(DK/Qp) ≤ 2 +
1

p(p− 1)
− 1

pm−1(p− 1)

follows immediately. qed

Proof of the Moon-Taguchi upper bound.
Let φ : U (1) → Iw be the classfield map as before. In addition φ is compatible with the action
of It in the following sense

(φ ◦ σ)(u) = σφ(u)σ−1

for all σ ∈ It. Suppose that τ ∈ Iw, σ ∈ It and

ρ(σ) =

(
χa(σ) ∗

0 χb(σ)

)
ρ(τ) =

(
1 ψ
0 1

)
.

then

ρ(στσ−1) =

(
1 χa−b(σ)ψ
0 1

)
= ρ(τ)χa−b(σ).

Hence στσ−1 = τχa−b(σ) for all σ ∈ It and all τ ∈ Iw.
Now consider the action of σ ∈ It on U (i)/U (i+1). Since, by Lemma 2.1, σ(πd) = χd(σ)πd(mod π2d),
we get

σ(1 + uπdi) = (1 + uχdi(σ)πdi)(mod πd(i+1))

= (1 + uπdi)χdi(σ)(mod πd(i+1))

Since φ is It-equivariant, we conclude that φ maps U (i)/U (i+1) to the trivial element if di 6=
k − 1(mod p− 1), i.e. i 6= (k − 1)/d(mod e).
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Suppose first that (k − 1)/d 6= 1(mod e). Then U (i)/U (i+1) has trivial image under φ for
i = (k − 1)/d + 1, ..., e + 1. Since U (e+2) always has trivial image under φ we conclude that
f(χ) ≤ (k − 1)/d + 1 for all characters in Îw. Application of the conductor-discriminant
relation then gives us

vp(DK/K1) ≤ (1− p−m)((k − 1)/d+ 1)vp(π
d).

This leads to

vp(DK/Qp) ≤ 1 +
k − 1

p− 1
− k − 1 + d

pm(p− 1)
.

Suppose now that (k−1)/d = 1(mod e). Hence d = 1, e = p−1 and k = 2(mod p−1). In this
case both U (1)/U (2) and U (p)/U (p+1) may have non-trivial image under φ. By a result of Serre
U (p) has trivial image if and only if K/K1 is ”peu ramifié” if and only if the representation
ρ⊗χ−a is finite. This, as remarked before, is equivalent to the case when K can be generated
over K1 by p-th roots of units in K1. In this case we can proceed as before with k̃ = k = 2.
When k̃ = p+ 1 we recover Tate’s bound. qed
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