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1 Introduction

Let p be a prime and
p: Gal(@/Q) — GL(F,)
a continuous, irreducible Galois representation unramified outside of p.
Then Moon and Taguchi show in [MT] that for the following pairs k, p no such representation
exists:

2<p<19and k=2,3,57
2<p<T7andk=4.
For the following pairs &, p at most finitely many such representations exist:
k=3,5and p= 23,29, 31
k=T7and p= 23,29

Under the assumption of GRH we can find additional pairs. In 1973 (published in [T,1994])
Tate showed that no such representations with p = 2 exist and Serre, in the 1970’s showed
this for p = 3. Under assumption of GRH Brueggeman showed that no such representations
for p = 5 exist.

2 Generalities

Let

p: Gal(@/Q) — GL(F,)
be a continuous Galois representation, possible reducible and possibly ramified at other primes
than p.
Let K be the invariant field of the kernel op p. Let P be a prime in K over p and D, its
decomposition group. Denote the completion of K with respect to P again by K. The we
get the faithful representation

p: Dy = Gal(K/Q,) — GLy(F,).
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Let Ky be the maximal unramified extension of Q, in K. Let K; be the maximal tamely
ramified extension of @, in K. Hence

Q,C KyC K, CK.
We have the following Galois groups:
I = Gal(K/Ky), the inertia group
I, = Gal(K/K;), the wild ramification group
I, = 1/1,, the tame ramification group.

We let x : Gal(Q/Q) — F; be the cyclotomic character defined by o(¢,) = (X for any p-th
root of unity (.

We say that p is finite at p if the extension K/K; can be generated by p-th roots of units in
K.

Lemma 2.1 The field Q,((,) contains an element 7 such that 77~' = —p and such that
¢ — 1 = w(mod n?). Moreover, the Galois group Gg, acts on 7 via o : w(mod 7?)
x(o)m(mod 72).

Lemma 2.2 Suppose that I, is non-trivial. Then

1. There exists a divisor d of p — 1 such that K, = Ko(n%) where 7 is as in Lemma 2.1.
The number e = (p — 1)/d is the ramification index of K1/K.

b
2. The restriction of p to I has the form (X ;a) where a,b are integers such that

0
ged(a,b,p—1) =d.
3. The matrices in p(l,) are characterised by the shape (é 1() .

Proof. The group p(I,) is a subgroup consisting of elements of order p” for some r. It is an
exercise to show that such a group is conjugate to a group of the form

(1)

Since the order of D,/I, is relatively prime to p, the elements of p(I,) are the only ones
within this group.
Since D, is a normaliser of the non-trivial group I, the restriction of p to D, has the form

0 Xxo
consists of the direct sum of y; and xs. Its kernel is I,, and thus we see that D, /I, is abelian.

<X1 i ) . Here y; and 3 are characters on D,,. The semisimplification of p : D, — GLy(F,)



In particular, K;/Q, is abelian. Since any abelian normal extension of Q, can be generated
by roots of unity, we see that K,/Q, is generated by roots of unity whose order is prime to
p and K; C Ky((,). By Lemma 2.1 there exists a number d|p — 1 such that K; = Ky(r?).
Consequently the ramification index e equals (p — 1)/d.

Of course the characters 1, o restricted to I are powers X, x® of x?, where ged(a,b) = d.
qed

Although not strictly necessary for our story, we recall what happens if I, is trivial.

Lemma 2.3 Suppose that I, is trivial, i.e. K is tamely ramified over Q,. Then we have the
following possibilities.

1. There exist two characters ¢, ¢’ on I such that ¢ = ¢, ¢ = (¢')P and

p|[:<§g ;3/)

Moreover, D, is non-abelian in this case.

2. There exist integers a,b such that

b
X 0
I = .
Pl (0 Xa>

Moreover, D, is abelian in this case.

Proof. If the group D, is abelian we can finish by the same arguments as in the previous
Lemma. It then turns out that K/Q), is generated by roots of unity and we are in the second
case of our Lemma. So from now on we assume that D, is non-abelian.

The extension K = K;/Kj is generated by a uniformiser 7 , ramified of order e over p. The
index e is not divisible by p. Please be warned, the 7 we use here in this proof has in principle
nothing to do with the m we use elsewhere in these notes. The inertia group [ is now a cyclic
group of order e, generated by an element we call 0. Let F' € Gal(K/Q,) be an element which
is a lift of the Frobenius element of Gal(Ky/Q,). Then there exist p-adic units ¢, 5 € Ky
such that

o(n) = ¢Yr(mod 7?), F(7) = Bn(mod 7).

From this we deduce
(Foo)(n) = F(yr) = ¢?Bn(mod 7).

The latter is easily seen to be equal to (o? o F')(r)(mod 72). Hence F oo and o? o F differ by
an element from [, which is the trivial group. We conclude that FFoo =od” o F.

Since [ is cyclic the restriction of p to I consists of a direct sum of two characters we call ¢, 1.
Because D, is non-abelian, the characters v, 1)’ are distinct. Furthermore, conjugation of p|;
by F interchanges the characters ¢ and ’. But we also have that p(F~' oo o F) = p(o)P.
Hence we conclude that ¢ = 1" and (¢')P = 1. qed



b
We define the Serre-weight k(p) as follows. First we deal with the case p|; = >6 ;a
When [, is trivial, we can interchange a, b if necessary so that we have 0 < a < b < p — 2.
We define k(p) = 1+ pa+b. When [, is not trivial we take 0 <a <p—2and 1 <b<p-—1.
When b = a + 1 and x™* ® p is not finite at p, we set k(p) = (a + 1)(p + 1) and k(p) =
1 + pmin(a, b) + max(a,b) in all other cases.

Secondly we deal with the case when p|; is a direct sum of two conjugate characters. Letting
7 be again the uniformizer of K/Kj, then the action of I can be described by a character
with values in Fj2 via o : m(mod %) — ¢ (o)m(mod 72). The characters ¢, ¢’ are powers of
1. After interchanging ¢, ¢’ is necessary, we can find integers a,b with o < a < b < p—1 such

that ¢ = **P*. We set k(p) = 1+ pa + b.

Let us now turn back to the case when [, is non-trivial. By taking tensor products x“® p we
can shift the weight of p by multiples of p — 1. We do this in such a way that the new weight
lies between 2 and p + 1. We call this the reduced Serre-weight &(p).

In the case when I, is non-trivial it can be defined as follows. Let a, b as before and choose
an integer k such that 2 <k <pand k—1=0— a(mod p— 1)

- p+1 if k=2and p® x * not finite
k= )
k otherwise

Theorem 2.4 (Moon, Taguchi) Let Dg/q, be the different of K/Q, and define v,(p) = 1.
Let d = ged(a,b,p — 1). Then

k=1 k—1+4d : 7
0y(Drcre,) — { 1+ pfll (p*l)me if 2~§ E<p
D .
2+ (-p  (p—1)p™ if k=p+1

Comparing this with Tate’s result,

Theorem 2.5 (Tate) With the same notations as before,

1 2

v DK S 2 + - .

o Prre, plp—1) (p—1pm
Application: take p = 2. Then vy(Dg/g,) < 5/2. Assume that the representation repre-
sentation p of Gg is irreducible and unramified outside 2. For the discriminant dg /g this
implies )

1/n 5/2
dyejg < 277 < 5.66

contradicting the Minkowski bound when n > 400 and the Odlyzko bound when n > 8. A
case by case reduction yields n = 1, the trivial representation.

Theorem 2.6 (Serre) There are no irreducible continuous Galois representations, unrami-
fied outside p = 3.

Proof Apply Tate’s bound with p = 3 to get d}(//"(@ < 373 < 13. Via Odlyzko’s bounds we
have a lower bound of 13 when n > 48. So, n < 38. But then the image p(Gq) is solvable
and can be described explicitly. A case by case reduction then gives the result. qed
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3 Proofs

Let O be the ring of integers in K;. Then 7? is a generator of the ideal {z € O | |z, < 1}.
We have O = O, [r4]. Recall that e/(p — 1)/d.
The group of units in O is denoted by U. The group of units of the form 1+ 7%a with a € O

is denoted by U®. We have the filtration
U>UDSUy®@ 5...5y®d o
Denote the p-th powers of the elements of U™ by (U™)P. Then we have,
Ulet?) ~ (U(l))p c Ulet),
More precisely,

Lemma 3.1 We have
Ulet2) ~ (U(l))p c yleth),

Ifd > 1 then (UDY = UCD. Ifd =1 then (UMY has index p in U+,

Proof. It is an exercise to show that (UW)? c UEHD and (UP)P = U+, The first
statement follows from this. Consider the p-th power map

(1)/U(2) N (U(l))p/(U(Q))p C U(6+1)/U(e+2).

The kernel of o consists of the p-th roots of unity contained in K;. So, if d > 1, the map «
is a bijection and since the quotients U® /U+1) all have the same cardinality, we conclude
(UMY = Ut When d = 1 and K, = Ky(,), the map a has kernel of order p and (U™M)?
has index p in U+, qed

According to local classfield theory of the abelian extension K/K; we have a surjective class-
field mapping
¢:U — 1.

The kernel is precisely the norm group NOj.. Since I,, is a p-group we can restrict ¢ to
6. UV = 1,.
Let  : I, — C* be a one-dimensional character. We define the conductor to be 7% where
f(k) = min{k | UM C ker(r o ¢)}.

In particular, f(xo) = 0 for the trivial character xo. Then we have the conductor-discriminant
relation

[K Kl]Up DK/Kl = Z f Up 7Td .

K/EI’LU



Proof of Tate’s theorem.

Notice that (UM)P C ker(k o ¢) for any character & : I,, — C*.

Suppose that d > 1. Then we have U*) = (UM)? and hence f(x) < e+ 1 for all non-trivial
characters k. By the conductor-discriminant relation we now obtain

1
vp(Prejaa < (0™ = 1)(e + Dy (7).

Together with v,(Dk,/k, = 1 — 1/e and v,(Dkq,) = vp(Pr/x, + Vp(Dk, /K, We obtain

UP(DK/QP> <2—(e+1)/p"

Suppose that d = 1 and e = p — 1. Then (UM)? has index p in U+Y. Of the p™ characters
of I, p™ — p™! have conductor dividing 7%p , p™~! — 1 have conductor dividing 7p and the
trivial character has trivial conductor. We get

1 _ e
vp(Pr/i) < e (™ =™ (L +2/e)+ (" = (1 + 1/e))
from which ) )
v, (D <2+ —
»(Dk/g,) pp—1) prip—1)
follows immediately. qed

Proof of the Moon-Taguchi upper bound.
Let ¢ : UMD — I, be the classfield map as before. In addition ¢ is compatible with the action
of I; in the following sense

(poo)(u) =ap(u)o
for all o € I;. Suppose that 7 € I,,0 € I; and

0= (9 ) 20 (32)

sora) = (3 X7 oy

Hence o0~ = 7 ") for all ¢ € I, and all 7 € I,,.
Now consider the action of ¢ € I, on U® /U*Y  Since, by Lemma 2.1, o(7%) = x%(¢)7?(mod 72),
we get

then

o(14+ur®) = (1+ux®(o)r®)(mod 7¥+Y)

= (1 +ur®)X" @ (mod 74+D)

Since ¢ is I-equivariant, we conclude that ¢ maps U® /U0HY to the trivial element if di #
k—1(mod p — 1), ie. i # (k —1)/d(mod e).



Suppose first that (k — 1)/d # 1(mod e). Then U® /U has trivial image under ¢ for
i=(k—1)/d+1,..,e+ 1. Since U*?) always has trivial image under ¢ we conclude that
f(x) < (k—1)/d+1 for all characters in I,. Application of the conductor-discriminant
relation then gives us

v(Dryiy) < (L=p™ ™) ((k = 1) /d+ L)vy ().

This leads to

k=1 k—-1+d

p—1 pr(p-1)

Suppose now that (k—1)/d = 1(mod e). Henced = 1,e = p—1 and k = 2(mod p—1). In this
case both UM /U and UP /UP*+Y) may have non-trivial image under ¢. By a result of Serre
U®) has trivial image if and only if K/K is "peu ramifi¢” if and only if the representation
p®x~?is finite. This, as remarked before, is equivalent to the case when K can be generated

over K by p-th roots of units in Kj. In this case we can proceed as before with k=Fk=2.
When k = p + 1 we recover Tate’s bound. qed

vp(DK/Qp) S 1+
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